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Abstract

The development of alternative strategies to prevent HIV infection is a global public health priority. Initial efforts in anti-HIV
microbicide development have met with poor success as the strategies have relied on a non-specific mechanism of action.
Here, we report the development of a microbicide aimed at specifically blocking HIV entry by displaying molecular
components of the HIV/host cell attachment complex on the surface of Caulobacter crescentus, a harmless aquatic
bacterium. This bacterium can be readily manipulated to present heterologous proteins at high density on its surface by
genetic insertion into its crystalline surface layer protein [1,2]. In separate constructions, we generated bacteria displaying
domain 1 of CD4 and MIP1a. Each moiety reacted with specific antibodies by Western immunoblot and immuno-
fluorescence microscopy. Microbicide functionality was assessed using an HIV pseudotype virus assay system representing
Clade B subtypes. Bacteria displaying MIP1a reduced infectivity by 35–78% depending on the specific subtype while CD4
display reduced infection by as much as 56%. Combinations of both constructs reduced infectivity by nearly 98%. We
demonstrated that HIV infection could be inhibited using a strategy aimed at HIV-specific molecular interactions with
Caulobacter surface protein display, and that sufficient protein folding and conformation could be mimicked to bind and
block entry. Further, this is the first demonstration that Caulobacter surface protein display may be a useful approach to
preventing HIV infection or other viruses as a microbicide. We propose that this harmless bacterium, which is inexpensive to
produce and formulate, might be suitable for topical applications as a viable alternative in the search for effective
microbicides to counteract the world wide incidence of HIV infection.
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Introduction

Human Immunodeficiency Virus (HIV) is a growing epidemic

and one of the largest global health concerns in this present day.

UNAIDS 2008 Report estimated that over 32.9 million people

were living with HIV, 2.7 million people became infected in 2007,

and there were 2 million reported deaths that year [3]. Due to

difficulties in designing an effective HIV vaccine as a consequence

of the genetic diversity of the virus, current research has been

focusing on the development of microbicides.

In developing countries, women are 3–6 times more likely to

become infected with HIV than men due to a lack of female-

controlled methods to prevent the transmission of the virus [4]. In

women, the main site of HIV entry is the cervicovaginal mucosa.

Although the precise cell type and transmission site are not

completely understood, it is believed that an appropriately

manufactured microbicide will be beneficial as it will offer broad

protection against mucosal transmission of HIV at the point of

entry. Currently, there are no microbicides on the market but as

many as 50 different drugs are currently being tested in clinical

trials [5]. Typical methods of delivery include semi-solid aqueous-

based gels, vaginal rings, quick-dissolve films, and vaginal tablets

[5]. To date, microbicides have shown potential in blocking HIV

in tissue culture, but have failed to protect in clinical trials. The

primary strategy and likely failing of these early microbicide

products is their non-specific mode of action.

Efforts to produce specific microbicide blocking agents using

whole organisms have centered on the construction of commensal

bacteria, such as Lactobacillus, that would display HIV blocking

abilities while colonizing the vaginal mucosa [6,7,8]. Inherent in

these approaches is the expectation that sufficiently high levels of

these bacteria can successfully compete with other microbial flora

and thereby be continuously maintained at mucosal surfaces at

useful levels for extended periods of time. While competing for

space in the microflora population of the vaginal mucosa, these

bacteria would also be required to maintain sufficiently high
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populations as well as levels of secretion and display of agents such

as CD4 on the bacteria to effectively block HIV infection.

As a contrast to this approach, we developed a bacterium based

microbicide display option that does not rely on the bacterium’s

ability to compete and survive within the microflora. Caulobacter

crescentus is not a commensal bacterium; it does not grow at

temperatures exceeding ca 32uC and will not grow in the presence

of salts at levels typical for sera. But it is capable of display of

proteins at very high levels and surface densities. It can be

cultivated readily to high densities on defined growth media

consisting only of glucose and essential inorganic ions. Although a

gram negative organism, its unusual lipopolysaccharide structure

appears to have a much reduced sepsis potential, relative to enteric

bacteria [9]. With these characteristics we expect the possibility

that engineered strains can be formulated to be applied as

stabilized killed organisms, designed to be applied to vaginal or

other mucosal tissues at relevant times, such prior to sexual acts or

childbirth, roughly comparable to spermicide use. This permits

maintenance of high levels without the requirement for, or

potential negative effects of competition with the existing

microflora.

Given the display capabilities of C. crescentus we envision the

development of a variety of agents expected to interrupt the HIV

infection process, and then to apply several simultaneously, to

enhance microbicide effects and to minimize the possibility of

development of resistance. This includes antibodies directed to

HIV gp120, mimics for host receptors and co-receptors for HIV

engagement, as well as the ligands for these surface proteins or

structural analogues for any of the above. Here we begin with

display of domain 1 of CD4, the HIV receptor and MIP1a, the

ligand for CCR5, the HIV co-receptor. Considerable evidence

exists that demonstrates that binding to block either of these two

ligand interactions (CD4:gp120 and MIP1a:CCR5) will inhibit

HIV infection [10]. Herein, we demonstrate that separate

constructs have the ability to significantly block infection and that

the application of both simultaneously has additive microbicide

effects.

Materials and Methods

Bacterial strains, growth conditions and general plasmid
related methods

Escherichia coli strain DH5 a (Invitrogen, Carlsbad, CA) was

grown at 37uC in Luria Broth (1% tryptone, 0.5% NaCl, 0.5%

yeast extract), adding 1.3% agar for plates. The C. crescentus strain

JS 4022 [11]was propagated in PYE medium (0.2% peptone,

0.1% yeast extract, 0.01% CaCl2, 0.02% MgSO4), at 30uC. For

growth on solid medium, agar was added to 1.3%.

Where necessary, media contained chloramphenicol (CM) at

20 mg/ml (E. coli) or 2 mg/ml (C. crescentus). Electroporation of C.

crescentus was performed as previously described [12]. The Nucleic

Acid Protein Service unit of the University of British Columbia

provided oligonucleotide synthesis and DNA sequencing. Plasmid

DNA was isolated using a QIAprep miniprep plasmid isolation kit

(QIAGEN), and DNA fragments were recovered from agarose gels

using a QIAEX II gel extraction kit (QIAGEN). PCR products

were generated using Pfx DNA polymerase (Invitrogen, Carlsbad,

CA), following the manufacturer’s protocol.

Preparation of C. crescentus displaying chimeric S-layer
proteins

pT4B (CD4 in pSP65, [13], (obtained from the AIDS Research

and Reference Reagent Program, Div. of AIDS, NIAID, NIH:

pTB4B from Dr. Richard Axel)) was used as a template and the

oligos JN CD4-1 59GGA AGA TCT ACT AGT GGG GAT ACA

GTG GAA CTG ACC39 and JN CD4-2 59GGG GCT AGC

CTG GTC CTC CAC TTC ACA GAT39 were used in a PCR

reaction to make the DNA fragment that codes for the 81 amino

acid CD4 domain 1 segment (GDTVELTCTASQKKSIQ-

FHWKNSNQIKILGNQGSFLTKGPSKLNDRADSRRSLWD-

QGNFPLIIKNLKIEDSDTYICEVEDQ). Similarly, pCDNA3

CCL3 L1 [14] was used as template and the oligos JN CCR5-1

59GGA AGA TCT ACT AGT GCA CCA CTT GCT GCT

GAC ACG CCG39 and JN CCR5-2 59CGG GCT AGC ACT

CAG CTC CAG GTC ACT GAC39 were used to make the DNA

fragment that codes for the 70 amino acid MIP1a segment

(APLAADTPTACCFSYTSRQIPQNFIADYFETSSQCSKPSVI-

FLTKRGRQVCADPSEEWVQKYVSDLELSA). The DNA seg-

ments produced contained BglII and SpeI restriction sites on the 59

end and an NheI site on the 39 end. The restriction sites

arrangement allowed the segments to be directionally cloned into

p4ARsaA(723)/GSCC digested with BglII and NheI [11].

Following ligation plasmids were introduced into E. coli by

electroporation. Plasmids were retrieved from selected clones and

the inserted sequence confirmed by DNA sequencing before

transfer to C. crescentus JS4022 by electroporation. The result was

the in-frame introduction of the CD4 and MIP1a segments at a

site corresponding to amino acid 723 of the native RsaA protein.

p4ARsaA(723) (containing only a BamH1 restriction site at the

same position) was used as a negative control. Hereafter, the

Caulobacter constructs will be referred to as the Cc-CTRL, Cc-

CD4 or Cc-MIP1a clones.

Heat-inactivated Caulobacters were prepared by treatment of

cultures at 70uC for 4 minutes; killing was confirmed by spread

plating.

Fluorescence microscopy
Antibodies to CD4 (murine monoclonals SIM.2 and SIM.4 and

polyclonal sheep anti-human CD4) and MIP1a (polyclonal goat

anti-Mip1a) were obtained from the NIH AIDS Reagent and

Reference Program. To confirm the presence of displayed proteins

on Caulobacter, in a typical experiment 30 ml of cells and 1–5 ml

of antibodies were diluted to 200 ml in PYE medium and

incubated in ice for 30 min. The mixture was diluted to 1.7 ml

with PYE medium and centrifuged at 13,0006g for 4 min. Cell

pellets were suspended in 100 ml of PYE and 1 ml anti-mouse, anti-

goat or anti-sheep antisera coupled to Alexa488 (Molecular

Probes/Invitrogen). After a 20 min on ice the mixture was diluted

to 1.7 ml and centrifuged. Pellets were suspended in 20 mM

phosphate buffer containing 50% glycerol and 2% n-propyl gallate

and examined by epifluorescence microscopy.

Protein analysis
S-layer and S-layer recombinant proteins were recovered from

the cell surface by low-pH extraction method, as described

previously [15] Proteins were visualized using sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using

7.5% separating gels and staining with Coomassie brilliant blue R.

Preparation of Caulobacter cells for binding assay.
Caulobacter strain JS4022 with different plasmids were grown

in 10 ml PYE medium to an optical density of approximately 1.0

at 600 nm (3.16109 cells/ml). Cells were centrifuged and

suspended in 10 mM potassium phosphate buffer (pH 7.0).

This was repeated and cells were re-suspended in 1 ml of the

same. Cell density was adjusted to 161010 cells/ml for binding

experiments.

Microbicide Inhibition of HIV
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Plasmid preparation and transfection for virus
pseudotype analysis

E. coli with plasmids containing the viral DNA cassettes were

grown overnight at 37uC in LB broth containing 50 mg/ml of

ampicillin. The DNA from the rev/env clones as well as the HIV-

env-deficient (SG3Denv) backbone from the standardized subtype

B HIV-1 panel (NIH AIDS Reagent and Reference Program) was

then purified using the Sigma GenElute HP Plasmid MaxiPrep

Kit. DNA was further purified with two phenol-chloroform

extraction steps followed by ethanol precipitation and suspension

in 10 mM Tris buffer (pH 7.5) containing 1 mM EDTA. The final

concentration of the DNA was determined by spectroscopy at

260 nm.

The clade B HIV-1 panel (NIH AIDS Reagent and Reference

Program) [16], consists of virus clones SVPB11 (PVO, clone4),

SVPB12 (TRO, clone 11), SVPB13 (AC10.0, clone29), SVPB14

(pRHPA4259, clone 7), SVPB15 (pTHRO4156, clone 18), and

SVPB16 (pREJO4541, clone 67).

Two days prior to transfection, 2.66106 293T cells were

seeded in a 10 cm corning plate, using either complete DMEM

(1% Penicillin/Streptomycin and 7.5% FBS) or in medium

lacking antibiotics. Transfection was performed using Lipofecta-

mine (Invitrogen) diluted 1:3 in serum free medium. This was

followed by the addition of the rev/env clone (12 mg) and the

HIV-1 env-deficient backbone (24 mg). After a 20 min incubation

at 37uC and 5% CO2, the mixture was added to the 293T cells,

followed by another incubation period of 48 h. In order to

provide necessary growth conditions, 15 ml of serum free

medium was added to the cells at 4 hours post transfection.

The virus was then harvested and collected using a 0.45 mm

syringe filter and stored at 280uC.

Virus Titration
Titrations were performed to determine the amount of virus

produced during the transfection. This assay was done using

TZM-bl cells, which are derived from HeLa cells and

engineered to express HIV receptors such as CD4 and CCR5

[17]. These cells also contain the luciferase and beta-galacto-

sidase genes under the control of the HIV-1 long terminal

repeat [18]. Serial dilutions of virus were prepared in 96 well

plates using medium containing 75 mg/ml of DEAE-dextran.

Previously prepared TZM-bl cells were added to each well for a

final concentration of 200 cells/ml. The titration plate was then

maintained for 48 h at 37uC and 5% CO2. Infection of cells was

measured indirectly using a Mammalian b-galactosidase assay

kit (PIERCE) followed by an absorbance reading at 415l. An

absorbance of greater than 0.2, was considered a positive

infection. The Tissue Culture Infectious Dose (TCID50) was

determined for each viral stock per 1 ml by identifying the

dilution of virus in which 50% of the TZM-bl cells were

infected, as measured by the presence of b-galactosidase. It was

determined that doses of 200 TCID50 were sufficient for

experimentation and the virus was stored at 280uC.

Virus blocking experiments
The Cc-CTRL (no insert), Cc-CD4, and Cc-MIP1a Caulo-

bacter constructs were grown and prepared one day prior to an

experiment. Experiments were carried out in triplicate wells of

96 well plates (at 3 identical wells per experimental condition)

using Caulobacter at a concentration of 108, 107, and 106 cells/

ml. The TZM-bl cells were prepared in a manner as previously

described. The volume of virus added was determined by

previously calculating the 200TCID50 value. The virus was

incubated for 1 h with the CD4 construct before the addition of

TZM-bl cells. This allows sufficient binding of the bacteria to its

predicted targets. In contrast, the MIP1a and control constructs

were first exposed to TZM-bl cells for 1 h prior to virus

addition. It was also necessary to determine the percent of

infectivity when two of the constructs were combined (Cc-CD4

and Cc-MIP1a) and in this instance, both recombinant

caulobacters were incubated to cells first and virus added 1 h

later. After an overnight incubation at 37uC in 5% CO2, the

plates were centrifuged at 800 rpm for 5 min and medium was

changed in all wells. 48 h after initial incubation the viral titer

was analyzed as previously described. As a positive control for

inhibition of infection, the HIV gp120 specific monoclonal

antibody, 2F5 was added to the assay of each experiment in

triplicate. Data are presented and determined as a percentage of

infection of the untreated control infection wells with the

background from uninfected subtracted out.

Statistical analysis
Statistical analysis was performed with Prism GraphPad

software. The unpaired Student’s t-test was used for statistical

analysis. A P value of less than 0.05 was considered significant and

values are reported in the respective legends.

Figure 1. Display of CD4 domain 1 on Caulobacter. A. SDS-PAGE
of normalized low pH extraction of S-layer protein (RsaA) from C.
crescentus JS 4022. Lane 1- RsaA obtained from Cc-CTRL. Lane 2- RsaA
obtained from Cc-CD4. Asterisks indicate the RsaA proteins. B.
Fluorescence microscopy using anti-CD4 polyclonal antibody and an
Alexa488-labeled secondary.
doi:10.1371/journal.pone.0010366.g001

Microbicide Inhibition of HIV
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Results

Expression of MIP1a and single domain CD4,
independently within the S-layer protein of Caulobacter

To generate recombinant Caulobacter with expression of

heterologous proteins within its surface S-layer protein, two

separate vectors expressing either MIP1a or a single domain of

CD4 were generated using p4ARsaA(723)/cmyc, an expression

vector for C. crescentus, containing a version of rsaA (the S-layer

gene) carrying restriction sites for insertion of genetic material at a

site corresponding to amino acid 723 of the S-layer protein [11].

Using SDS-PAGE, we determined that both recombinant vectors

(Cc-MIP1a, Cc-CD4) successfully generated chimeric S-layer

proteins following transformation into C. crescentus (Fig. 1, 2).

Further, immunofluorescent staining and microscopy of the

recombinant Caulobacters with antibodies specific for MIP1a or

CD4 demonstrated uniform staining across the bacterial cell

surface, including the cell stalk, consistent with a complete

coverage of the cell with the modified S-layer (Fig. 1, 2). Notably,

immunostaining of C. crescentus expressing the single domain CD4

with the conformation dependent antibodies, SIM.2 and SIM.4,

demonstrated proper conformation of the CD4 structure on the

surface and this strongly suggested binding capability for gp120. In

all cases, immunostaining of Caulobacters displaying an RsaA with

no genetic insertion gave a negative result (not shown).

Inhibition of HIV-1 infection with recombinant
Caulobacter expressing either MIP1a or single domain
CD4 with the S-layer

To determine whether expression of either MIP1a or single

domain CD4 was sufficient to block infection of HIV-1, the

recombinant C. crescentus were co-incubated with pseudotyped

HIV-1 and TZM-bl cells in standard single cycle infection assays.

Our initial studies with a single member of the clade B reference

strain SVPB13, showed significant inhibition with both constructs

(Figure 3) and warranted further study using the complete clade B

reference panel from the NIH AIDS Research and Reference

Reagent Program. We compared the ability of the two

recombinant Caulobacters to inhibit different strains of HIV and

better evaluate the potential general effectiveness of these specific

reagents as potential microbicides (Figure 4).

Cc-MIP1a provided statistically significant protection from

infection when compared to the Cc-CTRL (lacking MIP1a
expression) (Figure 3, 4). Depending on the reference HIV-1

clone, the block in infection ranged from 35–78%. Co-incubation

with Cc-CD4 also varied depending on the reference HIV-1 clone

and effectively blocked from 22–56% of infection. Effective

inhibition by Cc-MIP1a was not observed in 1 of the reference

clones. The observed variability was likely due to the variation in

gp120 sequence across the panel of HIV-1 clones as previously

reported by Li et al. using both monoclonal antibody and soluble

CD4 inhibitors [16].

Comparing heat inactivated Caulobacter to recombinant
Caulobacter

Continued development of this approach as a microbicide agent

will likely involve the use of inactivated bacteria. Although

inhibition had been demonstrated with co-incubation with live

Caulobacter, the environmental conditions of the assay did not

promote Caulobacter growth and survival. To preliminarily test

the effectiveness of inactivated Caulobacter on inhibition of HIV-1

infection, the recombinant bacteria were heat inactivated (HIC)

prior to co-incubation in the single cycle assays. Both Cc-MIP1a

and CC-CD4 were found to effectively inhibit HIV-1 infection

Figure 2. MIP1a surface display on Caulobacter. A. SDS-PAGE of normalized low pH extraction of S-layer protein (RsaA) from C. crescentus JS
4022. Lane 1- RsaA obtained from Cc-CTRL. Lane 2 - RsaA obtained from Cc-MIP1a. B. Fluorescence microscopy using anti-MIP1a polyclonal antibody
and an FITC-labeled secondary.
doi:10.1371/journal.pone.0010366.g002

Microbicide Inhibition of HIV
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whether heat inactivated or not (Figure 5). Curiously, the control

Caulobacter was found to be more effective at inhibiting infection

following heat inactivation.

Combinatorial effects on HIV-1 inhibition of co-
incubation with Cc-MIP1a and Cc-CD4

It is likely that to achieve the broadest and most effective

inhibition of HIV-1 infection a cocktail of several recombinant

Caulobacters expressing different infection blockers will be

required. To test the effectiveness of a cocktail strategy, co-

incubation of Cc-MIP1a and Cc-CD4 with the pseudotyped

HIV-1 and TZM-bl cells in single infection assays was

performed. Co-incubation with both recombinant reagents

demonstrated statistically significant enhanced blocking abili-

ties against all reference strains tested, ranging from 74–98%

inhibition of infection (Figure 6). Interestingly, against specific

clade representatives like SVPB16, the individual recombinant

Caulobacters poorly inhibited, yet in combination infection

was reduced more than 80%. In no case was the combination

of constructs observed to inhibit less than that observed for the

individual recombinants. This observed enhancement validates

the view that an effective microbicide would consist of multiple

combinations of specific binding to maximally inhibit HIV

infection.

Discussion

The primary question posed in this study was whether the

innocuous bacterium C. crescentus and its ability to display relatively

large protein segments could be used to devise HIV specific

blocking agents by mimicking the ligands involved with the

interaction of the virus with its host cell. This minimally required

success in achieving secretion of the chimeric S-layer protein,

dense surface display and correct folding of the displayed

segments. This was achieved and we were able to block infection

in the standard TZM-bl assay for lentiviral infection by either

blocking the host cell co-receptor (via MIP1a display) or the virus

itself, via CD4 display. Each performed this function separately,

reducing infectivity by about half and when the two constructs

were combined into one assay infection inhibition worked in an

additive fashion, achieving nearly complete blockage.

It is reasonable to presume that correct or nearly correct folding

occurred for both MIP1a and CD4 when displayed on

Caulobacter, given the ability to bind specific antibodies and the

infection blocking activity noted. It is also highly likely that the

high level expression and the S-layer mediated display of the

ligands compensated for any less than perfect folding by providing

multiple binding opportunities. Normal levels of Caulobacter S-

layer protein are unusually high for a bacterium (approximately

25% of total cell protein (manuscript submitted)). In this instance

we calculate that even the displayed recombinant portion alone

accounts for 1–2% of total cell protein and all of this is displayed

on the outermost surface of the bacterium. Thus, we expect that

the number of cells required to achieve a practical level of

inhibition of infection is likely significantly less than the lower level

display of CD4 reportedly observed on other bacteria such as

Lactobacilli [6,7,8,19].

Figure 3. Surface expression of MIP1a or CD4 on Caulobacter is
sufficient to inhibit infection with pseudotype HIV-1 subtype B
virus clone SVPB13. The recombinant Caulobacters were co-incubated
with HIV pseudotype virus SVPB13 and TZM-bl cells to demonstrate
inhibition of infection. TZM-bl cells were also incubated alone, with virus,
or with virus and neutralizing monoclonal antibody. Pseudotype virus
infection was measured by ELISA for b-galactosidase. Significant levels of
inhibition of infection were observed (denoted by asterisks) between both
Cc-MIP1a and the Cc-CTRL (,0.001) and Cc-CD4 and Cc-CTRL (,0.01). HIV
infections are presented as a percentage of the untreated control
infections using the same pseudotype virus, SVPB13 and with the
background for uninfected cells subtracted out. Each separate experiment
was performed with 3 assay wells per condition. Data represent mean +
standard error of the mean (s.e.m) from 4 separate experiments.
doi:10.1371/journal.pone.0010366.g003

Figure 4. Surface expression of MIP1a or CD4 on Caulobacter is
sufficient to inhibit infection with a number of pseudotype
HIV-1 subtype B viruses. The recombinant Caulobacters were co-
incubated with one of six different HIV pseudotype viruses and TZM-bl
cells to demonstrate inhibition of infection. TZM-bl cells were also
incubated alone, with virus, or with virus and neutralizing monoclonal
antibody. Pseudotype virus infection was measured by ELISA for b-
galactosidase. Significant levels of inhibition of infection were observed
between both Cc-MIP1a and the Cc-CTRL (,0.001 for all the
pseudotype clones) and Cc-CD4 and Cc-CTRL (,0.001 for SVPB11,
SVPB13, SVPB14, SVPB16 and ,0.01 for SVPB12, and SVPB15). HIV
infections are presented as a percentage of the untreated control
infections using the same pseudotype virus and with the background
for uninfected cells subtracted out. Each separate experiment was
performed with 3 assay wells per condition. Data represent mean +
s.e.m from 3–4 separate experiments.
doi:10.1371/journal.pone.0010366.g004
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Variation in inhibition was observed across the different HIV-1

reference strains. Notably, the greatest variability was found

against the MIP1a construct and this is likely due to the high

degree of variability across gp120 for the individual pseudoviruses.

Prior work by Li et al. [16] demonstrated that across these 6

pseudovirus and a number of others that a significant level of

sequence variation exists and this variation is directly responsible

for differences in sensitivity and resistance of these viruses to env-

based neutralization. Prior to MIP1a binding to CCR5, proper

engagement of CD4 and gp120 followed by a folding event is

required to expose the full binding site. This complex binding

likely challenges the specific interactions of MIP1a with HIV env.

To develop the most effective measure, it is likely that a cocktail of

multiple recombinant Caulobacters expressing different HIV-1

blocking agents will inhibit the widest range of potential HIV-1

variants. This was clearly effective in our system as combinations

of both recombinant Caulobacters resulted in nearly complete

inhibition of infection.

The development of a bacteria based microbicide has an

expectation that the supply of cells is relatively inexpensive to

produce. Caulobacters are in fact simple to grow and can be

readily fermented to high densities in shake flasks or standard

fermenters in media containing only glucose, salts and ammonia as

a nitrogen source. As such, the development of Caulobacter as a

microbicide platform is a sound low cost choice in terms of

productivity. An important issue is whether Caulobacter is safe for

exposure to mucosal tissues. This has not yet been tested directly,

but the low endotoxin LPS [9] and the record of no septic or other

overt symptoms with intraperitoneal injections in mouse model

systems [20] suggests that it will be and that experiments to

determine safety are warranted.

The presumption in the use of engineered Caulobacters as a

microbicide is that it would not be used as a commensal bacterium

but rather as an agent that would be applied as a topical agent

prior to any perceived exposure or risk for infection (typically

through sexual acts or the process of childbirth with an HIV

positive mother). Caulobacters are not normal inhabitants of

humans and will not grow in this environment. As such, they are

merely a platform for the generation and presentation of the

blocking agent. Thus, this obviates any immediate concerns that

would be common to the use of a commensal bacterium for this

purpose - that is, being able to compete with normal flora or

alternatively, if it can compete, that long-term maintenance may

result in unwanted effects that are then difficult to reverse. Further,

it is our expectation that killed Caulobacters will be used.

Ultimately, this will be performed via heat, irradiation or

chemicals such as formalin or beta-propriolactone. In preliminary

studies with heat killed cells, blocking activity was relatively similar

to that observed for live cells, except that heat inactivated control

cells had an unexpectedly high level of inherent blocking activity.

This non-specific effect may be helpful (additive) to the specific

blocking ligands, or may be an indication that other killing

methods will be more appropriate and is currently under

investigation.

The exceptional ability of Caulobacter to tolerate the insertion

of a range of heterologous peptides and proteins in to its S-layer

structure has been demonstrated here and previously [2,11,21].

Figure 5. Heat inactivation of the recombinant Caulobacters
retains inhibition of infection for pseudotype HIV-1 subtype B
virus clone SVPB13. The recombinant Caulobacters were heat
inactivated and co-incubated with HIV pseudotype virus SVPB13 and
TZM-bl cells to demonstrate inhibition of infection. TZM-bl cells were
also incubated alone, with virus, or with virus and neutralizing
monoclonal antibody. Pseudotype virus infection was measured by
ELISA for b-galactosidase. Significant levels of inhibition of infection
were observed (denoted by asterisks) between HIC Cc-MIP1a and Live
Cc-MIP1a (,0.005), HIC Cc-CTRL and Live Cc-CTRL (,0.001), and HIC Cc-
CD4 and Live Cc-CD4 (,0.001). HIV infections are presented as a
percentage of the untreated control infections using the same
pseudotype virus, SVPB13 and with the background for uninfected
cells subtracted out. Each separate experiment was performed with 3
assay wells per condition. Data represent mean + s.e.m from 3 separate
experiments.
doi:10.1371/journal.pone.0010366.g005

Figure 6. Incubation of both recombinant Caulobacters with
pseudotype HIV-1 shows combinatorial effects and heightened
inhibition of infection against the clade B viruses. The
recombinant Caulobacters were combined in equal amounts and co-
incubated with one of six different HIV pseudotype viruses and TZM-bl
cells to demonstrate inhibition of infection. TZM-bl cells were also
incubated alone, with virus, or with virus and neutralizing monoclonal
antibody. Pseudotype virus infection was measured by ELISA for b-
galactosidase. Significant levels of inhibition of infection were observed
between both Cc-MIP1a/Cc-CD4 and the Cc-CTRL (,0.01 for all six
pseudotype viruses). HIV infections are presented as a percentage of
the untreated control infections using the same pseudotype virus and
with the background for uninfected cells subtracted out. Each separate
experiment was performed with 3 assay wells per condition. Data
represent mean + s.e.m from 3–4 separate experiments.
doi:10.1371/journal.pone.0010366.g006
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The ability of the native binding sites to remain intact following

display was further described. Our future work is not limited to

single constructs, as simultaneously expression of two or more

modified S-layers is readily possible [22]. When considering pairs

of displayed proteins, some are predicted to be potentially

synergistic with current two activities and other agents, such as

single chain antibodies directed to gp120 (for pairing with CD4

display) or ligands or antibodies directed to other T-cell or

mucosal cell receptors for pairing with MIP1a. The ultimate goal

is to produce the best combination of single and co-displayed

ligands to maximize HIV infection inhibition and to minimize the

opportunity to select for HIV isolates that evade the blocking

activity by mutation. An additional benefit in evaluating

combinations of ligands may be in discovering unexpected

synergistic infection inhibition, such as was noted with SVPB16.
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