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Abstract 

Pediatric myelodysplastic syndrome (PMDS) is a very rare and still poorly characterized disorder. In this work, we 
identified novel potential targets of PMDS by determining genes with aberrant expression, which can be correlated 
with PMDS pathogenesis. We identified 291 differentially expressed genes (DEGs) in PMDS patients, comprising genes 
involved in the regulation of apoptosis and the cell cycle, ribosome biogenesis, inflammation and adaptive immunity. 
Ten selected DEGs were then validated, confirming the sequencing data. These DEGs will potentially represent new 
molecular biomarkers and therapeutic targets for PMDS.
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To the Editor
MDSs are a heterogeneous group of clonal hematopoi-
etic neoplasms. Although recent studies have shown 
that MDS and AML patients had different gene muta-
tion patterns [1–4], the molecular underpinnings remain 
unknown [5–10]. To identify DEGs related to the PMDS, 
we performed RNA-seq in 4 patients with primary 
PMDS and in 2 control pediatric samples (Additional 
file  1: Figures  S1A-B). Because of the limited number 
of samples and to limit the false positives, we used two 
independent bioinformatics pipelines, STAR + DESeq2 
and SALMON + edgeR, and considered only genes dif-
ferentially expressed in both pipelines. Hierarchical 
clustering showed that PMDS patients and controls 

clustered in two distinct groups (Fig.  1a). In total, 651 
DEGs were identified by STAR + DESeq2 and 616 DEGs 
by SALMON + edgeR (Fig.  1B; Additional file  1: Fig-
ures S1C-D). 291 DEGs were identified by both pipelines 
among which 136 genes were upregulated and 155 down-
regulated in patients (Additional file  1: Table  1). As a 
further validation, we used the LPEseq method. The con-
cordance of the genes in the ranks of the differential gene 
lists was remarkably high (Additional file 1: Figures S1E-
G). We then used GSEA to identify altered pathways 
from the Reactome database (Web reference 1) (Fig. 1c). 
The Enrichr enrichment analysis tool revealed that DEGs 
in PMDS are mainly related to pathways associated with 
the cell abnormal activity, immune and inflammatory sys-
tems and erythropoiesis (Additional file 1: Figure S2A).

Further, we compared our data with the transcrip-
tomic profiles from TCGA database. Interestingly, 
we found a clear distinction of PMDS from all other 
types of tumors (Fig. 2a; Additional file 1: Figure S2B). 
Moreover, the DEGs profile was able to divide tumors 
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into three distinct groups (Additional file  1: Figure 
S3A). As for control samples, we integrated the tran-
scriptomic data from the GTEx (Web reference 2) and 
observed a clear separation between blood related tis-
sues and other normal tissues (Additional file  1: Fig-
ures S3B). Finally, we compared the DEGs gene list with 
the gene sets available in the Enrichr database specifi-
cally for “Diseases/Drugs” and “Cell types “categories 

(Additional file  1: Tables  2–3). We confirmed that the 
DEGs identified in PMDS are significantly connected 
with blood tissues and blood disorders (Additional 
file 1: Figure S3C).

A comparison of our PMDS DEGs with multiple 
RNA-seq datasets from adult MDS samples revealed a 
statistically significant overlap (67 out of 136 DEGs). 
Nonetheless, 69 upregulated genes and almost all 

Fig. 1  a Z-score hierarchical clustering analysis and heatmap of differentially expressed genes. The color scale means the gene expression standard 
deviations from the mean green. b Scatterplot of the differentially expressed genes obtained using the SALMON and STAR pipelines (different 
colors highlight genes identified as differentially expressed in none, one, or both pipelines). c Gene set enrichment analysis (GSEA) rank plots for top 
statistically significant Reactome pathways with Normalized Enrichment Score (NES)
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Fig. 2  a T-distributed stochastic neighbor embedding (t-SNE) plot in the expression space of several cancer datasets, plotting the results of the two 
principal dimensions. The data were obtained from the GDC-PAN cancer data Portal. The PMDS samples do not cluster near other tumor types, AML 
in particular (black arrowhead), showing a distinct profile. b Boxplot: ddPCR analysis of twelve genes, comparing expression levels between controls 
and PMDS patients. For each gene, box–whisker plots of concentration values are shown. Genes are classified as upregulated (red), downregulated 
(blue) and reference (grey). Significant changes in cDNA concentration between control and patients are highlighted (one-tailed t test, corrected for 
unequal variances *p < 0.05, **p < 0.01, ***p < 0.001)
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downregulated genes were unique in PMDS (Additional 
file 1: Figure S4A-B; Additional file 1: Table 4).

Then, we validated the most statistically significant 
and biologically relevant DEGs either up- or downregu-
lated. Analysis by ddPCR showed significant differences 
between patient and control samples (Fig. 2b). The log2 
fold-change values for all 10 genes were highly corre-
lated (Additional file  1: Figure S5). We also validated 
the DEGs in 6 new PMDS patients (Additional file  1: 
Figure S6). Additionally, we compared our data with 
36 pediatric patients (3). The comparative data on 10 
DEGs in PMDS and validation are shown in the Addi-
tional file 1: Figure S7.

In conclusion, we have identified 291 DEGs that cor-
relate with the PMDS which might represent novel can-
didate genes for therapeutic intervention. Although a 
larger study cohort would be desirable, our data suggest 
that at the level of gene expression the PMDS is indeed 
a distinct disorder.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
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Additional file 1. The altered transcriptome of pediatric myelodysplastic 
syndrome revealed by RNA sequencing.
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