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Background: Pancreatic cancer is highly lethal and aggressive with increasing trend of

mortality in both genders. An effective prediction model is needed to assess prognosis

of patients for optimization of treatment.

Materials and Methods: Seven datasets of mRNA expression and clinical data were

obtained from gene expression omnibus (GEO) database. Level 3 mRNA expression and

clinicopathological data were obtained from The Cancer Genome Atlas pancreatic ductal

adenocarcinoma (TCGA-PAAD) dataset. Differentially expressed genes (DEGs) between

pancreatic tumor and normal tissue were identified by integrated analysis of multiple GEO

datasets. Univariate and Lasso Cox regression analyses were applied to identify overall

survival-related DEGs and establish a prognostic gene signature whose performance

was evaluated by Kaplan-Meier curve, receiver operating characteristic (ROC), Harrell’s

concordance index (C-index) and calibration curve. GSE62452 and GSE57495 were

used for external validation. Gene set enrichment analysis (GSEA) and tumor immunity

analysis were applied to elucidate the molecular mechanisms and immune relevance.

Multivariate Cox regression analysis was used to identify independent prognostic factors

in pancreatic cancer. Finally, a prognostic nomogram was established based on the

TCGA PAAD dataset.

Results: A nine-gene signature comprising MET, KLK10, COL17A1, CEP55, ANKRD22,

ITGB6, ARNTL2, MCOLN3, and SLC25A45 was established to predict overall survival

of pancreatic cancer. The ROC curve and C-index indicated good performance of the

nine-gene signature at predicting overall survival in the TCGA dataset and external

validation datasets relative to classic AJCC staging. The nine-gene signature could

classify patients into high- and low-risk groups with distinct overall survival and

differentiate tumor from normal tissue. Univariate Cox regression revealed that the

nine-gene signature was an independent prognostic factor in pancreatic cancer. The

nomogram incorporating the gene signature and clinical prognostic factors was superior

to AJCC staging in predicting overall survival. The high-risk group was enriched with

multiple oncological signatures and aggressiveness-related pathways and associated

with significantly lower levels of CD4+ T cell infiltration.
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Conclusion: Our study identified a nine-gene signature and established a prognostic

nomogram that reliably predict overall survival in pancreatic cancer. The findings may be

beneficial to therapeutic customization and medical decision-making.

Keywords: gene expression omnibus, nomogram, overall survival, pancreatic cancer, The Cancer Genome Atlas

INTRODUCTION

Pancreatic cancer is lethal and aggressive with a 5-year survival
rate of only 2–9% (1). Despite its low incidence, pancreatic
cancer is the fourth leading cause of cancer-related death in the
United States. Its mortality is increasing for both genders and it

is expected to become the second most common cause of cancer-

related death by 2030 after lung cancer and surpassing colorectal
and breast cancers (2). Surgical resection is the only curative

treatment and it significantly improves the five-year survival

rate to 20–30%. However, only <20% of all patients are eligible
for resection as most patients are diagnosed at an advanced
stage when there is metastasis (3). Poor prognosis is caused
by the rapid progression, early metastasis, and lack of typical

clinical presentation or sensitive screening methods for early-

stage pancreatic cancer (4). Neoadjuvant therapy, radiotherapy,
chemotherapy, targeted molecular therapy, and immunotherapy
have been used for treatment and have achieved certain

therapeutic effects. However, for individual patients, the survival
benefits of these treatments are questionable and side effects

occur. Pancreatic cancer should be managed by individualized
systemic treatment, which may prolong survival and improves
quality of life. Therefore, an effective prediction model is needed

for the accurate assessment of patient’s prognosis. In this way,
efficacious treatments may be selected to balance side effects
and survival benefits and to decide whether to administer more
aggressive treatment. Clinicopathological parameters such as
AJCC TNM staging have been used for predicting prognosis
of patients (5). The advancement of tumor molecular biology
has facilitated the development of new prediction tools based
on prognosis-related genes. These prognostic markers reflecting
tumor progression at molecular level may be beneficial to realize
individualized survival predictions with better accuracy.

Advances in gene chips and high-throughput sequencing
have demonstrated that prognostic gene signatures at the
mRNA level are able to predict overall survival in pancreatic
cancer. Birnbaum et al. proposed a 25-gene signature based
on clinicopathological and gene expression data that predicts
post-operative overall survival independent of classical factors
and molecular subtypes (6). Raman et al. reported a five-
gene prognostic model (ADM, ASPM, DCBLD2, E2F7, and
KRT6A) that accurately predicts overall survival from the
TCGA PAAD dataset (7). Yan et al. identified a survival-
related four-gene signature (LYRM1, KNTC1, IGF2BP2, and
CDC6) significantly associated with progression and prognosis
of pancreatic cancer (8). In-depth exploration of the public
datasets (GEO and TCGA etc.) may reveal other prognostic-
related genes and establish a reliable prognostic gene signature
which, in combination with clinicopathological parameters, may

be a powerful tool for predicting prognosis of pancreatic cancer
and individualized treatment.

Here, we integrated seven pancreatic cancer datasets from
the GEO database to identify differentially expressed genes
(DEGs). Univariate and Lasso-Cox regression analyses were
applied to identify overall survival-related DEGs and propose
a prognostic gene signature based on gene expression and
clinical data from the TCGA PAAD dataset. The prognostic
gene signature was validated with external datasets. The
molecular mechanism and tumor immunity relevance of the
gene signature and its potential in guidance of immune therapy
were also investigated. Independent prognostic factors of overall
survival were identified by multivariate Cox survival analysis.
A prognostic nomogram incorporating the prognostic gene
signature and clinical prognostic factors was established to
predict overall survival. Overall, our prognostic gene signature
and nomogram may accurately predict overall survival of
pancreatic cancer.

MATERIALS AND METHODS

Acquisition of Gene Expression and
Clinical Data
The mRNA expression and clinical data for pancreatic ductal
adenocarcinoma were searched and downloaded from the
Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.
gov/geo/) using the keywords “pancreatic cancer,” “PAAD,” and
“pancreatic adenocarcinoma.” “Homo sapiens” and “Expression
profiling by array” were included in the next round of screening.
“Cell line” and “xenograft” were excluded from the search.
The gene expression microarray datasets GSE71729, GSE62165,
GSE62452, GSE28735, GSE15471, GSE16515, and GSE32676
were selected and downloaded for DEG analysis (9–15). The
datasets met the following criteria: (1) human pancreatic tissue
samples; (2) tumor- and non-tumor pancreatic control tissue
samples; (3) ≥30 samples. GSE57495 had 63 tumor tissues that
were downloaded with their associated follow-up information
for subsequent validation of the prognostic gene signature (16).
Probes were matched to the gene symbols using the annotation
files provided by the manufacturer. The median ranking value
accounted for the expression value if multiple probes matched a
single gene. Robust multi-array average (RMA)-normalized data
were log2-transformed for further analysis.

Normalized RNA-sequencing data as transcripts per million
(TPM) and the associated clinical information of the PAAD
samples were downloaded from The Cancer Genome Atlas
(TCGA) dataset (https://portal.gdc.cancer.gov/;≤May 20, 2019).
They included 185 cases, 182 samples, and four normal tissue
samples. Eight cases without corresponding tumor samples,
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one case missing pathological information, fives cases with
a pathological diagnosis of colloid (mucinous non-cystic)
carcinoma or undifferentiated carcinoma, six cases with follow-
up period ≤30 days and two samples with metastasis were
eliminated. Thus, 165 cases with corresponding tumor tissues
and clinical information were included in the study. Normalized
gene expression data for the TCGA PAAD dataset were log2-
transformed for further analysis.

DEG Identification and Integrated
Microarray Dataset Analysis
DEGs between tumor- and non-tumor tissues were identified
using Limma package in R. |Log2FC| > 1, P < 0.05, and
false discovery rate (FDR) < 0.05 were set as the cutoffs for
the DEGs. The robust rank aggregation (RRA) method-based
R package “RobustRankAggreg” was used for the integrated
analysis of the DEGs identified from the seven GEO datasets.
P < 0.05 was considered statistically significant. GEPIA (http://
gepia.cancer-pku.cn) is a newly developed interactive web server
analyzing RNA sequencing expression data for 9,736 tumors
and 8,587 normal tissues in the TCGA and Genotype-Tissue
Expression (GTEx) projects with a standard processing pipeline
(17). As there were few normal pancreatic tissues in TCGA, the
expression level of a specificDEG identified by integrated analysis
of the GEO datasets were validated by GEPIA using TCGAPAAD
tumor data and matched data of normal tissue from TCGA and
GTEx. |Log2FC| > 1 and P < 0.01 were considered statistically
significant. Protein expression of the DEGs in pancreatic
tumor and non-tumor tissues was evaluated by the human
protein atlas (https://www.proteinatlas.org/) (18). Mutation
data was obtained from the cBioPortal for Cancer Genomics
(https://www.cbioportal.org/) (19).

Bioinformatic DEG Analysis
GO enrichment and KEGG pathway analyses were used to
explore the potential biological processes, cellular components,
and molecular functions of DEGs. Significantly relevant signal
pathways were identified with DAVID (https://david.ncifcrf.gov/)
(20). P < 0.05 was considered statistically significant. The
STRING database (https://string-db.org) was used to explore
potential interactions between DEGs with confidence score ≥0.4
(21). The PPI network of DEGs was constructed and visualized
with Cytoscape v. 3.7.1 (https://cytoscape.org/). The Cytoscape
plugin cytoHubba was used to identify hub nodes by the maximal
clique centrality (MCC) method. Densely connected clusters
in the PPI network were identified with the Cytoscape plugin
MCODE and the default parameters. GO enrichment analysis
was performed on DEG clusters.

Identification of Survival-Related DEGs
and Establishment of the Prognostic Gene
Signature
The TCGA PAAD dataset was used to identify DEGs associated
with overall survival. The expression levels of the DEGs identified
by integrated analysis of GEO datasets were analyzed with a
univariate Cox proportional hazards regression model. DEGs

with P < 0.01 were considered statistically significant and
included in subsequent analyses. Lasso-penalized Cox regression
analysis was performed to further reduce the number of DEGs in
the selected panel with best predictive performance using 10-fold
cross validation based on glmnet package in R. A prognostic gene
signature of pancreatic cancer patients was constructed based on
a linear combination of the regression coefficients (β) derived
from the Lasso Cox regression model multiplied with its mRNA
expression level. Patients were divided into high- and low-risk
groups based on the optimal cutoff of the prognostic gene
signature determined using X-Tile software (22). Kaplan-Meier
analysis, area under the curve (AUC) of the receiver operating
characteristic (ROC) curve, Harrell’s concordance index, and
a calibration plot comparing predicted and observed overall
survival were used to evaluate the performance of the prognostic
gene signature. AJCC stage performance was used as a control.
The performance of the prognostic gene signature was also
compared with three previously defined gene signatures (8, 23,
24). The GSE62452 andGSE57495 datasets with complete clinical
information were used for external validation. Risk scores were
calculated using the prognostic gene signature. Optimal cutoffs
for each dataset were determined using X-Tile. Performance of
the risk score at predicting overall survival was validated using
the AJCC stage as control.

Identification of Independent Prognostic
Parameters of Pancreatic Cancer
To identify independent prognostic parameters and to validate
the independent prognostic value of the gene signature,
univariate-, and multivariate Cox regression analyses were
performed in the TCGA dataset on the prognostic gene
signature and clinicopathological parameters including age, sex,
tumor size, tumor site, histological subtype, grade, AJCC TNM
stage, residual tumor status, surgical treatment, histories of
chemotherapy, histories of radiation therapy, histories of targeted
molecular therapy, tobacco smoking histories, alcohol drinking
histories, histories of chronic pancreatitis, diabetes, and prior
malignancy. P < 0.05 was considered statistically significant.
Parameters with P < 0.05 based on the univariate analysis were
further included in the multivariate Cox regression analysis.

Predictive Nomogram Construction and
Validation
After testing for collinearity, all independent prognostic
parameters and relevant clinical parameters were included in
the construction of a prognostic nomogram via a stepwise Cox
regression model to predict 1-, 2-, and 3-year overall survival
of pancreatic cancer patients in the TCGA dataset. Nomogram
performance in predicting overall survival was validated using
AJCC stage as control. Kaplan-Meier analysis, AUC of the
ROC curve, Harrell’s concordance index, and a calibration
plot comparing predicted and observed overall survival were
used to evaluate the performance of the prognostic nomogram.
Harrell’s concordance index was calculated to assess nomogram
discrimination using a bootstrap method with 1,000 resamples.
The nomogram calibration curve was plotted to compare
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predicted vs. observed overall survival. Based on the total points
of the nomogram, the patients were divided into three groups
by optimal cutoffs determined in X-Tile. Survival curves for
the high-, medium-, and low-risk groups were plotted using
Kaplan-Meier analysis.

Gene Set Enrichment and Tumor Immunity
Analyses
Gene set enrichment analysis (GSEA) was performed to elucidate
the molecular mechanisms of the prognostic gene signature
(25). The TCGA samples were divided into high- and low-
risk groups according to the optimal cutoffs determined by X-
Tile. GSEA was performed in javaGSEA v. 3.0 based on the
Molecular Signatures Database v. 6.2. C2 (curated gene sets), C5
(GO gene sets), and C6 (oncogenic signatures) were searched
to identify enriched KEGG pathways, biological processes,
cellular components, molecular functions, and dysregulated
oncogenic signatures associated with poor survival of the high-
risk group. |NES| > 1 and FDR < 0.05 were considered
statistically significant. Stromal, immune, and estimate scores
were calculated with the ESTIMATE (estimation of stromal and
immune cells in malignant tumor tissues using expression data)
algorithm applied to the expression data downloaded from the
TCGA PAAD dataset (https://bioinformatics.mdanderson.org/
public-software/estimate/) (26). The abundances of B, CD4+

T, CD8+ T, and dendritic cells; neutrophils; and macrophages
were estimated using the TIMER (tumor immune estimation
resource) algorithm (https://cistrome.shinyapps.io/timer/) (27).
Survival analysis of immune cell infiltration and correlation of
gene expression with immune cell infiltration level in pancreatic
cancer were evaluated with TIMER.

Statistical Analysis
Statistical analysis was performed in R v. 3.4.3 and GraphPad
Prism v. 8.01 (GraphPad Software, La Jolla, CA, USA).
Categorical variables were analyzed by the χ2 or Fisher’s
exact test. Continuous variables were analyzed using Student’s
t-test for paired samples. Multiple groups of continuous
variables were analyzed by one-way ANOVA. Univariate- and
multivariate Cox regression analyses were performed to evaluate
survival. The hazard ratio (HR) and 95% confidence interval
(CI) were calculated to identify genes associated with overall
survival. Unless otherwise stipulated, P < 0.05 was considered
statistically significant.

RESULTS

Identification of DEGs
This study was conducted according to the flow chart shown
in Figure 1. Details of the GEO datasets in this study are
shown in Table 1. Seven sets of DEGs (GSE71729, GSE62165,
GSE62452, GSE28735, GSE15471, GSE16515, and GSE32676)
comprised of 453, 2,449, 285, 395, 948, 1,238, and 472 DEGs
were identified between tumor and normal tissues (Figure 2A;
Supplementary Figures 1A–G). A total of 234 DEGs including
160 upregulated and 74 downregulated genes were identified after
integrated analysis by robust rank aggregation (RRA) method

(Supplementary Table 1). The top 20 up- and downregulated
DEGs identified by integrated analysis of microarrays are
shown in Figure 2B. Hierarchical clustering analysis revealed
differences in DEG expression pattern between tumor and
normal tissues, which could distinguish tumor from non-tumor
tissues (Figure 2C; Supplementary Figures 2A–F).

Functional Enrichment and PPI Network
Analysis of the DEGs
GO and KEGG pathway enrichment analyses were applied to
discover the functions of the DEGs (Supplementary Table 2).
The DEGs were significantly enriched in biological processes
related to interactions between the extracellular matrix and
cellular migration. This finding is consistent with the highly
invasive and metastatic nature of pancreatic cancer (Figure 3A).
Loss of adhesion and dissociation from in situ of tumor cells is
the first step in invasion and metastasis. Significantly enriched
biological processes included extracellular matrix organization,
cell adhesion, collagen catabolic process, extracellular matrix
disassembly, hemidesmosome assembly, proteolysis, and cell
migration. Enrichment analyses of the cellular compartment and
molecular functions are shown in Supplementary Figures 3A,B.
KEGG pathway analysis revealed that the DEGs participated in
PI3K-Akt signaling pathway, pathways in cancer and pathways
related to cellular dissociation from in situ, including ECM-
receptor interaction, focal adhesion, and protein digestion and
absorption (Figure 3B). Furthermore, the DEGs participated
in the axon guidance pathway indicating their involvement in
the neurological invasion of pancreatic cancer. The interactive
network of cancer-related pathways and corresponding DEGs
were visualized to elucidate their associations (Figure 3C).

A PPI network of DEGs that included 186 nodes and
691 interactions was constructed to identify gene interactions.
Node degree and betweenness were calculated by the MCC
method to obtain hub nodes. The top 25 candidate hub
genes were identified which may play a central role in
this network (Supplementary Figure 3C). Module analysis
identified significant clustering modules in the PPI network.
The three highest-scoring clustering modules were obtained
(Figures 4A–C). Each hub gene was found in ≥1 module. Thus,
the three clustering modules may represent key biological roles
of the PPI network. Function enrichment analysis revealed
that Module 1 with a score of 8.400 was associated with cell
adhesion and extracellular matrix organization. Module 2 with
a score of 8.125 was correlated with blood vessel and smooth
muscle development, indicating its involvement in tumor-related
angiogenesis. Module 3 had a score of 4.727 and was related
to cell adhesion and junction assembly. The PPI network
analysis showed that the DEGs participated in pancreatic cancer
progression especially in terms of invasion and metastasis.

Identification of Survival-Related DEGs
and Establishment of the Nine-Gene
Prognostic Signature
One hundred sixty-five patients from the TCGA PAAD
dataset with a follow-up period >30 d were included in
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FIGURE 1 | Flowchart presenting the process of establishing the gene signature and prognostic nomogram of pancreatic cancer in this study.

subsequent survival analyses. The baseline characteristics of
these patients are listed in Table 2. A total of 130 DEGs were
identified to be significantly associated with overall survival
based on the univariate Cox regression model (P < 0.01,
Supplementary Table 3). A prognostic signature comprising
nine genes, including mucolipin-3(MCOLN3), solute carrier
family 25 member 45 (SLC25A45), collagen alpha-1 (XVII)
chain (COL17A1), a centrosomal protein of 55 kDa (CEP55),
kallikrein-10 (KLK10), hepatocyte growth factor receptor (MET),
integrin beta-6 (ITGB6), ankyrin repeat domain-containing
protein 22 (ANKRD22), and aryl hydrocarbon receptor
nuclear translocator-like protein 2 (ARNTL2), was developed
by Lasso-penalized Cox analysis (Supplementary Figure 4;
Supplementary Table 4). The downregulated MCOLN3 and
SLC25A45 with HR < 1 were considered as tumor suppressors,
whereas the upregulated COL17A1, CEP55, KLK10, MET,
ITGB6, ANKRD22, and ARNTL2 with HR > 1 were regarded as
oncogenes. The risk score was calculated as follows:

[(−0.00758) × Expression value of MCOLN3]

+ [(−0.03974)× Expression value of SLC25A45]

+ [0.00658× Expression value of COL17A1]

+ [0.11878∗Expression value of CEP55]

+ [0.02763× Expression value of KLK10]

+ [0.12604× Expression value of MET]

+ [0.04788× Expression value of ITGB6]

+ [0.00409× Expression value of ANKRD22]

+ [0.09912× Expression value of ARNTL2] (1)

The optimal cutoff values for the risk scores were calculated
with X-Tile software. Patients from the TCGA dataset were
stratified into two (cutoff value = 2.33) or three (cutoff
values = 2.01 and 2.45) groups. The Kaplan-Meier survival
curves revealed significantly favorable overall survival in all
groups with lower risk scores (P < 0.0001) (Figures 5D,E).
Time-dependent ROC and C-index were applied to determine
the prognostic values of the nine gene risk scores compared
with the AJCC stage (Figures 5A–C). The AUCs for 1-, 2-
, and 3-year overall survival predictions for the risk scores
were 0.699, 0.637, and 0.621, respectively. The AUCs for 1-,
2-, and 3-year overall survival predictions for the AJCC stage
were 0.523, 0.630, and 0.674, respectively. The C-index of the
risk score was 0.673 (95% CI; 0.614–0.732), while that of the
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TABLE 1 | Details of the GEO datasets included in this study.

Datasets References Platform Sample size

(tumor/control)

Application

GSE71729 Moffitt et al. (9) Agilent-014850 whole human genome microarray 4x44K G4112F (Gene Symbol

Version; updated July, 2014)

357 (145/46) Identification of DEGs

GSE62165 Janky et al. (10) [HG-U219] affymetrix human genome U219 array 131 (118/13) Identification of DEGs

GSE62452 Yang et al. (11) [HuGene-1_0-st] affymetrix human gene 1.0 ST array [transcript (gene) version] 130 (69/61) Identification of DEGs

and validation

GSE28735 Zhang et al. (12) [HuGene-1_0-st] affymetrix human gene 1.0 ST array [transcript (gene) version] 90 (45/45) Identification of DEGs

GSE15471 Badea et al. (13) [HG-U133_Plus_2] affymetrix human genome U133 Plus 2.0 array 78 (39/39) Identification of DEGs

GSE16515 Pei et al. (14) [HG-U133_Plus_2] affymetrix human genome U133 Plus 2.0 array 52 (36/16) Identification of DEGs

GSE32676 Donahue et al. (15) [HG-U133_Plus_2] affymetrix human genome U133 Plus 2.0 array 32 (25/7) Identification of DEGs

GSE57495 Chen et al. (16) Rosetta/Merck human RSTA custom affymetrix 2.0 microarray 63(63/0) Validation

AJCC stage was 0.562 (95% CI; 0.507–0.618). The calibration
curves for the risk score revealed that the predicted overall
survival accorded with the observed overall survival (Figure 5F).
The performance of the risk score was also compared with
three previously defined gene signatures. The risk score had the
highest C-index (0.673 vs. 0.625, 0.612, and 0.544) indicating a
superior prognostic value (Supplementary Figures 5A–C). The
performance of the risk score was further explored in different
subgroups of patients (Supplementary Figure 6). The risk score
performed well in predicting overall survival of patients in
subgroup of stage I and II and subgroups without the history
of chemotherapy, molecular targeted therapy, and radiation
therapy, forecasting the natural course of pancreatic cancer. We
further explore whether the relative treatment benefit varies
according to the values of the risk score. Kaplan-Meier analyses
reveal that patients with higher risk score (top 50%) have
better response to chemotherapy, molecular targeted therapy,
and radiation therapy than patients with lower risk score
(bottom 50%; Supplementary Figure 7). In general, the nine-
gene signature performed well at predicting overall survival of
pancreatic cancer.

External Validation of the Prognostic
Performance of the Nine Gene Signature
Two external datasets GSE62452 and GSE57495 were used to
validate the prediction performance of the nine-gene prognostic
signature (Figure 6; Supplementary Figure 8). Risk scores were
calculated with the same formula for each patient. Patients
were divided into high- and low-risk groups according to
the optimal cutoffs determined for each dataset. The Kaplan-
Meier survival curves revealed significant difference in overall
survival between groups in both datasets. High-risk groups had
markedly poorer outcomes than low-risk groups (Figure 6D and
Supplementary Figure 8D). Prognostic power was then assessed
by time-dependent ROC and C-index. In both datasets, the
nine-gene signature had a comparable or superior performance
to that of the AJCC stage. In GSE62452, the AUCs for 1-,
2-, and 3-year overall survival predictions for the risk scores
were 0.544, 0.737, and 0.814, respectively. The AUCs for 1-
, 2-, and 3-year overall survival predictions for the AJCC

stage were 0.622, 0.705, and 0.700, respectively. The C-index
of the risk score was 0.582 (95% CI; 0.482–0.681), while
that for the AJCC stage was 0.603 (95% CI; 0.519–0.687)
(Figures 6A–C). In GSE57495, the AUCs for 1-, 2-, and 3-
year overall survival predictions for the risk score were 0.658,
0.612, and 0.670, respectively. The AUCs for 1-, 2-, and 3-
year overall survival predictions for the AJCC stage were 0.595,
0.660, and 0.654, respectively. The C-index of the risk score was
0.612 (95% CI; 0.517–0.707), while that for the AJCC stage was
0.600 (95% CI; 0.516–0.683) (Supplementary Figures 8A–C).
External validation indicated that the nine-gene signature
performed well at predicting overall survival in pancreatic
cancer patients.

Validation of Expression and Alteration of
the Nine Genes
The expression levels of the nine genes were validated
using GEPIA. The mRNA expression levels of COL17A1,
CEP55, KLK10, MET, ITGB6, ANKRD22, and ARNTL2 were
significantly increased in PAAD tumor tissue. In contrast,
MCOLN3 and SLC25A45 were significantly decreased in
compare with non-tumor tissues (Figure 7A). Human protein
atlas database was used to explore protein expression levels.
Typical IHC of eight genes (except KLK10, not included in the
database) in tumor and normal pancreatic tissues are shown
in Figure 7B. (Images are available from v18.proteinatlas.org).
Of the 165 PAAD patients included in the current study, 15
(9%) presented with alterations in the nine genes. Amplification
was the most common type of mutation in the upregulated
genes (Figure 7C).

Evaluation of Prognostic Factors in PAAD
Ninety-one patients from the TCGA PAAD dataset for which
complete clinical information was provided, including age, sex,
tumor size, tumor site, histological subtype, grade, AJCC TNM
stage, residual tumor status, surgical treatment, histories of
chemotherapy, histories of radiation therapy, histories of targeted
molecular therapy, tobacco smoking histories, alcohol drinking
histories, histories of chronic pancreatitis, diabetes, and prior
malignancy, were included in the analysis (Table 3). Reasons of
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FIGURE 2 | Identification of DEGs in pancreatic cancer between tumor and normal tissues. (A) UpSet Venn diagrams of the DEGs identified in seven GEO datasets.

(B) The heat map of top 20 up-regulated and down-regulated DEGs identified by integrated analysis of the GEO datasets. The up-regulated DEGs are showed in red

while the down-regulated DEGs are showed in blue. The value in each column represents the value of Log2FC. (C) Representative heatmap of the DEGs after

integrated analysis in GSE16515 shows that the 234 DEGs can effectively distinguish tumors from non-tumor tissues.

exclusion for each case was listed in the Supplementary Table 5.
Prognostic factors of overall survival for pancreatic cancer were
identified using univariate- and multivariate cox regression
analyses. The unadjusted univariate analysis revealed that risk
score (P = 0.0005), tumor size (P = 0.0235), tumor site (P =

0.0225; body and tail of pancreas vs. head), histological subtype
(P = 0.0215; other subtypes of adenocarcinoma vs. ductal type),
T stage (P = 0.0129; T3 and T4 vs. T1 and T2), N stage (P =

0.0049; N1 vs. N0), AJCC stage (P= 0.0224; IIB vs. I; P= 0.0108;
III and IV vs. I), residual tumor (P = 0.0320; R1 vs. R0), history
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FIGURE 3 | Functional enrichment analysis of the DEGs. (A) Top 20 enriched biological processes of the DEGs. (B) Top 14 enriched KEGG pathways of the DEGs.

(C) Visualization of enriched cancer related pathways and their corresponding DEGs. Up-regulated DEGs are represented in red while down-regulated DEGs are

represented in green. Pathways are represented in blue.
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FIGURE 4 | PPI network analysis of the DEGs. (A) Clustering module 1 with a score of 8.400 and its top 20 most enriched biological processes. (B) Clustering

module 2 with a score of 8.125 and its top 20 most enriched biological processes. (C) Clustering module 3 with a score of 4.727 and its top 20 most enriched

biological processes.

Frontiers in Oncology | www.frontiersin.org 9 September 2019 | Volume 9 | Article 996

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Wu et al. New Pancreatic Cancer Prognostic Tools

TABLE 2 | Clinical features of pancreatic cancer patients in the TCGA Dataset.

Clinical features Mean + SD

Follow-up time (day) 591.02 ± 479.02

Age 64.53 ± 10.84

Size (cm) 3.91 ± 1.70

N (%)

Survival status

Alive 76 (46.06%)

Dead 89 (53.94%)

Sex

Male 90 (54.55%)

Female 75 (45.45%)

Site

Head of pancreas 128 (77.58%)

Body of pancreas 14 (8.48%)

Tail of pancreas 12 (7.27%)

Others 11 (6.67%)

Subtype

Pancreas-adenocarcinoma ductal type 140 (84.85%)

Pancreas-adenocarcinoma-other subtype 25 (15.15%)

Grade

G1 27 (16.36%)

G2 89 (53.94%)

G3 47 (28.48%)

G4 1 (0.61%)

Not available 1 (0.61%)

T

T1 6 (3.64%)

T2 20 (12.12%)

T3 134 (81.21%)

T4 3 (1.82%)

Not available 2 (1.21%)

N

N0 45 (27.27%)

N1 116 (70.30%)

Not available 4 (2.42%)

M

M0 74 (44.85%)

M1 4 (2.42%)

Mx 87 (52.73%)

AJCC stage

I 1 (0.61%)

IA 4 (2.42%)

IB 13 (7.88%)

IIA 26 (15.76%)

IIB 112 (67.88%)

III 3 (1.82%)

IV 4 (2.42%)

Not available 2 (1.21%)

Residual tumor

R0 96 (58.18%)

R1 51 (30.91%)

(Continued)

TABLE 2 | Continued

Clinical features Mean + SD

R2 5 (3.03%)

Not available 13 (7.88%)

Initial pathologic diagnosis method

Tumor resection 99 (60.00%)

Tissue biopsy 35 (21.21%)

Cytology (e.g., Peritoneal or pleural fluid) 22 (13.33%)

Fine needle aspiration biopsy 4 (2.42%)

Not available 5 (3.03%)

Surgical treatment

Whipple 130 (78.79%)

Distal pancreatectomy 22 (13.33%)

Distal pancreatectomy and laporoscopy followed by

Hand-assisted and splenectomy

1 (0.61%)

Subtotal pancreatectomy 2 (1.21%)

Subtotal pancreatectomy and splenectomy and

cholecystectomy

1 (0.61%)

Near total pancreatomy with splenectomy, duodenum

perserving

1 (0.61%)

Radical pancreaticoduodenectomy 3 (1.82%)

Total pancreatectomy 2 (1.21%)

Endoscopic retrograde cholangiopancreaticography 1 (0.61%)

Not available 2 (1.21%)

History of neoadjuvant treatment

No 164 (99.39%)

Yes 1 (0.61%)

History of chemotherapy

No 51 (30.91%)

Yes 114 (69.09%)

History of radiation therapy

No 94 (56.97%)

Yes 45 (27.27%)

Not available 26 (15.76%)

History of targeted molecular therapy

No 41 (24.85%)

Yes 112 (67.88%)

Not available 12 (7.27%)

Tobacco smoking history

Lifelong non-smoker 60 (36.36%)

Current smoker 18 (10.91%)

Current reformed smoker for >15 years 27 (16.36%)

Current reformed smoker for ≤15 years 22 (13.33%)

Current reformed smoker, duration not specified 7 (4.24%)

Not available 31 (18.79%)

Alcohol drinking history

No 61 (36.97%)

Yes 92 (55.76%)

Not available 12 (7.27%)

History of chronic pancreatitis

No 119 (72.12%)

Yes 13 (7.88%)

Not available 33 (20.00%)

(Continued)
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TABLE 2 | Continued

Clinical features Mean + SD

History of diabetes

No 102 (61.82%)

Yes 34 (20.61%)

Not available 29 (17.58%)

History of prior malignancy

No 148 (89.70%)

Yes 17 (10.30)

of chemotherapy (P = 0.0202), history of radiation therapy (P =

0.0228), and history of targeted molecular therapy (P < 0.0001)
were significantly correlated with overall survival of pancreatic
cancer (Table 4). Multivariate analysis revealed that risk score,
tumor size, and history of targeted molecular therapy were
independent risk factors of overall survival (P < 0.05; Table 5).

Building and Validating a Predictive
Nomogram
The 91 patients with complete clinical information from the
TCGA dataset were used to establish a prognostic nomogram
predicting 1-, 2-, and 3-year overall survival based on the
stepwise Cox regression model (Figure 8A). Risk score, age,
tumor size, tumor site, histological subtype, T stage, and histories
of targeted molecular therapy were parameters included in
the nomogram. The AUCs of the 1-, 2-, and 3-year overall
survival predictions for the nomogram were 0.793, 0.842, and
0.851, respectively. The AUCs of the 1-, 2-, and 3-year overall
survival predictions for the AJCC stage were 0.565, 0.685, and
0.735, respectively. The C-index of the risk score was 0.779
(95% CI; 0.714–0.845), while that for the AJCC stage was
0.587 (95% CI; 0.520–0.654). Thus, the nomogram was superior
to the AJCC stage in terms of predicting overall survival of
pancreatic cancer (Figure 8B). The patients were divided into
three groups of equal size according to scoring of nomogram.
The Kaplan-Meier plot effectively discriminated these groups
of various risk (Figure 8C). Those with higher scores had
significantly poorer overall survival (P < 0.0001). Calibration
plots showed that the nomogram performed well at predicting
overall survival in pancreatic cancer patients (Figure 8D). When
the predicted overall survival was >80 or <60%, the nomogram
may underestimate the mortality.

Gene Set Enrichment Analysis (GSEA)
To elucidate the molecular mechanism of the nine-gene
signature, 165 patients from the TCGA PAAD dataset were
divided into high- and low-risk groups according to the
optimal cutoff for the nine-gene risk score determined
by X-tile software. GSEA compared the high- and low-
risk groups. In the former, 23 oncological signatures were
significantly enriched including the MAL, AGR, HIF, RAS,
ECM, ATRBRCA, PTC1, and other pathways (Figure 9A).
KEGG pathways enriched in the high-risk group included
regulation of the actin cytoskeleton, ubiquitin-mediated

proteolysis, axon guidance, focal adhesion, and tight junction.
These enriched KEGG pathways revealed that molecular
alteration in the high-risk group was closely associated with
the malignant properties of pancreatic cancer, especially
invasion and metastasis. Results of the GSEA are shown in
Supplementary Table 6.

Clinical- and Tumor Immunity Relevance of
the Nine-Gene Signature
Relationships between the nine-gene signature and the clinical
characteristics of pancreatic cancer (including AJCC stage, grade,
metastasis, and key gene mutation state) were analyzed in
datasets providing necessary clinical information. In terms of
AJCC stage, stage II patients had higher risk scores than stage I
patients in the TCGA dataset. But the risk scores for the stage
III and IV patients were not higher than those for the stage
II patients (Figure 9B). The risk scores were also comparable
across different AJCC stages in GSE63452, GSE62165, and
GSE57495 (Figure 9D; Supplementary Figures 9B,C). In terms
of grade, patients of G2, G3, and G4 had higher risk scores
than G1 (Figure 9C), which was consistent with the finding
from GSE63452 (Figure 9E). Moreover, data from GSE71729
revealed that the risk scores for the metastases were higher
than the primary tumors (Supplementary Figure 9A). In terms
of mutation, risk scores were identified to be highly associated
with mutation state of key genes. The risk scores for the KRAS,
TP53, and CDKN2A mutant groups were significantly higher
than those for the wild type (Figures 9F–H). The risk score in
the SMAD4 mutant group was non-significantly higher than
that for the wild type (Figure 9I). Finally, the performance of
the nine-gene signature at differentiating pancreatic cancer from
normal tissue were explored across all the seven GEO datasets
(Figure 9O). Tumor tissues could be effectively identified based
on the risk score.

To investigate tumor immunity relevance of the nine-gene
signature, the associations of the gene signature with tumor
purity and the presence of infiltrating stromal/immune cells in
tumor tissues were evaluated. Stromal-, immune-, and estimate
scores were calculated by applying the ESTIMATE algorithm to
the expression data downloaded from the TCGA PAAD dataset.
The stromal- and estimate scores were comparable between
the high- and low-risk groups. However, the immune score
was significantly lower in the high-risk group, indicating fewer
infiltration of immune cells in the tumor tissue (P < 0.05;
Figure 9J). The abundances of B, CD4+ T, CD8+ T, and
dendritic cells; neutrophils; and macrophages were further
estimated using the TIMER algorithm. The high-risk group was
associated with relatively lower levels of CD4+ T cell infiltration
(Figure 9K). Consistently, the downregulated SLC25A45 was
positively correlated with CD4+ T cell infiltration level, whereas
the upregulated MET was negatively associated with it (P
< 0.0001) (Figures 9L,M). In addition, a lower level of
CD4+ T cell infiltration was associated with poor survival
(P = 0.055; Figure 9N).
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FIGURE 5 | Evaluation of the performance of the nine gene signature in TCGA PAAD dataset. (A–C) Show the ROC curves for 1-, 2-, and 3-year overall survival

predictions for the nine gene signature in compare with AJCC stage. (D,E) Show the Kaplan-Meier survival curves of the nine gene signature. Patients from the TCGA

dataset are stratified into two or three groups according to the optimal cut-off values for the risk scores calculated by X-Tile. (F) The calibration plot for internal

validation of the nine gene signature. The Y axis represents the actual overall survival while the X axis represents the predicted overall survival. (G) Distribution of the

risk score, the associated survival data and the mRNA expression heat map in the TCGA dataset.
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FIGURE 6 | External validation of the nine gene signature in GSE62452 dataset. (A–C) Show the ROC curves for 1-, 2-, and 3-year overall survival predictions for the

nine gene signature in compare with AJCC stage. (D) shows the Kaplan-Meier survival curves of the nine gene signature. Patients from the GSE62452 dataset are

stratified into two groups according to the optimal cut-off values for the risk scores calculated by X-Tile. (E,F) Distribution of the risk score and the associated survival

data and mRNA expression heat map in GSE62452 dataset.

DISCUSSION

Pancreatic cancer is highly malignant with very poor prognosis.
The 5-year survival rate is about 5% (1). Accurate prediction
of prognosis can identify patients benefiting from more

radical treatment, including neoadjuvant therapy, more intensive
surgery, chemotherapy, radiation therapy, targeted molecular
therapy, and immunotherapy. Therefore, treatments can be
tailored to individual patients to improve prognosis. Traditional
clinicopathological parameters have been applied to reflect and
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FIGURE 7 | Validation of expression and alteration of the nine genes in pancreatic cancer. (A) The mRNA expression levels in TCGA pancreatic cancer tumor tissue

and matching normal tissue from data of TCGA and GTEx. Data was obtained from the GEPIA (http://gepia.cancer-pku.cn/). (B) The representative protein

expression of the nine genes in pancreatic cancer tumor tissue and normal tissue. Data was obtained from the human protein atlas (https://www.proteinatlas.org/).

(C) Genetic alterations of the nine genes in pancreatic cancer. Data was obtained from the cBioportal (https://www.cbioportal.org/).
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TABLE 3 | Baseline characteristics of patients included for univariate and

multivariate Cox regression analysis.

Clinical features Mean + SD

Risk score 2.06 ± 0.44

Age 63.59 ± 11.31

Follow-up time (day) 528.46 ± 371.92

Size (cm) 3.77 ± 1.44

N (%)

Survival status

Alive 35 (38.46%)

Dead 56 (61.54%)

Sex

Male 52 (57.14%)

Female 39 (42.86%)

Site

Head of pancreas 74 (81.32%)

Body of pancreas 5 (5.49%)

Tail of Pancreas 9 (9.89%)

Others 3 (3.30%)

Subtype

Pancreas-adenocarcinoma ductal type 79 (86.81%)

Pancreas-adenocarcinoma-other subtype 12 (13.19%)

Grade

G1 9 (9.89%)

G2 51 (56.04%)

G3 30 (32.97%)

G4 1 (1.10%)

T

T1 4 (4.40%)

T2 11 (12.09%)

T3 75 (82.42%)

T4 1 (1.10%)

N

N0 26 (28.57%)

N1 65 (71.43%)

M

M0 54 (59.34%)

M1 1 (1.10%)

Mx 36 (39.56%)

AJCC stage

IA 3 (3.30%)

IB 8 (8.79%)

IIA 14 (15.38%)

IIB 64 (70.33%)

III 1 (1.10%)

IV 1 (1.10%)

Residual tumor

R0 55 (60.44%)

R1 34 (37.36%)

R2 2 (2.20%)

Initial pathologic diagnosis method

Tumor resection 53 (58.24%)

Tissue biopsy 23 (25.27%)

(Continued)

TABLE 3 | Continued

Clinical features Mean + SD

Cytology (e.g., Peritoneal or pleural fluid) 13 (14.29%)

Fine needle aspiration biopsy 1 (1.10%)

Not available 1 (1.10%)

Surgical treatment

Whipple 74 (81.32%)

Distal pancreatectomy 12 (13.19%)

Distal pancreatectomy and laporoscopy followed by

Hand-assisted and splenectomy

1 (1.10%)

Subtotal pancreatectomy 1 (1.10%)

Subtotal pancreatectomy and splenectomy and

cholecystectomy

1 (1.10%)

Total pancreatectomy 1 (1.10%)

Endoscopic retrograde cholangiopancreaticography 1 (1.10%)

History of neoadjuvant treatment

No 90 (98.90%)

Yes 1 (1.10%)

History of chemotherapy

No 25 (27.47%)

Yes 66 (72.53%)

History of radiation therapy

No 67 (73.63%)

Yes 24 (26.37%)

History of targeted molecular therapy

No 29 (31.87%)

Yes 62 (68.13%)

Tobacco smoking history

Lifelong non-smoker 34 (37.36%)

Current smoker 16 (17.58%)

Current reformed smoker for >15 years 21 (23.08%)

Current reformed smoker for ≤15 years 15 (16.48%)

Current reformed smoker, duration not specified 5 (5.49%)

Alcohol drinking history

No 25 (27.47%)

Yes 66 (72.53%)

History of chronic pancreatitis

No 80 (87.91%)

Yes 11 (12.09%)

History of diabetes

No 67 (73.63%)

Yes 24 (26.37%)

History of prior malignancy

No 82 (90.11%)

Yes 9 (9.89%)

prognosticate disease progression. AJCC staging is currently
the most effective tool for prognostic prediction of pancreatic
cancer. Besides, molecular prognostic markers may be used as
a beneficial supplement to AJCC staging to further improve
the accuracy of prognosis prediction. Molecular prognostic
markers which can be quantified by standardized detection
procedures vary with tumor progression and may dynamically
reflect the prognosis of patients. Moreover, they may also play
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TABLE 4 | Unadjusted univariate analysis.

Exposure Statistics Overall survival

Risk score 2.06 ± 0.44 5.45 (2.09, 14.17) 0.0005

Risk score tertile

Low 30 (32.97%) 1

Middle 30 (32.97%) 1.56 (0.79, 3.08) 0.1991

High 31 (34.07%) 2.17 (1.12, 4.19) 0.0218

Age 63.59 ± 11.31 1.02 (1.00, 1.05) 0.0663

Age tertile

Low 30 (32.97%) 1

Middle 29 (31.87%) 1.07 (0.53, 2.16) 0.8510

High 32 (35.16%) 1.68 (0.88, 3.22) 0.1155

Sex

Male 52 (57.14%) 1

Female 39 (42.86%) 1.06 (0.62, 1.79) 0.8367

Size(cm) 3.77 ± 1.44 1.24 (1.03, 1.49) 0.0235

Size(cm) tertile

Low 26 (28.57%) 1

Middle 25 (27.47%) 0.91 (0.43, 1.92) 0.7992

High 40 (43.96%) 1.33 (0.72, 2.46) 0.3660

Site

Head of pancreas 74 (81.32%) 1

Body and tail of pancreas

and others

17 (18.68%) 0.37 (0.16, 0.87) 0.0225

Subtype

Pancreas-adenocarcinoma

ductal type

79 (86.81%) 1

Pancreas-adenocarcinoma-

other subtype

12 (13.19%) 0.30 (0.11, 0.84) 0.0215

Grade

G1 and G2 60 (65.93%) 1

G3 and G4 31 (34.07%) 1.57 (0.92, 2.68) 0.0975

T

T1 and T2 15 (16.48%) 1

T3 and T4 76 (83.52%) 3.24 (1.28, 8.20) 0.0129

N

N0 26 (28.57%) 1

N1 65 (71.43%) 2.69 (1.35, 5.36) 0.0049

M

M0 54 (59.34%) 1

M1 1 (1.10%) 2.10 (0.28, 15.54) 0.4681

Mx 36 (39.56%) 0.79 (0.46, 1.36) 0.4016

AJCC stage

I 11 (12.09%) 1

IIA 14 (15.38%) 1.33 (0.35, 4.99) 0.6770

IIB 63 (69.23%) 3.34 (1.19, 9.41) 0.0224

III and IV 3 (3.30%) 7.42 (1.59, 34.63) 0.0108

Residual tumor

R0 55 (60.44%) 1

R1 34 (37.36%) 1.82 (1.05, 3.14) 0.0320

R2 2 (2.20%) 1.72 (0.23, 12.82) 0.5976

Surgical treatment

Whipple 74 (81.32%) 1

Distal pancreatectomy 13 (14.29%) 0.51 (0.22, 1.20) 0.1237

(Continued)

TABLE 4 | Continued

Exposure Statistics Overall survival

Subtotal pancreatectomy 2 (2.20%) 0.00 (0.00, Inf) 0.9973

Others 2 (2.20%) 0.00 (0.00, Inf) 0.9978

History of chemotherapy

No 25 (27.47%) 1

Yes 66 (72.53%) 0.52 (0.30, 0.90) 0.0202

History of radiation therapy

No 67 (73.63%) 1

Yes 24 (26.37%) 0.45 (0.23, 0.89) 0.0228

History of targeted molecular therapy

No 29 (31.87%) 1

Yes 62 (68.13%) 0.30 (0.17, 0.51) <0.0001

Tobacco smoking history

Lifelong non-smoker 34 (37.36%) 1

Current or former smoker 57 (62.64%) 0.77 (0.45, 1.32) 0.3397

Alcohol drinking history

No 25 (27.47%) 1

Yes 66 (72.53%) 1.27 (0.70, 2.30) 0.4252

History of chronic pancreatitis

No 80 (87.91%) 1

Yes 11 (12.09%) 0.81 (0.37, 1.79) 0.6029

History of diabetes

No 67 (73.63%) 1

Yes 24 (26.37%) 0.94 (0.50, 1.75) 0.8422

History of prior malignancy

No 82 (90.11%) 1

Yes 9 (9.89%) 1.18 (0.50, 2.77) 0.7006

important roles in progression of pancreatic cancer and serve
as new therapeutic targets. By combining with the detection
of tumor-associated exosomes and circulating tumor cells
(CTC), real-time detection of disease recurrence and treatment
response in patients after surgical resection may be achieved.
Molecular prognostic markers may also have potential value in
early diagnosis of the highly heterogeneous pancreatic cancer,
progression of which involves a complex network of multiple
signaling pathways. To overcome the hinder of heterogeneity, a
panel of molecular markers may be more accurate in reflecting
pancreatic cancer prognosis than a single one. Nomograms are
widely used in clinical oncology to evaluate prognosis (28).
They can integrate several prognostic determinants including
molecular and clinicopathological parameters. The numerical
probabilities of clinical events can be calculated and visualized
with relatively simple output. Compared to conventional
staging, nomograms may effectively improve the prediction of
prognosis, which is beneficial for the clinical decision-making
and personalized treatment.

In the current study, we identified 234 reliable DEGs of
pancreatic cancer by integrative analysis of multiple datasets.
Functional enrichment analysis revealed that the DEGs were
closely related to invasion and metastasis of pancreatic cancer.
PI3K-Akt was the most enriched signaling pathway. Survival
analysis revealed 130 DEGs associated with overall survival.
A novel nine-gene signature predicting overall survival of
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TABLE 5 | Multivariate Cox regression analysis.

Exposure Non-adjusted Adjust I Adjust II Adjust III

Risk score 5.45 (2.09, 14.17) 0.0005 4.74 (1.73, 12.96) 0.0025 4.74 (1.73, 12.96) 0.0025 3.58 (1.50, 8.51) 0.0040

Age 1.02 (1.00, 1.05) 0.0663 1.02 (1.00, 1.05) 0.0872 1.03 (1.00, 1.05) 0.0536 NA

Sex

Male 1 1 1 NA

Female 1.06 (0.62, 1.79) 0.8367 0.88 (0.51, 1.52) 0.6477 0.86 (0.50, 1.48) 0.5961 NA

Size(cm) 1.24 (1.03, 1.49) 0.0235 1.19 (0.96, 1.47) 0.1219 1.19 (0.96, 1.47) 0.1167 1.30 (1.00, 1.68) 0.0463

Site

Head of pancreas 1 1 1 1

Body and tail of pancreas and others 0.37 (0.16, 0.87) 0.0225 0.51 (0.21, 1.23) 0.1351 0.49 (0.20, 1.19) 0.1143 0.44 (0.16, 1.15) 0.0944

Subtype

Pancreas-adenocarcinoma ductal type 1 1 1 1

Pancreas-adenocarcinoma-other subtype 0.30 (0.11, 0.84) 0.0215 0.53 (0.18, 1.58) 0.2524 0.78 (0.26, 2.29) 0.6462 0.49 (0.16, 1.47) 0.2005

Grade

G1 and G2 1 1 1 NA

G3 and G4 1.57 (0.92, 2.68) 0.0975 1.39 (0.80, 2.42) 0.2490 1.22 (0.70, 2.14) 0.4853 NA

T

T1 and T2 1 1 1 1

T3 and T4 3.24 (1.28, 8.20) 0.0129 4.00 (0.53, 29.92) 0.1770 4.33 (0.58, 32.56) 0.1543 4.50 (0.60, 33.92) 0.1439

N

N0 1 1 1 1

N1 2.69 (1.35, 5.36) 0.0049 0.89 (0.08, 10.23) 0.9268 0.48 (0.04, 5.72) 0.5603 0.21 (0.01,3.20) 0.2603

M

M0 1 1 1 NA

M1 2.10 (0.28, 15.54) 0.4681 0.44 (0.04, 5.46) 0.5261 0.53 (0.04, 6.58) 0.6213 NA

Mx 0.79 (0.46, 1.36) 0.4016 0.74 (0.42, 1.30) 0.2906 0.81 (0.46, 1.43) 0.4621 NA

AJCC stage

I 1 1 1 1

IIA 1.33 (0.35, 4.99) 0.6770 1.25 (0.33, 4.77) 0.7401 0.96 (0.26, 3.64) 0.9571 0.22 (0.02, 2.63) 0.2340

IIB 3.34 (1.19, 9.41) 0.0224 3.13 (1.11, 8.83) 0.0315 2.11 (0.75, 5.92) 0.1553 2.00 (0.06, 64.49) 0.6957

III and IV 7.42 (1.59, 34.63) 0.0108 8.61 (1.81, 40.88) 0.0068 4.07 (0.85, 19.52) 0.0796 1.60 (0.07, 36.94) 0.7701

Residual tumor

R0 1 1 1 1

R1 1.82 (1.05, 3.14) 0.0320 1.63 (0.93, 2.87) 0.0895 1.66 (0.95, 2.90) 0.0754 1.25 (0.68, 2.29) 0.4658

R2 1.72 (0.23, 12.82) 0.5976 1.94 (0.24, 15.36) 0.5312 2.26 (0.28, 18.34) 0.4447 3.55 (0.43, 29.18) 0.2377

Surgical treatment

Whipple 1 1 1 NA

Distal pancreatectomy 0.51 (0.22, 1.20) 0.1237 0.72 (0.29, 1.76) 0.4649 0.65 (0.27, 1.58) 0.3419 NA

Subtotal pancreatectomy 0.00 (0.00, Inf) 0.9973 0.00 (0.00, Inf) 0.9975 0.00 (0.00, Inf) 0.9973 NA

Others 0.00 (0.00, Inf) 0.9978 0.00 (0.00, Inf) 0.9979 0.00 (0.00, Inf) 0.9980 NA

History of chemotherapy

No 1 1 1 1

Yes 0.52 (0.30, 0.90) 0.0202 0.21 (0.11, 0.40) <0.0001 0.20 (0.10, 0.39) <0.0001 0.85 (0.31, 2.33) 0.7553

History of radiation therapy

No 1 1 1 1

Yes 0.45 (0.23, 0.89) 0.0228 0.53 (0.26, 1.06) 0.0729 0.54 (0.27, 1.09) 0.0866 0.83 (0.38, 1.83) 0.6512

History of targeted molecular therapy

No 1 1 1 1

Yes 0.30 (0.17, 0.51) <0.0001 0.17 (0.09, 0.31) <0.0001 0.16 (0.08, 0.31) <0.0001 0.17 (0.06, 0.48) 0.0009

Tobacco smoking history

Lifelong non-smoker 1 1 1 NA

(Continued)
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TABLE 5 | Continued

Exposure Non-adjusted Adjust I Adjust II Adjust III

Current or former smoker 0.77 (0.45, 1.32) 0.3397 0.76 (0.44, 1.31) 0.3207 0.78 (0.45, 1.34) 0.3657 NA

Alcohol drinking history

No 1 1 1 NA

Yes 1.27 (0.70, 2.30) 0.4252 1.34 (0.70, 2.57) 0.3778 1.10 (0.58, 2.08) 0.7676 NA

History of chronic pancreatitis

No 1 1 1 NA

Yes 0.81 (0.37, 1.79) 0.6029 1.09 (0.47, 2.52) 0.8359 0.84 (0.36, 1.97) 0.6950 NA

History of diabetes

No 1 1 1 NA

Yes 0.94 (0.50, 1.75) 0.8422 0.92 (0.49, 1.75) 0.8053 0.85 (0.45, 1.59) 0.6058 NA

History of Prior Malignancy

No 1 1 1 NA

Yes 1.18 (0.50, 2.77) 0.7006 1.19 (0.49, 2.90) 0.7076 1.05 (0.42, 2.59) 0.9197 NA

Adjust I model adjust for: Age, Sex and AJCC Stage.

Adjust II model adjust for: Age, Sex, AJCC Stage and Risk Score.

Adjust III model adjust for parameters associated with overall survival based on univariate analysis.

pancreatic cancer was established via Lasso-Cox regression.
MCOLN3 and SLC25A45 were downregulated and identified
as protective genes whereas MET, KLK10, COL17A1, CEP55,
ANKRD22, ITGB6, and ARNTL2 were upregulated and
associated with poor survival. This nine-gene signature was an
independent prognostic factor of pancreatic cancer. Patients
in low-risk groups had significantly better prognoses than
those in high-risk groups. Prognostic performance of the nine-
gene signature was validated in the TCGA dataset and the
external datasets GSE62452 and GSE57495. The AUC, C-
index, and calibration curves confirmed that the nine-gene
signature was comparable or superior to AJCC staging at
predicting 1-, 2-, and 3-year overall survival. A nomogram
integrated with the nine-gene signature and clinicopathological
parameters was established and accurately predicted overall
survival. GSEA disclosed that 23 oncological signatures were
significantly enriched in the high-risk group defined by the nine-
gene signature. This group was enriched with pancreatic cancer-
related oncogenic pathways and mutations and was associated
with invasion, metastasis, poor survival, and significantly lower
levels of CD4+ T cell infiltration. As a supplement to AJCC
staging, the nine-gene signature and the nomogram may be
useful as progression indicators and predictors of overall survival.

Five of the genes in the nine-gene signature were previously
reported to be associated with pancreatic cancer. MET is
a receptor tyrosine kinase that transduces signals from the
extracellular matrix to the cytoplasm by binding its ligand HGF.
MET is dysregulated in pancreatic cancer and activated by genetic
mutation and gene amplification, participating in pancreatic
cancer cell interactions with the tumor microenvironment
(29). It establishes the pre-metastatic microenvironment
promoting the metastatic phenotype. MET expression is closely
associated with clinical stage and activates the RAS-ERK
and PI3K-Akt pathways by recruiting downstream effector
molecules mediating tumorigenesis, progression, metastasis,

and gemcitabine chemotherapy resistance. KLK10 is a serine
protease and a member of the kallikrein family. Human
tissue kallikreins regulate cancer cell growth, angiogenesis,
invasion and metastasis, and either promote or suppress cancer
(30). They are also used as cancer biomarkers. KLK10 is
downregulated in breast, prostate, and other cancers functioning
as a tumor suppressor. In contrast, KLK10 is upregulated in
thyroid, gastric, and colorectal cancers and promotes tumors.
In pancreatic cancer, KLK10 is highly expressed in pancreatic
intraepithelial neoplasia and cancer tissues. KLK10 is upregulated
in pancreatic cancer patients with lymph node involvement and
remote metastasis (31). KLK10 and KLK6 are co-expressed in
pancreatic cancer tissues, positively correlated with R1-resection
status and poor prognosis and are independent risk factors
(32). KLK10 knockdown attenuated pancreatic cancer cell
migration, invasion, and metastasis in vitro and in vivo. KLK10
also mediates pancreatic cancer invasion and metastasis by
activating the FAK-SRC-ERK signaling pathway. COL17A1
maintains hemidesmosome integrity and is the direct target of
autoantibody in bullous dermatosis. In breast cancer, COL17A1
is hypermethylated and downregulated (33). Downregulation
of COL17A1 is associated with poor prognosis in this case.
COL17A1 may be a target of wild type p53 in breast tissue. It
inhibits cell migration and invasion. In contrast, COL17A1 is
hypomethylated and upregulated in cervical cancer, head, neck,
and lung squamous cell carcinoma, and lung adenocarcinoma
(34). COL17A1 upregulation was associated with poor prognosis
in these cancers. COL17A1 enhances invasive squamous cell
carcinoma migration and invasion via the FAK/PI3K signal
pathway. Thus, COL17A1 may play a dual role in certain
cancers. COL17A1 is upregulated in pancreatic cancer and
positively associated with poor prognosis (35). However,
the mechanisms by which it promotes pancreatic cancer
have not been clarified. The methylation levels and specific
mechanisms by which COL17A1 promotes pancreatic cancer
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FIGURE 8 | Validation of the nomogram in predicting overall survival of pancreatic cancer in the TCGA dataset. (A) A prognostic nomogram predicting 1-, 2-, and

3-year overall survival of pancreatic cancer. (B) Shows the time-dependent ROC for 1-, 2-, and 3-year overall survival predictions for the nomogram in compare with

AJCC stage. (C) Shows the Kaplan-Meier survival curves of the nomogram. Patients from the TCGA dataset are stratified into three groups according to the optimal

cutoffs for the nomogram calculated by X-Tile. (D) The calibration plot for internal validation of the nomogram. The Y axis represents the actual overall survival while

the X axis represents the predicted overall survival. (E) The time dependent AUC of the nomogram in predicting overall survival of pancreatic cancer.
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FIGURE 9 | Gene set enrichment analysis and the clinical- and tumor immunity relevance of the nine-gene signature. (A) Top 4 oncological signatures significantly

enriched in the high-risk group identified by gene set enrichment analysis. (B,D) Show the distribution of the risk score in different AJCC stage in TCGA and

GSE63452 datasets. (C,E) Show the distribution of the risk score in different grade in TCGA and GSE63452 datasets. (F–I) Show the distribution of the risk score in

different mutation status of KRAS, TP53, CDKN2A, and SMAD4 in TCGA dataset. (J) Show the distribution of the immune score in high risk and low risk group in

TCGA datasets. Immune scores were calculated with the ESTIMATE algorithm (https://bioinformatics.mdanderson.org/public-software/estimate/). (K) Shows the

(Continued)
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FIGURE 9 | CD4T cell infiltration level in high risk and low risk group in TCGA datasets. The abundances of CD4+ T cells were estimated using the TIMER algorithm

(https://cistrome.shinyapps.io/timer/). (L,M) Show the correlation of SLC25A45 and MET expression with immune infiltration level in pancreatic cancer. (O) The ROC

curves of the risk score differentiating pancreatic cancer from normal tissues in the seven GEO datasets. *P < 0.05, ***P < 0.001, ****P < 0.0001.

under various p53 mutation states merit further investigation.
CEP55 recruits PDCD6IP and TSG101, playing an important
role in cytokinesis. CEP55 is upregulated in pancreatic cancer
and is associated with poor survival (36). CEP55 upregulation
induces invasion-related matrix metalloproteinase (MMP) and
proliferation-related cyclin D1. CEP55 promotes pancreatic
cancer proliferation, migration, and invasion in vitro and
in vivo by activating the NF-κB signaling pathway and the
PI3K/AKT signaling pathway. CEP55 was also reported to
be upregulated in gastric, liver, lung, nasopharyngeal, and
bladder cancers (37). Upregulation of CEP55 activates the
PI3K/AKT signaling pathway in a concentration-dependent
manner and promotes tumor proliferation, invasion, and
metastasis. Its expression level is closely related to clinical
stage and poor prognosis. Therefore, CEP55 is considered an
ideal predictor of cancer prognosis. The biological function of
ANKRD22 has not yet been fully elucidated. It was thought to be
associated with the transition steps of somatic reprogramming,
human ovulatory cascade, and T cell-mediated allograft
rejection (38). Transcriptional profiling of peripheral blood
in pancreatic cancer patients revealed that ANKRD22 mRNA
was upregulated and could serve as a diagnostic biomarker
in patients with AUC = 0.933 (39). In non-small cell lung
cancer (NSCLC), ANKRD22 was upregulated in the tumor
and correlated with relapse and overall survival. It promotes
NSCLC proliferation by upregulating E2F1 transcription (40).
The role of ANKRD22 in pancreatic cancer progression requires
further study.

The roles of ITGB6 and ARNTL2 in pancreatic cancer
have not been reported. ITGB6 forms a complex with ITGA5,
which is the receptor for fibronectin and cytokinin. The
ITGA5B6 complex recognizes the RGD sequence, mediating cell
adhesion, and RGD-dependent TGFB1 release (41). ITGB6 was
upregulated and promoted invasion and metastasis in multiple
cancers. Internalization of the ITGA5B6 complex promotes
cancer cell invasion. ITGB6 upregulation in breast cancer was
associated with poor survival and metastasis. Anti-ITGA5B6
antibody alone or with trastuzumab halted tumor growth (42).
ITGB6 was also considered as a novel serummarker and a highly
efficient target for immunoliposome-mediated drug delivery
in colon cancer (43). ARNTL2 is a transcriptional activator
and a core component of the circadian clock. Interruption of
the circadian rhythm induces cardiovascular disease, cancers,
metabolic syndromes, and aging. Variations of the genes
governing the circadian pathway may be associated with cancer
predisposition. ARNTL2 participates in tumor progression. It
is deregulated in B leukemia and repressed by RelB and RelA
in EBV-transformed B cells (44). It is associated with colorectal
and breast cancer invasiveness, metastasis, and aggressiveness
(45). It induces a complex prometastatic secretome and enables
self-sufficient lung adenocarcinomametastasis (46). Invasion and

metastasis are common and occur early in pancreatic cancer. The
roles of ARTL22 in these processes deserve further investigation.

The roles of MCOLN3 and SLC25A45 in cancer development
have not yet been elucidated. MCOLN3 is a non-selective ligand-
gated cation channel that regulates membrane trafficking and
mediates Ca2+ release from the endosome to the cytoplasm (47).
Current research on MCOLN3 focuses on sensory modalities.
MCOLN3 resides mainly in endosome membranes, regulates
autophagy, and may participate in autophagosome formation
(48). Autophagy promotes and suppresses cancer occurrence
and progression. Therefore, MCOLN3 may mediate autophagy
in these processes. SLC25A45 is a transport protein in the
mitochondrial membrane, containing active thyroid-responsive
elements (49). SLC25A45 mutations are associated with chronic
kidney disease and preterm birth (50). The SNP of SLC25A45 was
associated with the mucinous histological subtype of epithelial
ovarian cancer (51). Although MCOLN3 and SLC25A45
have not been studied intensively in cancer, data from the
TCGA database revealed that MCOLN3 was downregulated in
adrenocortical (ACC), breast invasive (BRCA), uterine corpus
endometrial (UCEC), kidney renal clear cell (KIRC), and
kidney renal papillary cell (KIRP) carcinomas, colon (COAD),
lung (LUAD), lung squamous cell (LUSC), rectal (READ),
and stomach (STAD) adenocarcinomas, pheochromocytoma,
and paraganglioma (PCPG), thymoma (THYM), and uterine
carcinosarcoma (UCS) (|LOG2FC| > 1 and P < 0.01) and
was associated with relatively better survival in KIRC (HR
< 1 and P < 0.05). SLC25A45 was downregulated in lower
grade glioma (LGG), LUSC, and thyroid carcinoma (THCA).
The roles of MCOLN3 and SLC25A45 in cancer are worthy of
further investigation.

Immunotherapy is currently a routine cancer treatment
option. CD8+ cytotoxic T lymphocytes recognize MHC I-
presenting antigens and are preferred for targeting tumor
cells. On the other hand, CD4+ T lymphocytes play complex
and important roles in tumor immunity. It is generally
considered that CD4+ T cells compromise the majority of
T cells in pancreatic cancer and are positively associated
with metastasis and negatively associated with survival (52).
The pioneer study of Zhang et al. further revealed that
Kras-driven oncogenesis of pancreatic cancer established an
immunosuppressive microenvironment via recruitment and
activity of CD4+ T lymphocytes (53). Elimination of CD4+

T lymphocytes restored the antitumor function of CD8+ T
lymphocytes and blocked carcinogenesis. The specific subsets
of CD4+ T lymphocytes that play major immunosuppressive
role remain to be elucidated. On the other hand, certain subsets
of CD4+ T lymphocytes may also be needed for antitumor
immunity. CD4+ helper T cells may promote and maintain
cytotoxic T lymphocyte (CTL) memory, amplify T- and B
cells, and help CTL overcome negative regulation (54). CD4+
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T lymphocytes may eliminate tumor cells by cytolysis or by
regulating the tumor microenvironment (55). In the current
study, results calculated by algorithms indicated that CD4+ T
lymphocyte infiltration was significantly downregulated in high-
risk tumor tissues and was associated with poor prognosis.
These results require verification by further experimental studies.
Considering the differential infiltration level of immune cells
between high-risk and low-risk groups of pancreatic cancer, high-
risk patients may benefit from more accurate immunotherapy
strategies. More detailed studies are also required to elucidate
the specific role of each CD4+ T lymphocyte subset in
order to enhance the antitumor efficacy of CD8+ cytotoxic
T lymphocyte.

Our predictive model is based on the expression levels of
genes in a selected panel. This approach is more economical
and clinically practical than whole-genome sequencing.
Our nomogram incorporating nine-gene signature and
clinicopathological parameters may enable clinicians to
determine individual patient’s prognosis. Its graphical scoring
system is easy to understand facilitating the customized
treatment and making of medical decisions. To the best of
our knowledge, the nine-gene prognostic signature described
herein and the nomogram based on it have not been reported
previously. Three previously defined prognostic signatures
with published algorithms were used as controls in the current
study. Yan et al. identified a four-gene signature (LYRM1,
KNTC1, IGF2BP2, and CDC6) significantly associated with
progression and prognosis of pancreatic cancer (8). Chen
et al. proposed a 3-gene signature (SULT1E1, IGF2BP3, and
MAP4K4) based on DNA methylation data that predicts
poorer overall survival of pancreatic cancer (23). Liao et al.
reported a nine-gene prognostic model (ARHGAP30, HCLS1,
CD96, FAM78A, ARHGAP15, SLA2, CD247, GVINP1, and
IL16) using weighted gene co-expression network analysis
that may predict overall survival of pancreatic cancer patients
after pancreaticoduodenectomy (24).These articles explored
prognosis-related genes from different perspectives to establish
prognostic signatures. No overlap was identified between the
nine-gene prognostic signature we developed and the one
previously defined. Our prognostic signature was identified to
be superior or comparable to the previous defined signatures.
Our study provides new insight into the molecular mechanism
of pancreatic cancer and prediction of prognosis. Moreover, the
DEGs obtained in this study were derived from the integrated
analysis of multiple datasets, which is highly reliable. Four
of the genes in the nine-gene signature had not yet been
reported to be associated with pancreatic cancer prior to this
study. These DEGs may be potential molecular targets to fight
pancreatic cancer.

However, the present study had certain limitations. First, the
main sources of our clinical information were datasets from
the TCGA and GEO databases. Most of the patients therein
are Whites, Africans, or Latinos. Caution must be taken when
extrapolating our findings to patients from other ethnicities. The
current study is driven by statistics of available retrospective
data and the optimal cutoff is required to be determined before
clinical application. Second, the establishment and verification of

the nomogram were based on the TCGA database. Therefore,
it will be necessary to verify using external datasets with
complete clinical information and gene expression information
in the future. Moreover, the protein expression levels of the
prognosis related DEGs and their molecular mechanisms in
pathogenesis and progression of pancreatic cancer depend on
further experimental studies to elucidate.

CONCLUSION

Our study identified a nine-gene signature and a prognostic
nomogram incorporating the gene signature and clinical
prognostic factors to predict overall survival of pancreatic
cancer. The nine-gene signature was closely associated with
the progression, aggressiveness, and prognosis of pancreatic
cancer and its constituents are potential therapeutic targets.
The prognostic nomogram reliably predicted overall survival in
pancreatic cancer andmay facilitate individualized treatment and
making of medical decisions.
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