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Background
Gene expression defines with good accuracy the activity and behavior of a gene inside 
a cell; its alteration may have different consequences on cells, including promoting the 
development of specific pathologies such as cancer [1]. In addition, not all genes are 
expressed at the same time in the same cells of a tissue and their expression vary quanti-
tatively. Therefore, the study of the regulation of gene expression is fundamental for the 
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understanding of the molecular traits in health and disease, and for the identification of 
therapeutic targets.

Due to the existence of multiple heterogeneous factors differently impacting gene 
expression, the regulation process is extremely complex and the understanding of how 
different elements regulate tumor gene expression is still limited. Efforts have been made 
in this direction with different computational approaches. For example, Poos et al. [2] 
created a software package for the R computational environment [3] to predict regula-
tors of a gene of interest, starting from gene expression profiles of samples under study 
and known regulator binding information. Jiang et al. [4] focused their attention on the 
role of transcription factors in driving gene expression programs within a subset of 18 
cancer types, and implemented a method to predict their oncogenic role, starting from 
an input gene expression file provided by the user or enabling to query a specific regu-
lator or cancer. Recent efforts have been made in studying Gene Regulatory Networks 
(GRNs) using multiple different machine learning methods [5], including information 
theory, Boolean networks, differential equations, Bayesian networks [6], neural networks, 
and other network architectures. Many information theory-based methods have been 
proposed, due to their low computational cost, ability of discovering large GRNs from 
low expression data (such as, typically, those of transcription factor genes), and easy 
interpretability; they typically use scores such as mutual information and conditional 
mutual information to identify gene interactions, as in [7]). Boolean networks allow easy 
capturing of the dynamic behavior of GRNs by representing genes with Boolean varia-
bles, discretizing their expression level into binary values through clustering and thresh-
olding, and using Boolean functions to reconstruct the network directed graph; yet, 
their main limitation is in the discretization step and the difficulty in dealing with noisy 
data. However, they are easy to interpret and have been proven useful in many cases, 
as in [8]. Conversely, ordinary differential equations use continuous variables, allowing 
more accurate dynamic modelling of gene regulation, and differential equations to rep-
resent gene expression changes as a function of the expression of other genes. Their dis-
advantage is the computational complexity, which prevents them from handling large 
GRN modelling despite often using only linear models or just specific types of non-lin-
ear functions, while regulatory processes have often complex non-linear dynamics. Yet, 
they have provided considerable results in GRN inference, as in [9]. Bayesian networks 
make use of the Bayes theorem of probability, combining probability and graph theory to 
model the properties of GRNs, whose graph is inferred from a set of conditional depend-
encies. Their main advantage is the flexibility, since they can combine different types of 
data and prior knowledge for reliable GRN inference, as in [10]. Neural networks include 
two main approaches: Artificial Neural Networks and Recurrent Neural Networks [5]; 
the latter ones also involve fuzzy logic and enable modelling non-linear and dynamic 
interactions among genes [11]. Tong et al. [12], employed the former ones to infer gene–
gene interactions for biomarker discovery in childhood sarcomas. All these methods 
progressively emerged as promising and powerful approaches to investigate cell function 
control and provide clearer insights and understanding of cellular systems. In fact, GRN 
is a comprehensive map of living cell components reflecting the influence of genetic and 
epigenetic factors; it provides a great support to the study of complex diseases, path-
way analysis and disease gene identification [13]. Integrating and analyzing different 
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heterogeneous gene information can potentially provide a deep overview on complex 
biological systems and processes [5]; additionally, it can highlight the existing relation-
ships between biological molecules, in order to explore the function of these individual 
molecules and the organization of the components of living cells.

With the aim to increase knowledge, we further explore this path by assessing the role 
of both transcription factors and promoter methylation. In this manuscript, we pro-
pose a novel computational technique to model gene expression regulation according 
to a predictive linear approach to possibly identify correlations between target genes 
and their putative regulators. The model allows building a large and explicative gene 
expression network that displays the main biological relationships between a gene and 
its regulators, including both already known and novel possible associations. These latter 
ones may provide insights on still unknown effects of the analyzed regulatory factors on 
gene activity and on other putative interesting biological connections. With respect to 
the state-of-the-art, the main innovative aspect of the approach we propose is the novel 
feature selection it embeds: rather than evaluating all considered candidate regulatory 
features of a target gene at once, we progressively enlarge the set of such features by con-
sidering different feature subsets at a time; at each step only the most relevant features 
selected in the previous step are preserved and re-evaluated together with the new con-
sidered features. This both reduces the computational complexity and allows disentan-
gling the contribution of the different feature subsets, while the re-evaluation allows not 
incrementing the number of relevant features eventually selected. Thus, by considering 
feature subsets with different biological meaning, our approach allows unravelling both 
the most relevant features in the subsets and the relevant biological aspects overall for 
the problem under study. This enables the scientist to better understand the investigated 
biological system, through an approach that can be more adequate to analytically answer 
hypothesis-driven questions than other methods currently available.

Our quantitative analysis approach takes as input a set of user-defined target genes rel-
evant for a phenotype (e.g., a tumor) of interest and investigates their regulatory systems, 
with the objective of identifying the most relevant features explaining the regulation of 
each target gene. For each of such genes, the aim is quantifying the effect of the expres-
sion of genes in the same gene set (or in other relevant gene sets, if considered), the 
impact of its promoter methylation [14] and of the expression of transcription factors 
binding its promoters [15]. The proposed approach is based on the expression of hetero-
geneous regulatory elements and it is very specific for retrieving the best-predicting sets 
of regulators, although possibly leaving out potential regulators with a lower predicting 
power. We specifically applied our approach to Ovarian Serous Cystadenocarcinoma, 
which is one of the main causes of death in women with gynecologic neoplasia [16]. The 
approach allowed us to identify and confirm already known gene correlations or regula-
tors (e.g., hypermethylation of the BRCA1 gene) and to unveil a set of still unknown and 
potentially interesting biological relationships for further experimental research. The 
strong aspects of our approach, besides the relevance of its results, are its simplicity and 
wide applicability.



Page 4 of 21Regondi et al. BMC Bioinformatics          (2021) 22:571 

Methods
Data sources, extraction and preparation

Using the GenoMetric Query Language (GMQL) system [17, 18] we extract and com-
bine several heterogeneous data from three main public data repositories, i.e., genomic 
annotations from the Encyclopedia of Genes and gene variants (GENCODE) [19], tran-
scription factor data from the Encyclopedia of DNA Elements (ENCODE) [20], and 
expression and methylation data from The Cancer Genome Atlas (TCGA) [21], which 
reports data from 33 tumor types.

Genomic localizations of human genes and their transcription start sites (TSSs) in 
assembly GRCh38 are extracted from GENCODE; gene promoter regions are derived 
around each gene TSS as an interval of 2000 bases upstream and 1000 bases downstream 
the TSS. Genomic annotation version 22, released in 2015, is used to ensure consist-
ency with TCGA data, as TCGA adopted it for processing the considered expression and 
methylation data. This version annotates 60,483 genes (182,115 TSSs), including 19,650 
protein coding genes (with their 71,839 TSSs).

Candidate regulatory genes encoding transcription factors binding in promoter 
regions of tumor target genes are deduced from ENCODE as sketched in Fig. 1, using 
GRCh38 narrow (point-source) conservative idr thresholded peaks regions data obtained 
via ChIP-seq experiments; all promoter regions of a target gene, and all transcription 
factors binding in any of them, are considered.

Gene expression and methylation data related to the tumor under analysis are taken 
from TCGA, focusing on primary or recurrent tumor samples that were not previously 
subjected to neo-adjuvant treatment, excluding both metastatic tumor and normal sam-
ples. For each target gene, a single promoter methylation value is computed as the mean 
of the beta_values of all the probed methylation sites located within an extended pro-
moter region (methyl_area, 4000 bases upstream and 1000 bases downstream a TSS) of 
the gene (Fig. 2), as broader areas than promoter regions may be involved in regulation 
by methylation [22]. Indeed, the methylation machinery is associated with several epi-
genetic mechanisms, like histone modifications, such that the regulation is afforded by 
complex protein interactions in addition to the binding of transcription factors [23]; for 
this reason, broader areas than promoter regions may be involved in regulation by meth-
ylation. Moreover, there is evidence, for instance in colon cancer, that most methylation 
alterations occur not in promoters, and also not in CpG islands, but in sequences up to 
2 kb distant [22].

promoter_2

Regulatory Gene 1

TF1 TF2 TF3

promoter_1

promoter_2

TF4
Target Gene

Regulatory Gene 1 Regulatory Gene 2 Regulatory Gene 3 Regulatory Gene 4

Fig. 1  Transcription factor data extracted from ENCODE for each target gene
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To automatize and make computationally efficient the subsequent analysis of all these 
data, we structured them in a set of five incremental data matrices (M1–M5) for each 
target gene (Fig.  3), which are sequentially analyzed as described in “Data analysis” 
section. Given one or multiple sets of target genes of interest, these matrices are built 
as follows, with each matrix row regarding a single biological sample (identified by its 
TCGA_Aliquot ID):

•	 Matrix M1 contains the expression of the target gene, its promoter methylation and 
the expression of the genes belonging to the same gene set as the target gene;

•	 Matrix M2 adds the expression of all the candidate regulatory genes of the target 
gene to matrix M1, avoiding repetitions;

•	 Matrix M3 adds the expression of the candidate regulatory genes of all the genes in 
the target gene set to matrix M2, avoiding repetitions;

•	 Matrix M4 adds the expression of the genes belonging to the other, if they exist, gene 
sets of interest with respect to the considered target gene to matrix M3, avoiding 
repetitions;

•	 Matrix M5 adds the expression of the candidate regulatory genes of all the genes 
belonging to the other, if they exist, gene sets of interest to matrix M4, avoiding rep-
etitions.

This allows tracking each gene regulation system step-by-step, based on the differ-
ent types of biomolecular features involved. The matrices considered more relevant and 
used for further analyses are M2, M3, M5.

promoter

+1000 bp-2000 bp-2000 bp

methyl_area

Methylation Site

Target Gene

Fig. 2  Methylation data extracted from TCGA for each target gene
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Fig. 3  Structure of data matrices used for the analysis process of each target gene
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Specific application data

We applied our computational approach to investigate the regulatory system of 177 tar-
get genes belonging to 3 biological pathways (DNA REPAIR, STEM CELLS, GLUCOSE 
METABOLISM—Additional file 1: Section S0.1) relevant for the Ovarian Serous Cystad-
enocarcinoma (OV) [24–27], using all 372 TCGA OV patient samples with both RNA 
sequencing gene expression and methylation data publicly available (Additional file  1: 
Section S0.2).

Given the limited number of OV samples, to validate our OV results we used TCGA 
data of Breast Invasive Carcinoma (BRCA) samples of basal-like subtype according to 
the PAM50 molecular subtype classification; this BRCA intrinsic subtype had proved to 
be molecularly similar to Ovarian carcinoma [28]. All 122 TCGA basal-like BRCA sam-
ples with both gene expression and methylation data publicly available were used (Addi-
tional file  1: Section S0.3). As for ChIP-seq data, since ENCODE includes only a few 
OV experiment samples, we used those for MCF-7 (Breast cancer) and K562 (human 
immortalized myelogenous leukemia) cell lines, which are the ones in ENCODE with the 
highest number of ChIP-seq experiment samples (with 86 and 281 transcription factors 
(TFs), respectively, for a total of 308 distinct TFs); then, we evaluated the real activity of 
such possible candidate transcription factor encoding regulatory genes for the specific 
OV or BRCA patient through their expression value, which is available for each patient 
sample in the considered TCGA data. In so doing, we could indeed both consider an 
ample set of possible candidate direct regulatory genes and evaluate only those of them 
that are actually expressed in the specific patient sample considered; this is a relevant 
aspect of our designed approach.

Data analysis

The aim of our defined multistep data analysis algorithm, where each different feature 
matrix is a different step in the analysis, is two-fold: quantifying the influence on the 
expression of target genes of each type of the many regulatory factors considered, while 
keeping a computationally scalable data analysis procedure. The main idea behind the 
novel approach we propose is progressively broadening the set of potential regulatory 
features considered for each target gene, at each step retaining only the most relevant 
ones from the previous step and re-evaluating them together with the new considered 
features. Also thanks to such feature re-evaluation shrewdness, this does not increase 
the small number of representative regulatory features finally selected for each target 
gene, which remain very limited with respect to all the considered ones. Our approach 
overcomes the intrinsic limitation of a purely greedy selection procedure and, at the 
same time, keeps the computational load under control, as a brute force approach would 
require an exponential number of models to be evaluated. The features identified as 
correlated with the expression of the target gene are the ones candidate as its regula-
tory factors, provided with a proxy of their estimated quantitative effect given by gene 
expression. For each target gene, given some sets of increasing candidate regulatory 
features, the data analysis proceeds in multiple steps, one for each of such feature sets 
and composed of two subsequent phases: a feature selection and a linear regression, as 
described below (details in Additional file 1: Section S1.1 and Section S1.2).
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For each target gene, the defined data matrices M1–M5 incrementally include the dif-
ferent types of candidate regulatory features considered for the gene. Thus, they can be 
sequentially evaluated by our general data analysis algorithm to define the influence of 
each single type of features on the expression of the gene. Matrices M2, M3 and M5 are 
the most relevant ones; indeed, M2 groups the most likely candidate regulators of the 
target gene (promoter methylation, transcription factors and same-pathway genes), M3 
includes all genes in the same set of interest of the target gene and their direct candidate 
regulators, while M5 adds the genes in the other considered sets of interest and their 
direct candidate regulators to M3. Thus, for a better biological interpretation, we pro-
gressively apply our algorithm on the M2, M3 and M5 matrices.

Feature selection

Each performed feature selection uses an incremental forward feature selection 
approach with re-evaluation of features selected in the previous analysis step, if any. In 
each of the multiple data analysis steps, the selection considers an additional new group 
of features along with only the features selected as most relevant in the previous step (if 
any), which are retained and re-evaluated. Then, it analyzes the linear regression per-
formance of growing subsets of all such features, starting from a single feature and pro-
gressively adding all the others, one at a time based on the one that provides the best 
regression performance at that time; finally, it returns the feature subset with the best 
cross-validation performance. For better generalization, a fivefold cross-validation pro-
cess is used: the set of available data samples is randomly split into five, possibly equal, 
groups of samples, each used as test set in one of five different feature selection processes 
using the remaining groups as training set (the same partition is used for processing all 
feature sets of all target genes considered). Lastly, only the features extracted in all five 
feature selections are selected as most relevant for the current analysis step of the target 
gene under analysis.

This strategy contributes to provide a scalable process, always keeping a limited num-
ber of considered features at each step of the data analysis, thus allowing to fit regression 
models on the reduced set of relevant variables [29]. The feature selection procedure is 
detailed in Additional file  1: Section S1.1, where it is shown in Additional file  1: Fig-
ures S1.2(a) and S1.2(b).

Linear regression

In each regression analysis, performed for each of the feature sets of different types 
selected for each target gene, the regulation system of the target gene is analyzed; the 
role of its possible regulatory features is identified and each feature impact on the target 
gene expression is quantified.

To allow subsequent comparisons of results not only within but also across regres-
sion models, Z-score normalization is applied across samples to obtain value distribu-
tions with mean value = 0 and variance = 1 for all variables. Then, for each target gene 
a linear regression model fitting is performed on each set of selected features using the 
ordinary least squares (OLS) method. From each modeling, only the features in the 
evaluated set that result in having a regression coefficient very unlikely null, i.e., whose 
95% confidence interval does not include the 0 value, are extracted as significant; their 
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regression coefficient quantifies the effect of the feature on the regulation of the target 
gene expression. Furthermore, the used coefficient of determination (R2 score) measures 
the quality of the regression fit, by comparing the residual sum of squares of the regres-
sion performed by the defined model against the regression of the model without any 
background knowledge, i.e., the null model [29]; for an unbiased measure, the Adjusted 
R2 is used, which adjust the R2 score for the number of features used in the model fitting 
into consideration on the basis of the sample size and the number of estimated coeffi-
cients. Processing details are in Additional file 1: Section S1.2.

Expression regulation networks are then inferred from the results of the linear regres-
sions, per gene set and regression model, i.e., feature set type evaluated. The network 
nodes represent the target genes and their significant putative regulatory features; each 
target gene is connected to its features by directed incoming edges (from the feature to 
the target genes that the feature regulates), labelled with the calculated linear regression 
coefficient, quantifying the positive or negative effect the feature has in the target gene 
expression regulation system. Figure  4 displays an example network showing what we 
expect from the results of our algorithm.

Comparison with ARACNe

To evaluate the validity of our approach, we compared it with a widely used method for 
computing expression correlations among sets of genes and for computationally infer-
ring mutual functional relationships: ARACNe [7, 30]; we chose it for comparison since, 
as our proposal, it is able to extract highly interpretable knowledge from data, using an 
information theoretic approach. Furthermore and more importantly, to our knowledge 
ARACNe is the only information theory based method implementation that lets spec-
ify a priori information for the network inference (i.e., Hub Genes, the network nodes, 
and Transcription Factors, the candidate regulators), as our approach does; this makes 
appropriate the comparison of our approach with ARACNe only.

ARACNe builds gene expression networks by iteratively considering triples of genes 
and removing the weakest of the three relationships at each iteration. It does so accord-
ing to a Mutual Information (MI) value, which defines the relationship strength, and 
to an arbitrary threshold (I0) on the MI, set a priori by the user. This threshold allows 

Gene_3

Gene_2

Gene_1

Feature_1_3

Feature_1_1

Feature_1_2
Feature_2_1

Feature_2_2

Feature_3_1

+ coeff_1_1
+ coeff_1_3

- coeff_1_2

+ coeff_2_1

- coeff_2_2

- coeff_3_1

Fig. 4  Network example visualizing linear regression results. Solid (black) and dashed (red) links indicate 
positive and negative effects of candidate regulatory features on target genes
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defining the dimension of the generated network: the higher I0, the smaller the network 
and the number of displayed relationships (i.e., only the strongest ones).

We used ARACNe for evaluating the associations and correlations found during the 
data analysis, comparing the expression networks computed with our regression mod-
els with the corresponding networks generated by the ARACNe algorithm, and identi-
fying the common gene features (i.e., regulatory genes) and their association ranking. 
For a proper comparison with the M3 and M5 models of our approach, we applied the 
ARACNe algorithm separately to each individual biological pathway considered (DNA 
REPAIR, STEM CELLS and GLUCOSE METABOLISM): After merging all M3 or M5 
data matrices of each target gene in the pathway (removing all duplicate genes in case 
present), we used each of the two merged input data matrix (without any feature pre-
selection) as Table Data on which to run the ARACNe algorithm, setting the target 
genes of the pathway as Hub Genes (i.e., network nodes), the candidate regulatory genes 
of the pathway as Transcription Factors, and the considered TCGA data sample IDs as 
Data Attributes. Thus, also in ARACNe we used the same data and pre-defined set of 
genes derived from the considered pathways as a priori information, providing both the 
target genes and the candidate transcription factors as in our approach.

Implementation

We implemented our new general approach in a comprehensive and generalized Python 
library, called genereg (https://​pypi.​org/​proje​ct/​gener​eg/), which can be used to investi-
gate relationships in any type of tumor for which TCGA data is available. The library also 
implements alternative feature selection procedures that can be applied during the data 
analysis process, as an alternative to our incremental forward feature selection with fea-
tures re-evaluation, as described in Additional file 1: Section S4.1.

Results
In this Section, we report the results obtained for each considered pathway gene set by 
applying our approach on OV data (focusing on matrices M3 and M5); we also show 
the outcomes of the comparison with the results obtained for BRCA data and from the 
ARACNe alternative computational method (details are in Additional file  1: Sections 
S1.3, S2 and S3). Finally, we show the experimental validation results of some of our 
findings, and the comparison results with alternative feature selection strategies.

In addition to the predictive models, in our GitHub repository (https://​github.​com/​
DEIB-​GECO/​gener​eg, path OV Cancer Results / Data Compendium for Researchers.zip) 
we supply a compendium of data useful for researchers interested in studying the three 
pathways here considered, including: (1) transcripts, methylation and expression values 
in TCGA Ovarian and basal-like Breast cancers; (2) correlations between methylation 
and gene expression (a scatterplot for each gene of interest); and (3) the list of putative 
transcription factors from ENCODE for each target gene.

Overall results on ovarian cancer pathways

The adopted incremental approach aims at identifying the features, among the consid-
ered ones, that are more relevantly correlated with the regulation of a target gene expres-
sion, rather than fully explaining the gene regulatory system. We accepted values as low 

https://pypi.org/project/genereg/
https://github.com/DEIB-GECO/genereg
https://github.com/DEIB-GECO/genereg
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as 0.6 for the Adjusted R2 of our regression models to indicate a good linear model fit, 
with the value of the regression coefficient of the features identified as relevant that 
quantifies the effect of the feature on the target gene expression regulation.

Typically, model accuracy increases by adding new features; our multistep analysis, 
increasingly adding features, leads to progressively broadening the set of regulation 
hypotheses, until reaching a set of features that allow an accurate prediction of the gene 
expression model. However, some genes may better fit in their first (M2) or second (M3) 
model, rather than in the last one (M5), showing that their regulation system mainly 
depends on the activity of genes in the same pathway or of their candidate regulatory 
genes. Final results are visualized as a set of networks, defined by grouping target genes 
according to their function-specific classification. All the networks are reported in Addi-
tional file 1: Section S3, while in the following we discuss some specific findings.

DNA REPAIR pathway

The genes involved in the DNA REPAIR pathway that overall show the best linear fit in 
the regression models are 9: BRCA1, ERCC1, ERCC2, FANCC, FANCD2, POLB, POLE, 
POLQ and TP53BP1 (Fig. 5).

Model M3: for 5 genes of the pathway, the gene promoter methylation is demon-
strated as one of the relevant features involved in the regulation of their expression (i.e., 
in their repression, by the sign of its coefficient): BRCA1 (coeff. =  − 0.3442), ERCC1 
(coeff. =  − 0.1347), ERCC4 (coeff. =  − 0.1817), ERCC5 (coeff. =  − 0.1630), FANCF 
(coeff. =  − 0.1314).

There are 4 most frequent regulators, each appearing in the regulatory models of four 
genes in the DNA REPAIR set:

•	 POLQ (gene of DNA REPAIR pathway);
•	 FANCD2 (gene of DNA REPAIR pathway);
•	 SUZ12 (candidate TF of a gene of DNA REPAIR pathway;
•	 ZHX1 (candidate TF of a gene of DNA REPAIR pathway).

Model M5: for 4 genes of the pathway, the gene promoter methylation is selected 
as one of the relevant features involved in the regulation (repression) of their expres-
sion: BRCA1 (coeff. =  − 0.3475), ERCC4 (coeff. =  − 0.2608), ERCC5 (coeff. =  − 0.1774), 
FANCF (coeff. =  − 0.1659).

Gene R2 Adjusted
R2

Most
Relevant
Feature

Coefficient R2 Adjusted
R2

Most
Relevant
Feature

Coefficient R2 Adjusted
R2

Most
Relevant
Feature

Coefficient

POLB 0.20 0.19 HDAC2 0.3399 0.55 0.54 THAP1 0.7135 0.69 0.68 THAP1 0.5420
FANCC 0.58 0.57 XPA 0.3814 0.65 0.64 XPA 0.3988 0.68 0.67 XPA 0.3552
POLQ 0.49 0.49 FANCD2 0.6733 0.63 0.62 FANCD2 0.4926 0.67 0.66 FANCD2 0.4779

TP53BP1 0.68 0.67 ZSCAN29 0.4986 0.64 0.63 ZSCAN29 0.4772 0.66 0.65 ZSCAN29 0.4646
FANCD2 0.61 0.60 POLQ 0.5649 0.63 0.62 POLQ 0.5386 0.63 0.63 POLQ 0.5799
ERCC2 0.52 0.51 ERCC1 0.5923 0.64 0.63 ERCC1 0.5457 0.64 0.63 ERCC1 0.5332
POLE 0.68 0.68 FANCA 0.3224 0.58 0.57 FANCA 0.4439 0.63 0.62 FANCA 0.3124
ERCC1 0.57 0.55 ERCC2 0.5905 0.60 0.59 ERCC2 0.6395 0.61 0.60 ERCC2 0.5420
BRCA1 0.55 0.54 FANCC 0.3077 0.63 0.62 FANCC 0.2643 0.60 0.59 FANCC 0.2336

M2 M3 M5

Fig. 5  DNA REPAIR genes with M3/M5 model Adjusted R2 score > 0.6
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There is one single most frequent regulator, appearing in the regulatory models of five 
genes in the DNA REPAIR set:

•	 XRCC3 (candidate regulatory gene of STEM CELLS pathway).

This last result highlights the interrelationship between DNA REPAIR and STEM 
CELLS pathways and the relevant impact that genes in the latter one can have in regulat-
ing the activity of genes involved in the DNA damage repair mechanisms.

As a whole, we could not find common transcription factors regulating the expression 
of all (or most) genes involved in the same DNA REPAIR pathway. This is partly unex-
pected, but there can be several reasons for this finding. A possible explanation could be 
that the DNA REPAIR pathway is a multistep process involving many different proteins 
having roles also in other cellular processes. It may be that under specific conditions (i.e., 
DNA damage or other cell stress stimuli) different processes are activated. Moreover, the 
altered expression of a transcriptional factor is one of the possible alterations that may 
affect its ability to regulate its target gene. Several other modifications, such as protein 
levels, post-translational modifications and subcellular localization are relevant, but can-
not be captured by transcriptomic data and are very difficult to assess quantitatively also 
in proteomic analyses.

STEM CELLS pathway

The genes involved in stem cells that overall show the best linear fit in the regression 
models are 11: AXL, CHEK1, DNMT1, ENG, ITGA4, JAK2, LATS1, MAML1, NOTCH2, 
PECAM1 and PTPRC (Fig. 6).

Model M3: for 10 genes of the pathway, the gene promoter methylation is selected as 
one of the relevant features regulating their expression: ATM (coeff. =  − 0.1591), CD34 
(coeff. =  − 0.1733), CHEK1 (coeff. =  − 0.0960), CXCL8 (coeff. =  − 0.1628), DACH1 
(coeff. =  − 0.1215), EPCAM (coeff. =  − 0.2276), MAML1 (coeff. =  − 0.0723), PLAT 
(coeff. =  − 0.2482), POU5F1 (coeff. =  − 0.1984), SAV1 (coeff. =  − 0.1725).

There is one single most frequent regulator, appearing in the regulatory models of 10 
stem cells genes:

•	 PAX8 (candidate TF of a gene of STEM CELLS pathway).

Model M5: for 9 genes of the pathway, the gene promoter methylation is selected as 
one of the relevant features regulating their expression, i.e., as in model M3, with the 

Gene R2 Adjusted
R2

Most
Relevant
Feature

Coefficient R2 Adjusted
R2

Most
Relevant
Feature

Coefficient R2 Adjusted
R2

Most
Relevant
Feature

Coefficient

PTPRC 0.78 0.77 ITGA4 0.4530 0.82 0.82 IKZF1 0.5958 0.83 0.82 IKZF1 0.5857
ITGA4 0.70 0.69 PTPRC 0.5299 0.76 0.75 PTPRC 0.4427 0.77 0.76 PTPRC 0.4511
DNMT1 0.43 0.42 SIN3B 0.3627 0.69 0.69 SMARCA4 0.6022 0.71 0.70 SMARCA4 0.5505
LATS1 0.64 0.63 ARID1B 0.5622 0.72 0.71 ARID1B 0.4710 0.71 0.70 ARID1B 0.5248
MAML1 0.55 0.53 HCFC1 0.3149 0.68 0.67 ZNF354B 0.4484 0.70 0.69 ZNF354B 0.4257
JAK2 0.54 0.52 PTPRC 0.3359 0.69 0.68 TRIM22 0.3378 0.69 0.68 TRIM22 0.3314
CHEK1 0.56 0.55 NFRKB 0.4920 0.64 0.63 NFRKB 0.4643 0.67 0.66 NFRKB 0.4343
PECAM1 0.64 0.64 PTPRC 0.4741 0.65 0.65 PTPRC 0.3183 0.64 0.64 PTPRC 0.3595
NOTCH2 - - - - 0.68 0.68 CSDE1 0.7630 0.64 0.64 CSDE1 0.7441
AXL 0.49 0.48 ITGA4 0.504 0.64 0.63 TITGA4 0.358 0.64 0.63 ITGA4 0.3422
ENG 0.64 0.64 ZEB2 0.4696 0.63 0.62 ZEB2 0.4547 0.62 0.62 ZEB2 0.4504

M2 M3 M5

Fig. 6  STEM CELLS genes with M3/M5 model Adjusted R2 score > 0.6
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exception of gene DACH1: ATM (coeff. =  − 0.1591), CD34 (coeff. =  − 0.1733), CHEK1 
(coeff. =  − 0.0960), CXCL8 (coeff. =  − 0.1628), EPCAM (coeff. =  − 0.2276), MAML1 
(coeff. =  − 0.0723), PLAT (coeff. =  − 0.2482), POU5F1 (coeff. =  − 0.1984), SAV1 
(coeff. =  − 0.1725).

The same most frequent regulator is present, selected as a relevant regulatory feature 
for the same 10 stem cells target genes as in model M3:

•	 PAX8 (candidate TF of a gene of STEM CELLS pathway).

Interestingly, no reciprocal influence between STEM CELLS and DNA REPAIR path-
way genes is seen, with no relevant impact of the latter ones on the former genes, whose 
regulation systems mainly depend on genes or candidate regulatory genes of the STEM 
CELLS pathway itself.

GLUCOSE METABOLISM pathway

The genes involved in the glucose metabolism that overall show the best linear fit in the 
regression models are 10: ACLY, ACO2, ALDOA, DLAT, HK3, MDH1, PHKA1, PRPS1, 
SDHD and TPI1 (Fig. 7).

Model M3: for 12 genes of the pathway, the gene promoter methylation is selected 
as one of the relevant features involved in the regulation of their expression: AGL 
(coeff. =  − 0.0917), ALDOC (coeff. =  − 0.3614), DLD (coeff. =  − 0.2463), IDH3B 
(coeff. =  − 0.2262), MDH2 (coeff. =  − 0.1419), PCK1 (coeff. =  − 0.3192), PDK3 
(coeff. =  − 0.1905), PDK4 (coeff. =  − 0.1139), PGM3 (coeff. =  − 0.1658), PYGM 
(coeff. =  − 0.1122), RPE (coeff. =  − 0.1595), SDHA (coeff. =  − 0.2319).

There is one single most frequent regulator, selected as a relevant regulatory feature 
for 8 GLUCOSE METABOLISM target genes; it is:

•	 ILK (candidate TF of a gene of GLUCOSE METABOLISM pathway).

Model M5: for 12 genes of the pathway, the gene promoter methylation is selected 
as one of the relevant features involved in the regulation of their expression (the same 
genes as in model M3, with the exception of gene PDK4 and the addition of gene 
TKT): AGL (coeff. =  − 0.0896), ALDOC (coeff. =  − 0.3334), DLD (coeff. =  − 0.2559), 
IDH3B (coeff. =  − 0.2132), MDH2 (coeff. =  − 0.1513), PCK1 (coeff. =  − 0.3547), 
PDK3 (coeff. =  − 0.2408), PGM3 (coeff. =  − 0.1134), PYGM (coeff. =  − 0.1141), RPE 
(coeff. =  − 0.1718), SDHA (coeff. =  − 0.2191), TKT (coeff. =  − 0.0819).

Gene R2 Adjusted
R2

Most
Relevant
Feature

Coefficient R2 Adjusted
R2

Most
Relevant
Feature

Coefficient R2 Adjusted
R2

Most
Relevant
Feature

Coefficient

SDHD 0.78 0.78 DLAT 0.7363 0.79 0.78 DLAT 0.7314 0.79 0.79 DLAT 0.7345
TPI1 0.61 0.60 ENO2 0.4773 0.72 0.71 PHB2 0.3495 0.76 0.76 ENO2 0.2825
DLAT 0.69 0.68 SDHD 0.7490 0.73 0.72 SDHD 0.8270 0.76 0.75 SDHD 0.7804
HK3 0.55 0.54 FBP1 0.6465 0.59 0.58 FBP1 0.6356 0.71 0.71 FBP1 0.5655
ACO2 0.69 0.68 L3MBTL2 0.5472 0.65 0.64 L3MBTL2 0.5814 0.70 0.69 L3MBTL2 0.5854
ACLY 0.51 0.49 SUZ12 0.3391 0.56 0.55 SUZ12 0.3655 0.68 0.67 STAT3 0.2612
PRPS1 0.59 0.57 PGK1 0.3770 0.64 0.63 PDK3 0.2626 0.64 0.63 PDK3 0.2945
PHKA1 0.41 0.40 PRPS1 0.2500 0.52 0.50 TAF1 0.3303 0.65 0.63 TAF1 0.3758
ALDOA 0.50 0.49 PHKG2 0.3397 0.53 0.52 PHKG2 0.3136 0.64 0.62 PHKG2 0.3420
MDH1 0.57 0.55 UGP2 0.4278 0.66 0.65 UGP2 0.3906 0.57 0.56 SRSF7 0.3855

M2 M3 M5

Fig. 7  GLUCOSE METABOLISM genes with M3/M5 model Adjusted R2 score > 0.6
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There is one single most frequent regulator, selected as a relevant regulatory feature 
for 10 GLUCOSE METABOLISM target genes:

•	 TSC22D4 (candidate TF of a gene of STEM CELLS pathway).

These results highlight the limited effect of the DNA REPAIR pathway in the regula-
tion of GLUCOSE METABOLISM genes and the higher interrelationship between the 
GLUCOSE METABOLISM and STEM CELLS pathways, with the latter one having a 
key role in the regulation systems of the former one.

Cross‑application on BRCA dataset

To assess the relevance of our approach and its results, we first evaluated if the same 
models obtained for the Ovarian cancer data could be applied to a different set of 
comparable data. To this aim, we used basal-like Breast cancer subtype data, which 
bear significant similarities to OV data [28]. Indeed, this subtype, which corresponds 
to triple-negative Breast cancers has been reported to carry extensive genomic rear-
rangements and allelic imbalance and to share similar defects in DNA repair to serous 
Ovarian cancers [31]. For each target gene g, we computed the estimated value of its 
expression (EXPRg) in a BRCA sample according to the linear regression:

where vfi are methylation or expression values in the BRCA sample of the n features fi 
extracted as relevant, with their associated regression coefficients ci, in the considered 
OV regression model for the same gene g. Finally, we computed the regression R2 and 
Adjusted R2 values and compared them with the corresponding ones in the original OV 
models. A set of key genes (shown in Fig. 8 with their M5 model values) appeared to be 
similarly regulated in the two tumor types, confirming the relevance and robustness of 
our approach.

Furthermore, we completely re-computed the regression models M2, M3 and M5 on 
the same BRCA dataset. Even if lower quality results were expected due to the limited 
number of available basal-like BRCA samples, the most relevant features in the OV M3 
and M5 models were also detected in BRCA models, being genes in the DNA REPAIR 

EXPRg = c1vf1 + c2vf2 + · · · + civfi + · · · + cnvfn

R2 Adjusted
R2 R2 Adjusted

R2

GSK3B 0.44 0.42 0.45 0.44 GLUCOSE_METABOLISM
DNMT1 0.69 0.67 0.71 0.70 STEM_CELLS
TP53BP1 0.71 0.69 0.66 0.65 DNA_REPAIR
FBP1 0.44 0.43 0.47 0.47 GLUCOSE_METABOLISM
IKBKB 0.58 0.55 0.50 0.49 STEM_CELLS
PTPRC 0.90 0.89 0.83 0.82 STEM_CELLS
NFKB1 0.54 0.49 0.59 0.58 STEM_CELLS
UGP2 0.37 0.32 0.42 0.40 GLUCOSE_METABOLISM
DLAT 0.61 0.59 0.69 0.68 GLUCOSE_METABOLISM

PECAM1 0.55 0.53 0.64 0.64 STEM_CELLS
BRCA1 0.51 0.48 0.60 0.59 DNA_REPAIR
JAK2 0.61 0.56 0.69 0.68 STEM_CELLS

Model
M5

BRCA OV
PATHWAY

Fig. 8  Application of OV models on BRCA data: genes with Adjusted R2 (OV) ≥ 0.4 and similar M5 Adjusted R2 
(± 0.1) in the two datasets
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pathway the most common outcomes. In addition, the regression coefficients assigned 
to common features in the two tumor models are interesting (Fig. 9).

In most cases, they showed similar values, suggesting that the impact of the feature on 
the target gene expression is similar in these tumors. These data suggest DNA-damage-
related similarities of the two tumors, corroborating data from the literature [31]. Con-
versely, different regression coefficients for the same feature in these two tumor models 
might potentially be associated with tumor-specific characteristics.

Results of comparison with ARACNe

We evaluated our results also comparing them with those by ARACNe for the OV data. 
Despite their different approach, the two techniques found common correlations for a 
considerable percentage of target genes. In fact, 30% of the whole set of relevant regu-
latory features identified in our regression models was confirmed by ARACNe. More 
relevantly, the rankings of the common features in the two techniques were very similar, 
with only few pairs of features swapped in their order. This very high similarity of rank-
ing further supports our regression results, suggesting that the identified features and 
their relevance on the expression of the modeled genes are likely correct (as we experi-
mentally validated for some of them). More details of this comparison are in Additional 
file 1: Section S2.

While ARACNe evaluates gene triplets at a time considering all possible existing cor-
relations, our approach directly fits a linear model, analyzing a set of candidate regu-
lators for each target gene separately and independently from each other. Thus, our 
approach is more precise, being able to quantify the impact of the regulatory elements 
of each target gene individually. This could enable understanding if the influence that 
a gene has on another one is reciprocal, or not. Moreover, our modeling can include 
heterogeneous regulatory factors, such as methylation, while ARACNe is limited to 

N° OV Models
Features

N° BRCA Models
Features

Common Features OV
Coefficient

BRCA
Coefficient

SUZ12 0.2317 0.5717
METHYLATION (BRCA1) -0.3475 -0.3685

FANCD2 0.4351 0.4574
MEF2A -0.1581 0.1688

13 4 ERCC1 0.5332 0.4886

SMARCA4 0.5505 0.5592
POLE 0.1738 0.2994

SDHD 0.3366 0.7804
ATM 0.12 0.2195

7 1 IKZF1 0.5857 0.9495

RELA 0.2379 0.2773
IRF2 0.2096 0.4674

Gene NFKB1

11 3

Gene DLAT

13 7

Gene PTPRC

Gene ERCC2

Gene DNMT1

8 4

Gene BRCA1

6 3

Gene OGG1

11 4

Fig. 9  OV versus BRCA regression model comparison for M5 (for a sample set of genes)
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analyzing only expression correlations without the possibility to create heterogeneous 
models including other regulatory mechanisms.

Experimental validation of found biological correlations in independent ovarian and breast 

cancer samples

Among all regulatory networks predicted by our approach, we focused on some spe-
cific biologically interesting gene correlations for which we could obtain experimental 
evidence.

Among the predictive models for DNA-damage genes, an interesting case is ERCC2 
(XPD). For this gene, ERCC1 is the most representative feature in all three models in 
OV (Fig.  5) and in basal-like BRCA (Fig.  9). ERCC1 and ERCC2 genes belong to the 
nucleotide excision repair (NER) pathway involved in the repair of UV-induced DNA 
damage [32]. The pathway has also a key role in the repair of DNA adducts induced by 
cisplatin [33, 34]. We were able to confirm this correlation both in OV and in BRCA 
samples from our laboratory, whose origin is detailed in [27] and [35], respectively. In 
particular, the correlation between the expression of ERCC1 and ERCC2 in 42 Ovarian 
cancer patient-derived xenografts (PDX) [27], as measured by quantitative RT-PCR, was 
r = 0.71, p-value = 1.4 × 10−7. Similarly, ERCC1 and ERCC2 expression levels were sig-
nificantly correlated (r = 0.61, p-value = 2 × 10−5, n = 75) in triple negative, but not cor-
related (r =  − 0.10, p-value = 5 × 10−1, n = 68) in luminal A Breast cancer patients [35].

Another interesting gene from the DNA-damage gene set is CDK12, whose most rel-
evant feature in the OV M5 model is SUZ12 (Additional file 1: Section S1.3.1). SUZ12 
expression was found decreased by 12% and 62%, in Ovarian cancer cells with a homozy-
gous and heterozygous deletion in CDK12. Interestingly, this experimental observa-
tion adds a directionality in this cause-effect relationship. In fact, it demonstrates not 
only that CDK12 expression levels are directly correlated with SUZ12 levels, but also 
that CDK12, being a kinase involved in transcription [23], possibly regulates SUZ12 
expression.

Among our STEM CELLS pathway gene models, DNMT1 (DNA Methyltransferase 
1) was found to be associated with CHEK1 (Checkpoint Kinase 1) (Additional file  1: 
Figure S1.5). DNMT1 has been reported to have different cellular functions, including 
regulating genome integrity as an early responder to DNA double strand breaks [36, 
37], while CHEK1 is mediator of the DNA damage response pathway [38]. A similar 
experimental correlation was demonstrated in our OV cancer PDX models (r = 0.56, 
p-value = 3 × 10−5, n = 49). Instead, RAD51, RB1 and FANCA, which are relevant fea-
tures in our CHECK1 predictive model, are only weakly (r = 0.26, p-value = 6.8 × 10−2, 
n = 50) or not correlated (r =  − 0.17, ns, n = 34 and r = 0.21, ns, n = 34), respectively, 
in the same PDX models. However, when we looked for similar correlation in a con-
ditional CHECK1 knock-out HCT116 carcinoma cells [39] we found that CHECK1 
downregulation associated with a reduction in DMNT1, RAD51 and FANCA expression 
levels (0.47 ± 0.07, 0.49 ± 0.02 and 0.35 ± 0.05 fold change in silenced vs. control cells, 
respectively), supporting a positive CHEK1 role in regulating the levels of these three 
genes. It is worth highlighting that, out of these three experimentally validated rela-
tionships of CHECK1, ARACNe predicted only the relationship between CHEK1 and 
RAD51, but not the ones between CHEK1 and the DMNT1 and FANCA genes, which 
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were all predicted by our approach. The other experimentally validated gene relation-
ships (ERCC1–ERCC2 and SUZ12–CDK12) were predicted by both our approach and 
ARACNe.

Results of comparison with alternative feature selection methods

As far as regards the feature selection procedure, we evaluated the results of our 
described approach (incremental feature selection with feature re-evaluation) combined 
with forward feature selection (FFS), hereafter incremental FFS with feature re-evalua-
tion, and with the fivefold cross-validation process by comparing them with the results 
of other four alternative feature selection strategies, described in Additional file 1: Sec-
tion S4.1: incremental FFS with no feature re-evaluation, FFS on all features, incremen-
tal Lasso feature selection with feature re-evaluation, and Lasso feature selection on all 
features. The first two strategies follow the same principle (FFS) combined with our pro-
posed approach, but they differ in the way the features selected in previous steps are 
treated (without feature re-evaluation, or considering all features together); conversely, 
the last two methods are based on the Lasso algorithm [29] (one with re-evaluation of 
the features, the other one considering all features together). Also all four alternative 
methods considered are combined with the fivefold cross-validation process.

The results in terms of number of selected features for all considered target genes by 
each of the five feature selection strategies applied on the same OV data are detailed 
in Additional file  1: Section S4.2, together with the comparisons between the results 
obtained through our approach or using the alternative methods, and are summarized 
in Additional file 1: Subsection S4.2.6. All comparisons show that a relevant number of 
the features that our approach combined with FFS selects are selected also by the other 
methods. This consensus confirms the reliability of our approach, which in addition gen-
erally selects less features, but not in a statistically significant lower amount, than the 
other methods, facilitating the interpretability of the provided results. The only excep-
tion was the forward feature selection method applied on all features together, which 
resulted selecting statistically significantly less features than our approach combined 
with FFS, but the only one that did not identify the relationship between the DNMT1 
and CHEK1 genes, despite it has been confirmed in both OV cancer PDX models and 
in a model of conditional CHECK1 knock-out in HCT116 cultured ovarian carcinoma 
cells; all other experimentally confirmed relationships that we tested (see previous sub-
section) were identified by all considered methods.

Despite lab experimental evaluation is the only one that can evaluate the real correct-
ness of the predicted gene relationships, only a limited number of relationships can be 
experimentally evaluated due to time and cost constraints; thus, to more comprehen-
sively assess the goodness of the predictions provided by our and by the other consid-
ered methods, we computed the consensus of the methods on the relevant regulatory 
features extracted, under the assumption that the more a feature selected by a method 
is selected also by other methods, the more such feature may be likely correct (despite 
more methods may commit the same mistake on that feature). Furthermore, as addi-
tional estimation proxy for the quality of the features selected by a method as candidate 
gene regulators of the target gene in gene regulatory networks, we computed the perfor-
mance of these features in predicting the target gene expression. (Notice however that 
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the aim of our method is the prioritization of such genes/features, with the extraction of 
their relevant ones, rather than the identification of all or most of them, which typically 
can provide a statistically better, but less biologically meaningful, modeling and predic-
tion of gene expression.) Since the aim of this latter evaluation is identifying the method 
that selects the features providing better modelling (i.e., prediction) of the expression 
of a target gene, we resorted to the computation of the Bayesian Information Criterion 
(BIC) for every model that each method could define for each considered target gene, 
evaluating the average BIC value for each method. BIC is a well-known criterion for 
model selection among a finite set of models [40], with the lowest BIC indicating the 
preferred model. Compared with other model selection criteria, such as Akaike Infor-
mation Criterion (AIC) or Adjusted R2, BIC favors parsimonious models and takes into 
account the number of samples available for model fitting besides the number of features 
used in the model.

The obtained results (reported in Additional file 1: Subsection S4.2.6, together with the 
execution time of each method) show that the FFS applied on all features together is the 
method that extracts the lower total number of features (344) for the considered target 
genes and the one with the highest percentage (89.24%) of such features extracted also 
by all other 4 methods considered; however, it has the worst average BIC value and the 
far highest computational time (325 h). Conversely, the Lasso feature selection is by far 
the fastest one (not surprisingly, having been developed for this purpose) and shows the 
lowest average BIC value. However, with respect to the FFS method it can select relevant 
features (i.e., compute a model) for much less than the 177 considered target genes (only 
155 vs. 171 when applied on all features together, or 163 vs. 175 with incremental feature 
selection with re-evaluation); furthermore, it extracts the highest number of features 
(410 vs. 344, or 425 vs. 383), with only less than 75% of them extracted also by all other 4 
methods considered.

The evaluation results also clearly show that the incremental feature selection with re-
evaluation, which we propose, combined with either the FFS or Lasso method can both 
increase the number of computed models (i.e., target genes for which relevant features 
are selected) and improve (i.e., lower) their average BIC value with respect to evaluating 
all features together. Furthermore, in the case of FFS it strongly lowers the overall com-
putational time and provides a high percentage of selected features that are selected also 
by all other 4 methods (80.16%), and the highest percentage of the remaining features 
(72.37%) that are selected also by other 3 of the 4 methods considered; thanks to the 
feature re-evaluation, this is obtained with only a small increase of the total number of 
relevant features extracted (increase expected since the incremental selection can iden-
tify also features relevant within biologically specific subsets of features, which may be 
difficult unveiling when more feature types are considered together).

Discussion
We developed a generalized quantitative analysis approach to investigate the main bio-
logical relationships among different regulatory elements and target genes. It provides a 
computational prioritization of candidate regulatory elements for modeling gene regula-
tion in specific functional gene sets.
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The sets of heterogeneous data needed for the analysis were extracted from main bio-
logical and genomic data sources. Data on transcription factors and on the expression 
of their encoding genes, along with expression and methylation values associated with 
target genes, were then arranged, for each target gene, in multiple data matrices with 
a fixed number of rows (i.e., the patient data samples) and a variable number of col-
umns (i.e., the set of potential features affecting the model gene expression), gradually 
increasing by biological feature type according to pre-defined biologically-driven rules. 
Our approach used these sets of biological features as inputs to build three predictive 
models for each target gene. A preliminary step of feature selection was followed by the 
application of the linear regression algorithm for inferring most relevant features, either 
up-regulating or down-regulating the expression of the model gene. The progressive 
enlargement of the considered features by biological type is a relevant novel contribu-
tion of our designed approach, which allows quantifying the influence on the expression 
of target genes of each type separately of the many regulatory factors considered. This 
supports the scientist in better deciphering the examined biological system through an 
approach well suited for hypothesis-driven investigations.

The approach of incremental feature selection with re-evaluation we propose (par-
ticularly, but not only, when combined with the forward feature selection method) can 
provide better results than other equivalent state-of-the-art methods for the aim of pri-
oritizing (i.e., extracting few but relevant) regulatory features in gene regulatory net-
works; in fact, it provides a better trade-off between (low) number of features extracted, 
(high) consensus with other methods on the extracted features, and (high) performance 
in modeling/predicting gene expression (in the absence of extensive wet lab experimen-
tal validation due to time and cost constraints). Anyway, the novel incremental feature 
selection with re-evaluation that we propose can straightforwardly be combined also 
with other feature selection methods than FFS, e.g., Lasso (available in the implementa-
tion that we provide in the GitHub repository) in case faster execution time is needed 
and other preference criteria can be relaxed (e.g., accepting features extracted in higher 
amount and with less consensus with other methods).

The models obtained by our approach do not fully explain the regulatory networks 
of each gene; in fact, their best Adjusted R2 scores are below 0.8. Indeed, a complete 
explanation was not expected, as several other factors are known to contribute to the 
regulation of gene expression in addition to the expression levels of other genes (e.g., 
non-coding RNAs, protein levels that may not completely correlate with mRNA levels, 
protein post-translational modifications and subcellular localization) [41, 42]. However, 
due to the wider availability and higher reliability of gene expressions as compared to the 
other types of data, the information provided by the models, although not complete, is 
very useful and relevant.

We demonstrated with good results the possibility of generalizing the obtained gene 
to gene relationships (i.e., the developed computational model) by applying the model 
obtained in the Ovarian cancer study to the study of the basal Breast cancer, a patho-
physiological similar hormone-dependent tumor with an important role of the DNA 
damage pathway. Taking into account the underlying biological characteristics is the 
proper way to generalize the obtained computational results, in order to allow their 
adequate biological interpretation. The developed model could also be applied to all 
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tumor types present in the TCGA dataset. However, in this case, in order to obtain more 
general regulatory networks and correctly identify conserved versus specific regulatory 
features, a higher number of gene sets should be used, including pathways ubiquitously 
activated in cancer, such as those regarding the regulation of cell cycle.

Conclusions
The analysis of the proposed models allowed disclosing the relations between a gene 
and its related biological processes, the interconnections between the different gene 
sets, and the evaluation of the relevant regulatory elements at single gene level. This led 
to the identification of already known regulators and/or gene correlations (e.g., hyper-
methylation of BRCA1 in OV tumor) and to unveil a set of still unknown and potentially 
interesting biological relationships (e.g., the correlation between ERCC1 and ERCC2, or 
between CHEK1 and DNMT1 in OV) for their pharmacological and clinical use. Indeed, 
the experimental validation of the latter two correlations, the latter one predicted by our 
approach but not by ARACNe, supports the importance and reliability of our computa-
tional approach, which we hope will help disclosing new important druggable targets.

As a future extension of the current work, the additional testing of how well the devel-
oped models perform on a new appropriate held-out dataset, different from the one on 
which the created models were trained and validated but equivalent to it, could give fur-
ther interesting insights. Particularly, by comparatively performing such testing using 
different alternative feature selection methods combined or not with our proposed 
incremental feature selection approach, it can provide a useful additional assessment of 
our approach and of the alternative methods, as well as of the selected features.
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