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Abstract: For several years after its discovery, Porcine circovirus 2 (PCV-2) represented a major
threat to the swine industry through economic losses due to the associated clinical syndromes,
decreased production performances in both symptomatic and asymptomatic animals and disease
management costs. Widespread vaccination administration has largely reduced the impact of this
infection and represents the most effective control measure. The efficacy of vaccination is threatened
by the emergence of novel (or uncommon) PCV-2 genotypes. In addition to domestic pigs, PCV-2 has
been detected in several other species, a fact which could have an impact on new variant emergence
and maintenance. Considering this, the present study assessed the distribution of the minor PCV-2c
genotype in non-Suidae ungulates in Namibia. Red hartebeests (Alcelaphus buselaphus caama) (n = 44),
kudus (Tragelaphus strepsiceros) (n = 10) and oryxes (Oryx gazella) (n = 54), whose mediastinal lymph
nodes were sampled after slaughtering during the period 2019–2021, were included in the study. Two
oryxes (3.7%; 95% CI = 0.45–12.75%) were PCV-2-positive by PCR. Complete genome sequence was
obtained for the two samples identifying them as PCV-2c genotype. The sequences were identical
and shared a high percentage of identity (~99.9%) with those recently obtained from warthogs living
in the same area. The present study confirms the presence of the PCV-2c genotype (previously
considered extinct) in Namibian wild animal populations and demonstrates greater than expected
PCV-2 host plasticity. Because of the role these niches can have in the maintenance and evolution
of minor PCV-2 genotypes, more extensive and dedicated studies should be performed to prepare
authorities to promptly react to potential emerging threats from these viruses.

Keywords: PCV-2c; Namibia; oryxes; epidemiology; molecular epidemiology

1. Introduction

The genus Circovirus, family Circoviridae, is a viral group that has been known since
the early 1970s when the first member of this group, Porcine circovirus 1 (PCV-1), was
identified [1]. Circoviruses are small, non-enveloped viruses with a single-stranded circular
DNA genome of approximately 2 kb encoding at least two proteins, the capsid (Cap) and a
replicase (Rep). Additional proteins have been identified for some species and are involved
in the host cellular cycle, signaling and immune response regulation [2,3].

Following the identification of PCV-1, a number of circovirus species were identified in
different hosts, and currently, 49 species are classified in the genus Circovirus (https://talk.
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ictvonline.org/taxonomy/ accessed on 1 November 2021). In recent years, most of these
identifications have been obtained using degenerate, universal primers or metagenomic
approaches. For this reason, the virus–host association has only been reliably established
for a limited number of species. Caution should be applied, especially with viral sequences
obtained from samples associated with the digestive tract or from hematophagous parasites,
since the source of detected viral DNA could be an infected meal [3].

In most instances, no association has been established between circovirus infection and
overt clinical signs. However, some circovirus infections have been shown to be responsible
for clinically relevant syndromes among birds, carnivores and especially pigs [4–6].

It was with the emergence of Porcine circovirus type 2 (PCV-2) in the 1990s that cir-
coviruses, initially largely neglected, attracted more attention because of the huge economic
impact caused by associated clinical syndromes and decreased production performances
in both symptomatic and asymptomatic animals [7]. In pigs, PCV-2 infection has been
associated with severe clinical syndromes, broadly referred to as porcine circovirus diseases
(PCVD), which include PCV2 systemic disease (PCV2-SD), PCV2 reproductive disease
(PCV-2-RD), Porcine dermatitis and nephropathy syndrome (PDNS) [8]. PCV-2 is char-
acterized by a remarkable genetic variability originating from both high mutation and
recombination rates that, in combination with natural selection and particularly immune-
induced selective pressures, have shaped PCV-2 strain phenotype and genotype, leading to
the emergence of different variants, currently classified into nine genotypes (from PCV-2a
to PCV-2i) [9–11]. However, just three of these genotypes have demonstrated a worldwide
distribution [10]. The first genotype to be detected, and initially the most prevalent, was
PCV-2a, which was progressively replaced (referred to as the “first genotype shift”) [12,13]
by PCV-2b around the beginning of the new millennium. PCV-2b was, in turn, largely
superseded by PCV-2d since 2008–2010 (second genotype shift) [9,14]. The other genotypes
have only been sporadically reported in certain geographical areas; the reasons behind the
different fitness and epidemiological success of some genotypes over others are still not
understood. The prevalence of these “minor” genotypes and how they are maintained are
similarly obscure.

The history of one of these, PCV-2c, is especially exemplifying. PCV-2c was initially
reported in 2008 from Danish archival samples collected between 1980 and 1990 [12]. The
genotype was considered extinct until 2015, when Franzo et al. demonstrated its presence
in a feral pig population in the Pantanal region of Brazil [15] and evidence of its circulation
in domestic pig in China was also provided [16]. More recently, PCV-2c strains, although
distantly related to the Brazilian and Danish strains, were detected in warthogs from two
contiguous livestock farms in Windhoek, Kharas region, Namibia [17].

These findings stress the role of neglected ecological and geographical niches in
maintaining minor and/or potentially novel circovirus genotypes over long time periods,
a phenomenon that could represent a threat to domestic pigs and the possibility of the
emergence of new or the re-emergence of previously known genotypes.

Despite the fact that circoviruses have been traditionally considered largely host-
specific, growing evidence seems to contradict this view, supporting a higher than expected
host plasticity [18,19]. PCV-2c detection in warthogs is not an exception since PCV-2 has also
been detected wild boar, cattle, goats, mink, raccoon dogs and foxes, although the clinical
relevance in these species is a matter of discussion (Zhai et al., 2019). Similarly, another
member of porcine circoviruses, Porcine circovirus 3, has been occasionally detected in
ruminants, rodents, canines and insects [18]. Similar conclusions can be drawn for other
circoviruses such as Beak and Feather Disease virus [20,21] or canine circovirus [22].

To assess the distribution of the neglected PCV-2c genotype (and potentially other
PCV-2 genotypes) in unexpected host species, a study was performed on wild, non-Suidae
ungulates in Namibia sharing the same environment, risk factors and infectious pressure
of the warthog populations previously demonstrated to harbor PCV-2c (Molini et al., 2021).

https://talk.ictvonline.org/taxonomy/
https://talk.ictvonline.org/taxonomy/
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2. Results

All red hartebeest (Alcelaphus buselaphus caama) (0/44; 0%) and kudu (Tragelaphus strep-
siceros) (0/10; 0%) were PCV-2-negative. However, two out of 54 (3.7%; 95% CI = 0.45–12.75%)
oryx (Oryx gazella) were PCV-2-positive (Table 1) at a low to moderate viral titer (i.e.,
1.56 × 103 and 5.45 × 104 copies/mL). The complete genome sequence was obtained for
both samples. After comparison with PCV-2 reference strains, they were classified within
the PCV-2c genotype. The oryx PCV-2c sequences were identical and shared a high per-
centage of identity (~99.9%) with those obtained from warthogs living in the same area
(Molini et al., 2021). Phylogenetic analysis using the full ORF2 dataset described in Ma-
terial and Methods confirmed the high similarity of the oryx sequence with those of the
warthogs (Figure 1). The genetic distance compared to Danish and Brazilian PCV-2c strains
was between 4.4% and 4.6% at the genome level, 5.9% and 6.1% in the ORF2 and 3.17%
and 3.81% in the ORF1, respectively. A two-nucleotide deletion, shared by warthogs and
oryx strains, was present in the intergenic region between ORF1 and ORF2.

Table 1. Summary of tested and positive samples collected from different hosts between 2019 and 2021.

Year Species Number of Samples Tested Positive Samples

2019
Red hartebeest (Alcelaphus buselaphus caama) 34 0

Kudu (Tragelaphus strepsiceros) 2 0
Oryx (Oryx gazella) 36 2

2020
Red hartebeest (Alcelaphus buselaphus caama) 3 0

Kudu (Tragelaphus strepsiceros) 2 0
Oryx (Oryx gazella) 2 0

2021
Red hartebeest (Alcelaphus buselaphus caama) 7 0

Kudu (Tragelaphus strepsiceros) 6 0
Oryx (Oryx gazella) 16 0

At the amino acid level, three mutations differentiating Danish/Brazilian strains from
the Namibian strains were present at positions 136 (L→ Q), 166 (V→ I) and 183 (L→ I).
Amino acids 136 and 166 were shown by homology modeling to be exposed on the viral
surface (Figure 2). In the Rep, a four-amino acid insertion was identified (i.e., EEGM)
starting at position 47 of PCV-2c reference strain (EU148503). Two mutations in the Rep
differentiated Namibian stains from the Danish/Brazilian strains at position 139 (H→ I)
and 294 (E → A), (using EU148503 as a reference). The other mutations present in the
Namibian PCV-2c compared to the reference strain were not unique as they were also
present in either the Brazilian or Danish strains.
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3. Discussion

Since its first identification, PCV-2 has become one of the most relevant infectious
diseases of the swine industry. The development of effective vaccines remarkably reduced
the clinical impact of PCVD and the productive losses associated with asymptomatic infec-
tions, as well [7,23]. For this reason, PCV-2 vaccination is one of the biggest achievements
of the pig industry in recent decades and PCV-2 vaccines are currently the most sold
preventive products for swine worldwide [7]. Currently available commercial vaccines
are, with few exceptions, based on the capsid of PCV-2a [24]. The most concerning issue
regarding PCV-2 vaccination is thus the risk of new emerging variants that might partially
or totally escape vaccine-induced immunity, as previously reported [7,23,25–27]. More-
over, no studies are available on the effectiveness of vaccination against minor genotypes.
Based on these considerations, ecological niches that can host neglected/minor/unknown
genotypes must be considered as a relevant threat. Widespread PCV-2 circulation has been
recently demonstrated in Africa including minor genotypes such as PCV2-c and PCV-2g
(Franzo et al., personal communication; Molini et al., 2021). Considering the increasing
trade and intercontinental connections of many African countries, these reports deserve
particular attention.

The present study confirms the presence of PCV-2c in Africa and identified it in oryx.
When confronted with such unexpected results, potential contamination and false-positive
results must be confidently excluded. For this reason, samples were collected respecting a
protocol designed to minimize contamination risks. Additionally, sample positivity was
confirmed using a different assay in the University of Padova laboratories, where PCV-2c
has never been introduced nor detected. Finally, although similar, the sequences obtained
from the oryx were different from those reported in warthogs. Based on these criteria and
findings, we believe that the risk of cross-contamination can be reasonably excluded

PCV-2c identification in wild or feral species only could suggest that this genotype
somehow benefits from a lower competition from other genotypes that are circulating in
domestic, intensively raised pigs. Alternatively, host or population adaptation of PCV-2c
could be speculated. Although the prevalence of PCV-2c was lower than that observed
in warthogs [17], this genotype’s circulation in oryxes is noteworthy and testifies the
remarkable host plasticity of PCV-2. The high genetic identity between the PCV-2c strains
collected from warthogs and oryxes, coupled with the shared environment, supports
transmission between the two species rather than the existence of isolated, host-specific
viral populations. PCV-2 infection has already been reported in domestic bovines [28,29].
A relatively low host barrier among artiodactyl to PCV-2 infection could therefore be
speculated, and together with close proximity due to shared environments, an artificially
high infectious pressure favoring a host jump could have been imposed.

PCV-2 attachment to the cell surface is mediated by glycosaminoglycans (GAGs)
heparan sulfate (HS) and chondroitin sulfate B (CSB) [30], which might be less variable
between hosts than other cell receptors. Additionally, previous research has revealed that
PCV-2 could still infect mutant hamster ovary (CHO) cells that did not express GAGs,
indicating that other yet unidentified cellular surface molecules contribute to PCV-2 binding
to the host cell [31]. Therefore, despite not being fully understood, the PCV-2 infection
mechanism could favor entrance into different host cells [30]. The clinical relevance of
PCV-2 infection in Bovidae remains elusive. In the present study, positive animals were in
good health and viral titers were low, compatible with subclinical infection. Nevertheless,
effect on animal growth, susceptibility to other infections and welfare cannot be excluded.
Additionally, the limited sample size and infection level did not allow for the study of
the potential impact of other co-factors in clinical disease emergence in these species.
Why the other Bovidae species (i.e., red hartebeest and kudu) were not infected is not
known. Other host barriers or differences in interactions between warthogs and the
Bovidae species might affect individual exposure and infection risk. Nevertheless, the small
sample size tested in this study does not allow for clear conclusions on PCV-2c infection
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of the species investigated. Future studies will require more epidemiologically robust
sampling approaches.

The Namibian PCV-2c strains were significantly different compared to the previously
identified strains from Denmark and Brazil. Whether such genetic and phenotypic dif-
ference is due to geographical isolation and independent evolution or host adaptation is
currently impossible to say. Of note, three amino acid mutations differentiating the two
groups (Namibia vs. Denmark/Brazil) were identified in the Cap, two of which (residues
136 and 183) are exposed on the viral surface and are located in potentially immunogenic
regions [32–34]. Moreover, Dhindwal et al. demonstrated that the sulfates of heparin
oligosaccharides are close to amino acids 58, 59, 63, 73, 89, 128, 132, 186, 188 and 227 of
the Cap. Experimentally, single substitutions of these amino acids to alanine diminished
the capsid’s affinity for heparin [30]. Variation in amino acid 136 and 183 could, therefore,
have a similar impact on the capsid’s affinity for heparin because of their proximity to the
above-mentioned amino acids [35].

4. Materials and Methods
4.1. Sample Collection and PCV-2 Diagnosis

The study included mediastinal lymph nodes from 108 slaughtered wild ruminants
(Table 1) collected between 2019 and 2021 from the abattoir of a livestock farm in Windhoek,
Kharas region, Namibia. The ruminants were hunted in the morning (from 5 AM to 11 AM)
and slaughtered inside the university farm. They were then immediately transported to
the farm abattoir where they were processed and the carcasses were stored at 4 ◦C. All
the operations were performed before the end of the day according to standard operation
procedures for hygiene of the University of Namibia. (Note: Although the same abat-
toir was used for the slaughter of warthogs previously shown to be positive for PCV-2c
(Molini et al., 2021), due to public health requirements, the wild ruminants investigated in
this study were slaughtered in a different area of the abattoir and on separate days from
the warthogs.)

The mediastinal lymph nodes were collected during the post mortem inspection
using a disposable scalpel and a sterile container for each individual carcass. The tissue
was homogenized in 1 mL of sterile phosphate-buffered saline (PBS) using a TissueLyser
LT (QIAGEN, Hilden, Germany). Total genomic DNA was extracted using a High Pure
Viral Nucleic Acid Kit (Roche, Basilea, Switzerland) with an elution volume of 100 µL,
following the manufacturer’s instructions. PCV-2 presence was tested by PCR using the
primers P1 (forward) (5′-TAA TCC TTC CGA AGA CGA GC-3′) and P2 (reverse) (3′-CGA
TCA CAC AGT CTC AGT AG-5′) to amplify a fragment of 629 base pairs (bp) of ORF1
(the replication-associated protein gene) [36]. Positive results were confirmed and viral
titers were determined at the Laboratory of Veterinary Infectious Diseases, Department of
Animal Medicine, Production and Health, University of Padova, where they were tested
by quantitative real-time PCR [37].

4.2. Complete Genome Sequencing and Analysis

The complete genome of positive samples was amplified using three PCRs based
on the additional pairs of primers: P3 (forward) (5′-CAG AAG CGT GAT TGG AAG
AC-3′) and P4 (reverse) (3′-ATG TAG ACC ACG TAG GCC TC-5′) (pair 2); P5 (forward)
(5′-AGA AGC TCT TTA TCG GAG GA-3′) and P6 (reverse) (3′-AAG CGA ACC ACA GTC
AGA AC-5′) (pair 3); and P7 (forward) (5′-CTA GAA TAA CAG CAC TGG AG-3′) and P8
(reverse) (3′-GTT CGT CCT TCC TCA TTA CC-5′) (pair 4). Four overlapping fragments
covering the entire PCV-2 genome were obtained. Briefly, the PCR reaction conditions
consisted of 5 µL of extracted DNA in a final reaction volume of 20 µL containing a final
concentration of 1.25 mM MgCl2, 1X PCR buffer, 0.2 mM dNTPs, 10 pmol of each primer
and 2.5 U of Taq DNA polymerase. All the reactions were performed with the following
thermal profile: initial denaturation at 94 ◦C for 5 min and then 35 cycles of denaturation
at 95 ◦C for 30 s, annealing at 51 ◦C for 30 s and elongation at 72 ◦C for 60 s, followed by
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a final elongation at 72 ◦C for 5 min [36]. PCR amplicons were purified using a Wizard
SV Gel and PCR Clean-Up System (Promega) and sequencing was performed at LGC
Genomics (Berlin, Germany). The sequences (submitted to the GenBank database under
accession numbers OK216926 and OK216927) were edited and assembled using the Staden
software package version 2.0.0b8 and aligned to the full ORF2 reference dataset described
by Franzo and Segalés (2018) at the codon level using the MAFFT method implemented
in TranslatorX [38]. A neighbor-joining phylogenetic tree was reconstructed based on the
raw genetic distances (pairwise p-distance) using MEGA7 to genotype them [39]. The
robustness of inferred clades was assessed by performing 1000 bootstrap replicates.

4.3. Capsid Protein Homology Modeling

The translated protein sequence of one PCV-2c strain collected from oryx was submit-
ted to the SWISS-MODEL webserver to select the best template for which experimentally
determined quaternary structure was available [40]. The same program was used to deter-
mine the protein structure through a homology modeling approach. The obtained model
was visualized and edited with Chimera [41].

5. Conclusions

In conclusion, the present study confirms the presence of the PCV-2c genotype (previ-
ously considered extinct) in Namibian wild animal populations, although in the context
of a semi-intensive farming system. The infection of Bovidae species sharing the same
environment of an infected Suidae population testifies a greater than expected PCV-2 host
plasticity, although the actual consequences from a clinical and/or animal welfare perspec-
tive remain unknown. Nevertheless, because of the relevance these niches can have in
the maintenance and evolution of minor PCV-2 genotypes, against which the protection
induced by currently available vaccines has not been properly investigated, further exten-
sive and dedicated studies should be performed to fill such knowledge gaps and prepare
authorities to promptly react to potential threats to the swine industry from emerging
porcine circoviruses.
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