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Abstract: One of the biggest challenges of fused deposition modeling (FDM)/fused filament fab-
rication (FFF) 3D-printing is maintaining consistent quality of layer-to-layer adhesion, and on the
larger scale, homogeneity of material inside the whole printed object. An approach for mitigating
and/or resolving those problems, based on the rapid and reliable control of the extruded material
temperature during the printing process, was proposed. High frequency induction heating of the
nozzle with a minimum mass (<1 g) was used. To ensure the required dynamic characteristics of
heating and cooling processes in a high power (peak power > 300 W) heating system, an indirect
(eddy current) temperature measurement method was proposed. It is based on dynamic analysis
over various temperature-dependent parameters directly in the process of heating. To ensure better
temperature measurement accuracy, a series-parallel resonant circuit containing an induction heating
coil, an approach of desired signal detection, algorithms for digital signal processing and a regression
model that determines the dependence of the desired signal on temperature and magnetic field
strength were proposed. The testbed system designed to confirm the results of the conducted research
showed the effectiveness of the proposed indirect measurement method. With an accuracy of ±3 ◦C,
the measurement time is 20 ms in the operating temperature range from 50 to 350 ◦C. The designed
temperature control system based on an indirect measurement method will provide high mechanical
properties and consistent quality of printed objects.

Keywords: FFF; FDM; 3D-printing; induction heating; HF heating; indirect measurement; tempera-
ture measurement; eddy-current; resonance; regression analysis

1. Introduction

Presently, methods of additive manufacturing or 3D-printing find their application
in architecture, construction, automotive and aerospace, clothes manufacturing and even
in food production. It is fair to say that by now, a number of additive manufacturing
technologies have reached the stage when their application in the industrial production of
functional products has become possible [1–4].

Compared to subtractive manufacturing, 3D-printing has a number of major advan-
tages. Namely: material cost reduction [5–10] (up to 90%), manufacturing cycle time
reduction [8,11–13] because of rapid prototyping or simplification of the technological pro-
cess, the opportunity to produce one-piece constructions with a complex shape. Together
with the rapid development pace of generative design technologies, additive manufactur-
ing allows one to provide significant reduction in the weight of a vehicle, products made
of expensive materials, etc. [8–10,13–17].

It is worth noting that by now, there is an entire industry devoted to the production of
prostheses, implants, stimulators, artificial organs and scaffolds from biocompatible mate-
rials. One of the most promising trends in this area is an application of modern high-tech
polymer materials or polymer matrix composites. At the same time, using such materials
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in a biomedical application presents a number of problems: namely, bioinertity/bioactivity
of the material, cell adhesive ability and the complex shape of tissue engineering scaffolds,
etc.

Presently, additive manufacturing is being actively researched and implemented in
medicine. Additive manufacturing technologies allow the production of polymer prosthe-
sis, implants, scaffolds, etc., with a required shape and internal structure [18–24].

In recent years, a huge amount of research effort has been devoted to studying
polyetheretherketone(PEEK) and its application in the biomedical field [25–32]. Three-
dimensional printing of PEEK is carried out via fused deposition modeling (FDM) or fused
filament fabrication (FFF) and associated with significant challenges. The high melting
temperature and semi crystalline nature of PEEK make it very sensitive to varying process-
ing conditions during the printing process. Both a high temperature of extrusion (about
440 ◦C) and consistent quality of layer-to-layer adhesion are needed in order to achieve the
required mechanical properties of the printed object.

Fused deposition modeling is the most widespread 3D printing technology [33,34]
and was created in 1986 by S. Scott Crump.

The essence of the technology is in building an object based on a digital model by
depositing molten polymer material layer by layer on the platform through a heated
nozzle [35,36].

One of the biggest challenges of FDM/FFF 3D printing is the dependence of layer-
to-layer adhesion quality on bonding temperature: a function of the extruded material
temperature and the bed temperature (or temperature of the already deposited layers of a
printed object).

This problem is especially critical for 3D-printing with high-performance materials
(PEEK, PEI, etc.) because a change in this combination of temperatures by only a few
degrees leads to a drop in quality (mechanical properties, external appearance, etc.).

Bonding temperature is a function of the heat input into already deposited layers of
printed object (that depends on the trajectory of the extruder and the time spent by the
extruder in the certain areas of the deposited layer of the printed object) and the heat input
due to new extruded molten material.

The uniformity of the heat input may be achieved by compensating for the differences
in the heat input in different areas of the already deposited layers of the printed object by a
corresponding change in the heat input directly during the printing process.

A special case of such compensation is an increase in the layer time (reducing a
printing speed and, consequently, extrusion speed), an increase in the cooling rate of the
already deposited layers of the printed object via forced airflow, a temperature change of
the already deposited layers of the printed object (slow change in the bed temperature).
The listed capabilities are available in the existing (accessible) software in the field of FDM
3D printing (3D slicers). However, 3D slicers cannot purposefully provide uniformity of
the heat input when planning a trajectory.

At the same time, conventional extruder for FDM 3D printer does not allow rapid
changes in an extrusion temperature of the material during the printing process (due to
significant mass of the hotend assembly, as well as the low power resistive heater), which
prevents the setting of the required bonding temperature at certain points (segments) of
the trajectory (the certain areas of the deposited layer of the printed object).

In general, the conventional extruder for an FDM 3D printer (for example, E3D V6,
E3D Volcano or E3D Lite 6, Great Britain) consists of a hotend assembly (nozzle+heating
block) or (hot) part that melts the polymer material and a (cold) part that feeds the solid
polymer material (filament) into the hot part [37]. Most of the existing FDM printers
employ indirect resistive heating of the nozzle [38]. At the same time, such systems are
characterized by a big mass of the hotend assembly (from 20 g), low temperature limit (up
to 260–300 ◦C), low power (~70 W) and sensitive to sudden temperature changes heating
elements [39–43].
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As temperature sensors in conventional extruders for FDM 3D printing are used
thermistors or thermocouples. Due to the design features of the described extruder, the set
temperature is provided only at the installation location of the temperature sensor. The
temperature sensor is installed in heating block far away from the nozzle and extruding
material. Hence, the sensor provides point measurement of hotend assembly temperature
far away from the resistive heating element and the nozzle. This results in uneven heating
of the nozzle and the extruded material (up to 20 ◦C) [43,44].

The time constant of the sensors (thermistors, thermocouples) is of 100–140 ms [45].
Consequently, with ideal thermal contact between heating block (or nozzle) and the sensor,
it takes five-time constants for the thermocouple or thermistor to respond to almost 100%
of the total step change temperature (500–750 ms). However, when installing the sensor in
the heating block of the conventional extruder, the thermal contact is far from ideal due to
air gaps, poor quality thermal grease, etc.

As a summary, when using thermoelectric sensors (thermistors, thermocouples), the
nozzle temperature measurement accuracy of 5–15 ◦C [44,46–48].

Another available method is non-contact infrared pyrometers that enable one to
measure the temperature with higher time resolution (250 ms) than thermoelectric sensors
(500–750 ms) used in FDM 3D printing. Herewith, accuracy of its measurement depends
on the emissivity and purity of the nozzle surface. However, the emissivity of the metal
nozzle changes when heated up and the surface gets contaminated quickly during the
printing process. For that reason, the application of these devices for measuring the
temperature of the nozzle in commercial FDM 3D printers is currently unknown. However,
infrared cameras are widely used in laboratory research to analyze the spatial and temporal
distribution of temperature in the printed objects.

Both the flow velocity of the extruded material and the movement speed of the
extruder vary during the printing process. This results in significant deviations of molten
material temperature from the required one.

As the result of the analysis, the drawbacks of the conventional extruder for an FDM
3D printer were revealed:

1. High thermal inertia (lag) of the hotend assembly (nozzle+heating block) does not
allow rapid temperature regulation of the nozzle during printing;

2. Design features of the conventional extruder and drawbacks of the described tem-
perature control methods do not allow the provision of fast and precise temperature
control of the extruded material;

3. There is uneven heating of the nozzle and the extruded material (up to 20 ◦C) [43,46].

Thus, the conventional extruder for an FDM 3D printer does not allow one to provide
consistent quality of layer-to-layer adhesion [47,49–60], and on the larger scale, homogene-
ity of material inside the whole printed object. Particularly, usage of high temperature
engineering thermoplastics (PEEK, etc.) and thermoplastic composites make no sense due
to a lot of inner defects in the resulting printed object [55–61].

An approach for mitigating and/or resolving those problems, based on the rapid
and reliable control of the extruded material temperature during the printing process, is
proposed. This approach is based on the method of high frequency induction heating of
the low weight nozzle (<1 g).

This is the method of direct, non-contact electric heating and, in the general case,
allows heating of the exact area of a heated part surface to higher temperatures within a
short period of time and more efficiently than indirect resistive heating [62]. These features
enable one to isolate the mass of the heater from the mass of the heated element.

Usage of induction heating in FDM/FFF 3D manufacturing was described in detail
in our previous article [63]. A multiphysics FEM model including electromagnetic and
thermal problems for the proposed nozzle and inductor configuration was formulated,
and numerically solved using COMSOL 5.2a. The optimal inductor shape and heating
frequency were obtained during the parametric optimization step. The advantages of
induction heating over the indirect resistive heating method were discovered; for example:
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1. rapid heating of the nozzle due to its isolation from the high power induction heater
(peak power > 300 W);

2. rapid cooling of the nozzle due to its low mass;
3. uniform heating of the nozzle and extruded material due to optimization of the

induction heating frequency and geometric shape of the inductor.

However, despite the obvious advantages, the described solution has a significant
problem. To ensure the required dynamic characteristics of heating and cooling of the low
weigh nozzle in a high power heating system, a fast and reliable temperature measurement
is needed.

The lack of fast temperature measurement methods for the low weight nozzle was
one of the major technological hurdles to the efficient application of induction heating in
FDM 3D manufacturing.

A state of the art review shows a wide spread of techniques that provide either precise
or fast temperature measurement of objects with low mass [64–66]. Most interesting,
however, is the eddy-current (resonance) method for temperature measurement of pots
made of ferromagnetic alloys presented in the article and patented by a group of researchers
from the University of Zaragoza [67,68]. It is based on measurement of current frequency
in a resonant circuit containing inductor. The frequency varies with the temperature-
dependent parameters of the pot. This method is intended for temperature control of
objects with high mass and there is no way to measure and heat at the same time.

The possibility of using other methods (thermoelectric, pyrometric) depends on solv-
ing all the mentioned problems, and mitigating interference of the strong alternating
electromagnetic field on the measurement device and its wiring (for the wired ones) [69,70].

Eventually, the known prototypes of the extruder for FDM 3D manufacturing using in-
duction heating of the nozzle have significant thermal inertia and do not differ substantially
from conventional extruders [71–77].

Excess temperature of the nozzle may lead to both its permanent deformation and
burnout of the polymer material. On the other hand, a high cooling rate of the nozzle
during material extrusion (up to 20 ◦C/s at an extrusion speed of 40 mm/s) may lead to
disruption or termination of the extrusion process.

Other optimization methods/techniques or tools of the FDM 3D printing process
listed in [2]. The existing optimization methods of the FDM 3D printing process do not
allow controlling the heat input during the printing (extrusion) process and maintaining
consistent quality of layer-to-layer adhesion, and on the larger scale—homogeneity of the
material in whole printing object.

2. Materials and Methods
2.1. Temperature Measurement Technique for the Ferromagnetic Nozzle

To ensure the required dynamic characteristics of heating and cooling processes in a
high power induction heating system, an indirect (eddy-current) temperature measurement
method is proposed. It is based on the application of ferromagnetic alloys with the re-
quired mechanical properties as the nozzle material and on dynamic analysis over various
temperature-dependent parameters during the heating process. One such parameter, the
magnetic permeability of iron, directly depends on the temperature and was previously
used for indirect temperature measurement.

2.2. Testbed System

This kind of temperature control loop consists of an induction heating coil, low weight
nozzle (<1 g) and high power temperature controller (peak power > 300 W) and requires
fast and precise temperature measurement.

A method for fast measuring of temperature-dependent parameters during heating
is proposed. To implement this method in the control system and achieve high accuracy
temperature measurement, it is necessary to determine the dependence of the electrical
properties of the nozzle material (resonant circuit parameters) on the temperature.
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To determine such dependence, a testbed system was designed, which comprises
laboratory power supplies with U = 24V, Imax = 20A, a DRV8302-based power controller, a
high frequency (HF) voltage source inverter using power MOSFETs, and a Control Board
based on an ARM-microcontroller STM32F334R8 by STMicroelectronics. Rated values of
elements in the inductor-capacitor-inductor (LCL)-resonant circuit were converted to fit
the predetermined operating frequency of f = 120 kHz. The induction heating coil of a
specified diameter and height was formed with 20 coils of copper high-frequency litz wire
(d = 0.75 mm, 2 layers).

The appearances of the ferromagnetic nozzle as well as the pilot extruder are shown
in Figure 1a,b.
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Figure 1. (a) Appearance of the ferromagnetic nozzle, (b) appearance of the pilot extruder.

A functional block diagram of the testbed system is shown in Figure 2. ifi is the control
signal, “error” is the measured signal amplitude, temperature is the nozzle temperature at
the beginning and at the end of the experiment.

An induction heating coil (1) was installed inside an aluminum cylindrical mandrel
that functions as a shield against the high frequency magnetic field, and as a mechanical
fastening of the heater to the extruder frame, a magnetic flux concentrator made of su-
permalloy in the form of an external cylindrical shell of the inductor was used. Inside the
induction heating coil, (1) the nozzle (2) for FDM 3D manufacturing of a preset config-
uration made of the ferromagnetic alloy AISI430 was installed. The inductive load was
extended to an LCL series-parallel resonant circuit by adding a further capacitive device in
parallel with the induction heating coil (1) and inductive device in series with the parallel
resonant circuit. The LCL resonant circuit was supplied by a high frequency phase-shifted
full bridge inverter (3).
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Figure 2. Functional block diagram of the testbed system: (1) the induction heating coil; (2) the
nozzle; (3) high frequency (HF) inverter; (4) the sensing coil; (5) the unit for recording and processing
a measuring signal (ARM-microcontroller).

In phase-shift modulated (PSM) control, the two transistors of each diagonal switch
are operated at nearly 50% duty-ratio. The output of each diagonal switch pulsates between
Vin (power supply voltage) and 0. The length of the zero intervals is controlled by phase-
shifting the two diagonal switch outputs with respect to each other. During zero intervals,
either both transistors at the top, or both transistors at the bottom are on, creating a
short circuit across the primary winding. The gate voltage of the transistors on the top is
controlled by the two direct signals Q1 and Q2, while the gate voltage of the transistors on
the bottom is controlled by the corresponding inverted signals. The amount of phase shift
(ifi) between the diagonal switches (between Q1 and Q2) decides the amount (percent) of
power consumption [78,79]. In this example, the phase shift range from 0 to 180◦ between
Q1 and Q2 signals corresponds to a range of 0 to 45,000 in terms of processor ticks.

The inductor (1) current varies with the resonant circuit parameters during heating of
the nozzle (2). To register such changes (the desired signal), the secondary winding was
added to the induction heating coil (1) as the sensing coil (4). The outputs of the secondary
winding are indirectly connected to a microcontroller analog input (5). The measured
signal amplitude is expressed as a dimensionless value “error” as a result of digital signal
processing. Nozzle (2) temperature at the beginning and at the end of the experiment was
measured by a contact type thermometer UT325. The appearance of the testbed is shown
in Figure 3.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 30 
 

 

 

Figure 3. Appearance of the testbed system. 

2.3. Basics of an Indirect (Eddy-Current) Temperature Measurement Method 

For implementation of the proposed method, LCL topology for high power induc-
tion heating was used. The LCL resonant circuit was designed using a Mutlisim simula-

tion environment according to Figure 4. Voltage sources V1 and V2 operate simultane-
ously and are 180 degrees out of phase with each other. 

 

Figure 4. Multisim model of LCL series-parallel resonant circuit. 

The simple equivalent circuit describing the heating induction coil and the nozzle 
consists of a coil (L1) and a resistor (R1) connected in series. The power factor is im-

proved because of an additional capacitor (C1) and inductor (L2) in the circuit. The 
purpose of the inductor L2 is to match the impedance of a source and that of its load, 

while working close to the resonant frequency. It is also provides negligible switching 
losses due to operation above resonance (ZVS). 

For a resonant circuit with a high quality factor Q, the approximation (1) is valid for 

the resonance point. 

1

2

2

1

L

L

I

I
=

, 
(1) 

where I1 is the inductor (L1) current and I2 is the inductor (L2) current. 
The LCL topology provides a load-independent output voltage [80,81]. It should be 

noted that the natural (resonance) frequency of the parallel resonant circuit L1C1 is in-
dependent of other electrical circuit elements. The higher the quality factor Q, the lower 

the impact. Therefore, both the natural frequency of the parallel resonant circuit L1C1 
and the inductor (L1) current amplitude vary only with the electrical properties of the 

Figure 3. Appearance of the testbed system.



Sensors 2021, 21, 2561 7 of 27

2.3. Basics of an Indirect (Eddy-Current) Temperature Measurement Method

For implementation of the proposed method, LCL topology for high power induction
heating was used. The LCL resonant circuit was designed using a Mutlisim simulation
environment according to Figure 4. Voltage sources V1 and V2 operate simultaneously and
are 180 degrees out of phase with each other.
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Figure 4. Multisim model of LCL series-parallel resonant circuit.

The simple equivalent circuit describing the heating induction coil and the nozzle
consists of a coil (L1) and a resistor (R1) connected in series. The power factor is improved
because of an additional capacitor (C1) and inductor (L2) in the circuit. The purpose of the
inductor L2 is to match the impedance of a source and that of its load, while working close
to the resonant frequency. It is also provides negligible switching losses due to operation
above resonance (ZVS).

For a resonant circuit with a high quality factor Q, the approximation (1) is valid for
the resonance point.

I1

I2
=

L2

L1
, (1)

where I1 is the inductor (L1) current and I2 is the inductor (L2) current.
The LCL topology provides a load-independent output voltage [80,81]. It should

be noted that the natural (resonance) frequency of the parallel resonant circuit L1C1 is
independent of other electrical circuit elements. The higher the quality factor Q, the lower
the impact. Therefore, both the natural frequency of the parallel resonant circuit L1C1
and the inductor (L1) current amplitude vary only with the electrical properties of the
nozzle and the induction coil during the heating process. During heating of the nozzle, the
operating frequency was set close to the resonance frequency f = 120 kHz.

The measurement method is based on the dependence of the electrical conductivity
and the magnetic permeability of the material of the nozzle with respect to its temperature.
The operating temperature range is from 20 to 1100 ◦C because the Curie temperature of
the ferromagnetic alloy used as the nozzle material is about 1150 ◦C.

When a ferromagnetic material is heating by induction, the heat generation also occurs
due to hysteresis losses. However, this effect rapidly abrupts as temperatures approach the
Curie point, after which the material becomes completely non-magnetic [82]. The change
in the electrical conductivity and magnetic permeability of the material leads to a change
in the electrical equivalent impedance of the parallel resonant circuit L1C1. Variation
of the load impedance does change both the input current consumed and the resonance
frequency. The inductor (L1) current amplitude also depends on power consumption
(output voltage). Output voltage varies with the desired nozzle temperature, the flow
velocity of the extruded material or during temperature regulation.

From the change of inductor (L1) current amplitude during experiments, it is possible
to determine its dependence on the nozzle temperature and power consumption.

A significant deviation of the operating frequency from the resonance frequency
results in an inductor (L1) current decrease and an unacceptable drop in heating efficiency.
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In this case, it is necessary to determine the frequency range that corresponds to the entire
operating temperature range. Resonance frequency must be set by adjusting the values of
the electronic components in such a way that deviation from it during heating of the nozzle
should not lead to a significant change in current amplitude. Besides, a slightly inductive
load is desired to provide ZVS operation. A frequency meter can be used for calibration.
However, for the LCL resonant circuit with a high quality factor Q, the required frequency
range is very narrow (about 2000 Hz). It is desired to use a phase meter for more accurate
calibration. Such a small deviation of the resonance frequency from the predetermined
operating frequency of f = 120 kHz results in a minimum phase shift between the inductor
(L1) current and output voltage. From the point of view of the described testbed system,
it is correct for the operating temperature range from 20 to 500 ◦C in which the extrusion
process of almost all existing filaments for FDM 3D-manufacturing occur.

The phase frequency characteristic is shown in Figure 5: fres is the resonance frequency
of the parallel resonant circuit, freg1 . . . freg2 is the frequency range in which inductor (L1)
current amplitude is measured, T is the nozzle temperature.

The inductor (L1) current varies with the resonant circuit parameters during heating
of the nozzle. The sensing coil (L3) as the secondary winding was added to obtain the
desired signal. A varying current in the induction heating coil produces a varying magnetic
field which induces a varying electromotive force across the sensing coil: thus, electrical
energy is transferred between electrically isolated coils. In this example, the sensing coil
has a 10 mm inner diameter, 15 mm outer diameter, 16 mm height coil. The sensing coil
was formed with 20 coils (2 layers).

To improve the accuracy of a measurement, the outputs of the secondary winding
were connected to an operational amplifier (U2) with a gain of 40. The diode clipper (D5,
D6) with clipping limits of ±0,5V cuts off both halves together of the signal waveform.
The bipolar desired signal converts to unipolar to drive an analog-to-digital converter
(ADC) via summing amplifier (U1) with a gain of 5 [83]. Thus, a significantly amplified
desired signal is measured by the ADC. The high-frequency induction heating system
with LCL-resonant output and Sensing circuit are shown in Figure 6. In this example: D1,
D2, D3, D4—intrinsic antiparallel diodes, R1 = 1 kΩ, R2 = 5 kΩ, R3 = 1 kΩ, R4 = 5 kΩ,
R5 = 40 kΩ, R6 = 1 kΩ.

To measure the amplitude of the desired signal, PSM and ADC were synchronized
to an operation of a high-resolution timer. Thus, the synchronization signal triggers ADC
conversions at the same time as the signal Q1 is generated. Herewith, the output voltage
is in phase with the signal Q1. And the inductor (L1) current is in phase with output
voltage when the load is resistive (resonance condition). Therefore, there is a varying
phase shift (above mentioned) between desired signal and signal Q1 (fixed moment of an
ADC conversion) during heating process of the nozzle. So, the measured amplitude of the
desired signal also depends on this phase shift. In this example, the 12-bit ADC is used.
Consequently, the ADC converts 0 to5V on its input into dimensionless value in the range
from 0 to 4095.

As can be seen, the operating temperature range from 20 to 500 ◦C should corresponds
to the phase shift range from −90◦ to +90◦ between desired signal and output voltage
(Figure 5a). Measurements are made once per desired signal period and limited by the
operating frequency of f = 120 kHz.
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The extrusion temperature of the most commonly used materials in the FDM 3D manu-
facturing is above 200 ◦C, for example, polylactic acid (PLA), acrylonitrile butadiene styrene
(ABS), styrene-butadiene-styrene (SBS), polyethylene terephthalate (PET), polypropylene
(PP), polyamide (PA), polyetherimide (PEI), polyetherketoneketone (PEKK), PEEK, etc.
Therefore, operation above resonance frequency is provided. Inductive load generates
parasitic oscillating voltage during the switching of MOSFETs, while stray inductances are
included in the series inductor L2.

To reduce such noise in the circuit as well as achieve better accuracy of the mea-
surement, both oversampling and an exponential moving average filter were used. The
dimensionless value “error” was obtained as a result of digital signal processing.

Oversampling and averaging is a method for improving ADC resolution. In this
example, ADC resolution was increased from 12 bits to 17 bits [84,85]. Sampling frequencies
above Nyquist frequency are called oversampling. It is sufficient to use a converter that
can run at 1024 times the target sampling rate. Summing 1024 consecutive 20-bit samples
can increase the SNR, effectively adding 5 bits to the resolution and producing a single
sample with 17-bit resolution.

For each additional bit of resolution, the signal must be oversampled by a factor of
four according to Equation (2):

fp =
fn

4y , (2)

where y is the number of additional bits of resolution desired, fp is the sampling frequency
requirement or Nyquist frequency, and fn is the oversampling frequency.

The number of samples required to get n bits of additional data precision is 4y. To get
the mean sample scaled up to an integer with n additional bits, the sum of 4y samples is
divided by 2y.

This averaging is only effective if the desired signal contains white noise. The noise
amplitude must be sufficient to cause the desired signal to change from sample to sample
at least between two adjacent levels of quantization.

An exponential moving average (EMA) filter is used for smoothing a stream of data
after oversampling and averaging [86]. An EMA filter allows you to specify the weight of
the last measuring versus the previous filtered value, by setting the alpha parameter. The
equations for an exponential moving average filter are:

error = xprev × (1 − alpha) + xnew × alpha, (3)

xprev = error, (4)

where xnew is the current filter input value, xprev is the previous filter output value, “error”
is the current filter output value after the last measuring, alpha is the smoothing factor
in the range from 0 to 1. The higher the value, the less smoothing (the higher the latest
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measuring impact). If alpha = 1, the output is just equal to the input, and no filtering takes
place.

Notice that the calculation does not require the storage of past values of “error” and
only the previous value, which makes this filter microcontroller memory friendly.

The main factors, defining the total measurement delay of the proposed device, are the
ADC sampling delay (2Tc–61Tc, where Tc is the frequency of the ADC peripheral module
of the system on a chip (SoC) in use, Tc = 1/500 kHz), and the delay of the oversampling
process used to extend the measurement resolution. Thus, the total delay depends on the
measurement device desired output resolution and varies from 10 µs (for the native 12-bit
resolution of the ADC, and no oversampling) for the 8 ◦C temperature resolution, up to
100 ms (for the 20-bit oversampled output), and 0.05 ◦C resolution. Therefore it needs to
be stated, that the maximum sampling frequency in the proposed method is limited by
the heating frequency (120 kHz), cause successful measurement is possible only in close
proximity to the zero-crossing moment of the current in the inductor circuit.

3. Results and Discussion
3.1. Desired Signal Amplitude Measurement

A series of experiments was carried out using the described testbed system with
different fixed output voltage (power consumption in the range from 0 to 100%). The
nozzle was heated from 25 ◦C to Curie temperature. Then, the nozzle was cooled to an
ambient temperature and after that, heated again from 25 to 750 ◦C in each experiment.
In this example, a nozzle temperature of 25 ◦C corresponds to “error” = 0. The nozzle
temperature at the beginning and at the end of the experiment was measured by a contact
type thermometer UT325. The desired signal amplitude (error) was continuously registered
during the heating process.

On the basis of the measurement results, the desired signal amplitude (error) was
obtained as a function of time (in processor ticks monitored by debug software). This
dataset was obtained for a fixed power consumption in 10% increments. The results of the
experiments with power consumption of 80% and 90% are shown in Figure 7. Figure 7
shows the dramatic decline of “error” at the very beginning of the charts. The reason for
this is the nozzle temperature approaches the Curie point and the magnetic permeability
of the ferromagnetic alloy drops down. Reduction of the magnetic permeability of the
nozzle material leads to the resonance frequency rising above the operating frequency. It is
worth noting that the graphs of the error(t) with distinctive power consumption are very
different from each other. The reason is that the magnetic field strength of the coil directly
depends on power consumption, and at the same time, magnetic permeability dependence
on the temperature of the nozzle varies with the magnetic field strength. Moreover, the
dependence of “error” on time during the heating process of the nozzle is non-linear.
Figure 7a shows that the nozzle temperature reached 750 ◦C on the fifteenth second of
heating. Figure 7b shows the nozzle temperature reached 750 ◦C on the fifth second of
heating.

To simplify further data processing, the number of points in the curves was reduced by
three orders of magnitude via the Ramer–Douglas–Peucker algorithm [87]. The algorithm
allows preserving of the shape of graphs, inflection points and extrema of functions. This
algorithm was implemented in Microsoft Visual Studio 2017.

At the last stage, the number of points in the curves was manually reduced to 40.
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The results of the experiments with power consumption of 80 and 90% after filtration
are shown in Figure 8.
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The ideal heating curve of the nozzle was obtained by implementation of a quadratic
regression model onto the dataset for power consumption of 90% as an example. The ideal
heating curve of the nozzle is shown in Figure 9. For this fitting, a value of the coefficient
of determination of R2 = 0.97 was obtained.
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Figure 9. Ideal heating curve of the nozzle with power consumption of 90%.

The regression model was validated by a contact type thermometer UT325. A ther-
mocouple was placed inside the nozzle during the heating process without filament. The
ideal heating curve is acceptable with respect to the real heating curve and almost repeats
it with a slight time delay.

The range of the ideal heating curve (the graph of the estimated regression equation)
was linear scaled to the range of the real heating curve (nozzle temperature at the beginning
and at the end of the experiment in the range from 25 to 750 ◦C).

In this purpose, the coefficient of proportionality between the maximum temperature
of the nozzle and the maximum “error” was found. Using this, coefficient value of the
function (regression equation) in 10 ◦C increments were found and arguments (time points)
of the function calculated. The nozzle temperature at certain time points was obtained. For
the corresponding arguments (time points) of the function (regression equation), values of
“error” were found from the original dataset (Figure 7).

Thus, correspondence between the nozzle temperature and “error” during the heating
process (at certain time points) was determined for fixed power consumption in 10%
increments.

3.2. Regression Model

At last, to provide accurate measurement of the nozzle temperature, statistical anal-
ysis of experimental data was performed and the dependence of the desired signal on
temperature and magnetic field strength was determined.

Table 1 represents the results of data analysis. Headers row: power consumption
range. Headers column: nozzle temperature range. Cells: observed values of «error».
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Table 1. Values of “error” for nozzle temperature in the range from 25 to 750◦C and fixed power
consumption of 0.2, 10, 20, 100%.

Temperature ◦C
Error

0.2% 10% 20% 100%

110 90 83 75 36.5
120 96 88 80 42
250 201.3 182.3 164 74.5
280 224 202.5 184 84
400 320.2 290 262 118
440 353.7 320.3 289 129
750 601.3 542.5 489 215

Power consumption depends on the control signal or, rather, the amount of phase
shift (ifi) between diagonal switches (between Q1 and Q2), as already mentioned.

Thus, the amplitude of the desired signal expressed as dimensionless value «error»
is the dependent variable. Nozzle temperature (Ti) is the first independent variable and
magnetic field strength expressed as phase shift (ifi) is the second independent variable.

The regression equation was estimated using multiple nonlinear regression analysis.
An F-test (ANOVA) was used to test the statistical significance of the overall relationship
between the dependent variable and independent variables. A regression analysis was
performed in PTC Mathcad 15.

The dependence of the «error» variable on two independent variables can be described
by following the regression equation:

Yield = A × Ti + B × i fi + AB × Ti × i fi + BB × i fi
2 + ABB × Ti × i fi

2 + C, (5)

with the following coefficients (Table 2).

Table 2. Fitting parameters for the regression model.

Coefficient Estimate Std Error

C 0.797 1.18
A 0.825 2.717 × 10−3

B 1.081 × 10−4 1.006 × 10−4

AB −7.085 × 10−6 2.315 × 10−7

BB 4.951 × 10−10 1.982 × 10−9

ABB −1.207 × 10−10 4.562 × 10−12

The correlation coefficient is close to unity (0.999); thus, the relationship between
dependent variable and independent variables is a rigorously functional one.

Ffact calculated from the data is equal to 1.2 × 105. The critical value of Fcrit = 3.01
determined from the tables is a function of the degrees of freedom and the significance level
(α = 0.05). The regression equation yield (Ti,ifi) is statistically significant with reliability of
95% because Ffact is greater than the critical value Fcrit of the F-distribution.

The graph of the estimated regression equation yield (Ti,ifi) and observed values of
«error» are shown in Figure 10.

Figure 10 shows that increasing power consumption from 0 to 100% is accompanied
by narrowing the «error» range by three times. When power consumption is of 0.2% (if1),
then «error» is in the range from 0 to 600. When power consumption is of 100% (if11), then
«error» is in the range from 0 to 215. Figure 11 shows the «error» dependency on ifi with
fixed nozzle temperature. As can be seen, the dependence of «error» on ifi is non-linear.
Moreover, the higher the temperature of the nozzle, the more significant the non-linearity.
This figure also shows that the dependence of temperature on power consumption is
non-linear.
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The design system in steady-state provides operation in the mentioned temperature
range from 20 to 500 ◦C with power consumption of 25–60W (0.7–5%) if it is a low extrusion
speed (10 mm/s), and with power consumption of 35–85W (1.3–9%) if it is a high extrusion
speed (100 mm/s).

Figure 12 shows the non-linear dependence of «error» on temperature with fixed
power consumption of 0.2 and 20%. The reason for this is non-linear dependence of the
magnetic permeability of the nozzle material on temperature during the heating process,
according to Figure 7. Figure 12 also shows observed versus predicted values of «error»
and linear approximation of magnetic permeability dependence on temperature.
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Application of the obtained regression model provides conversion from «error» to
nozzle temperature (T) with high accuracy in the operating temperature range from 20
to 500 ◦C. Taking into account almost all described non-linear dependences, temperature
measurement accuracy of ±3 ◦C during the heating process is provided.
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3.3. Experimental Verification of Proposed Method

The proposed indirect (eddy current) temperature measurement method (sensing
circuit) is used in the feedback loop. In other words, the proposed system is a closed-loop
control system, as any temperature control system in existing FDM 3d-printers.

Control system design (proportional-integral-derivative (PID) controller design, etc.)
will be described in detail in the further publication of the results in journal with the
corresponding topic.

The designed testbed system was integrated into an FDM 3D-printer to test its be-
havior in a real environment. A closed-loop temperature control system with non-optimal
controller parameters were used during the calibration process and printing of samples.

Several products were made of PA and PEEK to demonstrate the possibility of using
the proposed temperature control system in 3D-printing with high-performance materials.

Nylon (PA) and PEEK were chosen as the test materials, because these polymers are
highly sensitive to the extrusion temperature. A temperature deviation of 5–10 degrees
leads to a significant change in the characteristics of the printed product, a decrease in
mechanical properties, changes in external appearance (product color, shape of the extruded
line), as well as to the overheating of the material caused by uneven heating inside the
nozzle or hotend assembly (which leads to the formation of visible bubbles in the extruded
material).

Several samples were printed of PA (box with a base of 30 × 30 mm and height of
5 mm). The printing output is shown in Figure 13a. All samples printed at an extrusion
speed of 5 to 100 mm/s (for a nozzle of 0.4 mm) demonstrate an identical appearance.

Figure 13b shows the showpiece printed of PEEK (showpiece size: 50 × 30 × 25 mm).
The figure shows the fairly uniform surface color of the showpiece printed of PEEK.

To investigate the influence of the proposed temperature control system based on
indirect measurement method of mechanical properties and the quality of layer-to-layer
adhesion of printing objects, several tensile specimens were made of ABS and PLA (speci-
men size: 115 × 25 × 2 mm). Samples were printed using 100% infill density with printing
parameters as given in Table 3. Tensile testing was carried out by using an electromechan-
ical testing machine (Instron 5882). The testing speed for all specimens was 2 mm/min.
Four specimens were tested for each batch and the testing was performed at ambient tem-
perature (24 ◦C). Table 4 represents the resulting tensile strength values for all specimens.
For example, the fractured tensile specimens ABS1 and PLA2 are shown in Figure 14.

Table 3. Fused deposition modeling (FDM) 3D-printing process parameters.

Material
Nozzle

Temperature ◦C
Bed

Temperature ◦C
Raster Angle/No. Extrusion

Speed, mm/s
Nozzle

Diameter, mm
Layer Thickness,

mm−45◦:45◦ 0◦:90◦

Acrylonitrile butadiene
styrene (ABS)

240
110

1 2

40 0.6 0.2
250 3 4

Polylactic acid (PLA) 210
60

1 2
220 3 4

Table 4. The mechanical properties of tensile specimens printed of ABS and PLA.

Material No. Tensile Strength, MPa

ABS

1 43,58
2 39,44
3 36,71
4 37,16

PLA

1 59,61
2 64,47
3 62,64
4 60,91
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Figure 15 presents optical microscopy of the cross-sectional surfaces of the FDM-
printed specimens (ABS1 and PLA2) after tensile testing. Photographs were taken perpen-
dicular to the layers orientation using an Olympus optical microscope and microscope-
specific camera.
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Figure 15. Optical microscopy of the cross-sectional surfaces of the FDM-printed specimens after
tensile testing:(a) fractured tensile specimens printed of ABS; (b)fractured tensile specimens printed
of PLA.

As seen in the figure, there is little to no interlayer separation and splitting on the
fracture surface of the printed tensile specimens. The tensile fracture of ABS1 and PLA2
specimens has are latively flat surface, indicating a good interlayer bonding strength in
this case. In Figure 15a, there is one interlayer gap in the fracture surface of the tensile
specimen made of ABS. However, compared to the fracture surface of the tensile specimen
made of PLA, there are no visible layer boundaries. At the same time, Figure 15b shows no
visible interlayer gaps or voids.

The resulting quality of layer-to-layer adhesion and mechanical properties of printed
tensile specimens proves the high effectiveness of the proposed temperature control sys-
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temin comparison to the other optimization methods/techniques or tools listed in [2].
Results, obtained using such methods/techniques, are shown in [53,88–97] for specimens
printed of ABS and [47,50,97–105] for the PLA ones.

Further research on 3D-printing with high-performance materials are planned, taking
into account the results, recommendations and conclusions of other research studies, for
example, [49,57–59,106,107].

Cooling rate characteristics of the induction heated (proposed) nozzle and the con-
ventional hotend assembly (nozzle+heating block) at the extrusion speed of 0 mm/s are
shown in Table 5.

Table 5. Cooling rate characteristics of the induction heated (proposed) nozzle and the conventional
hotend assembly (nozzle+heating block) at the extrusion speed of 0 mm/s.

Initial Temperature/Final
Temperature ◦C

Induction Heated (Proposed)
Nozzle, Cooling Time, s

Conventional Hotend
Assembly (Nozzle + Heating

Block), Cooling Time, s

300/250 5 34
250/230 3 22
250/200 9 60
200/150 13 80
150/100 22 120
100/50 41 250
250/50 82 450

Rapid heating can be achieved with aggressive PID tuning. At the same time, our
previous article [63] represents the results of numerical modeling of physical processes or
rather solution of thermal part of the multiphysics task. The nozzle temperature reached
300 ◦C at t = 4 s, f = 120 kHz with an initial temperature of 20 ◦C and fixed power
consumption of 10%. The proposed manuscript presents several heating curves of the
nozzle as an example. Figure 7a shows the nozzle temperature reached 750 ◦C on the
fifteenth second of heating with a fixed power consumption of 80% and an operating
frequency f = 120 kHz. Figure 7b shows the nozzle temperature reached 750 ◦C on the
fifth second of heating with a fixed power consumption of 90% and operating frequency
f = 120 kHz.

The calibration process for the proposed method was performed as a sequence of
several experiments. We used a contact type thermometer UT325 with a bare K-type
thermocouple as a reference measurement unit. Measurements were made in a steady-state
in the operating temperature range from 50 to 350 ◦C. This temperature range meets the
extrusion temperature requirements of most existing materials used in FDM 3D printing.

The thermocouple wires were insulated with thin mica tubes (with a diameter small
enough to allow the insertion of an insulated thermocouple into the 1.75 nozzle inlet) up
to the junction point. In the first experiment, the thermocouple was placed inside the
nozzle (in the polymer melt) at the relative heights of 90%, 50% and 10% from the nozzle
bottom cut. The second experiment was done with the thermocouple soldered on the
nozzle surface at the same relative heights. Results obtained during those experiments
show a high amount of delay for the thermocouple measurements (both inside and outside
of the nozzle) in comparison with the proposed indirect (eddy-current) method. In the
case of the thermocouple being placed inside the nozzle, the observed time delay was
about 5 s (showing the real speed of contact heating of the polymer melt with the given
mass by the inner walls of the headed nozzle from 25 ◦C to the target temperature).
Measured after stabilizing, this temperature was used as the reference one. In the case
of the thermocouple being placed on the nozzle surface, the corresponding time delay
was in the range from 0.6 to 1.2 s (a larger delay for the thermocouple being placed far
from the center of the nozzle). It needs to be explicitly stated that the thermocouple is
a local/point temperature measurement device, so wrong placing of the thermocouple
(far from the most heated point of the nozzle surface, e.g., closer to the heatbreak or
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the nozzle outlet) results in the large overshoot during the heating (with the aggressive
proportional–integral–derivative (PID) tuning, which allows high speed heating) or limits
the heating speed. On the contrary, the proposed indirect (eddy-current) method measures
the temperature of the exact same surface (exposed to the eddy currents) that is being
heated. Thus, by design, this approach eliminates any additional delays introduced by the
material properties (thermal conductivity of the nozzle material, etc.), wrong placement of
the measurement sensors and so on. Additionally, the temperature (integral value over the
whole nozzle surface) is measured for the same surface that is heated by the eddy currents
(the surface over which eddy currents flow). This feature of the method eliminates the
problems of thermal contact, as well as delays associated with the thermal conductivity of
the heater material and sensor material (for contact measurement methods). Due to this
feature of the method, the resulting estimate is integral. Details of the all experiments done
with the target temperature of 250 ◦C are shown in Table 6.

Table 6. Temperature measurement (experimental) results.

Target
Temperature,

◦C

Steady State (After
30 s, Averaged over

5 s), ◦C

Value Fluctuations (10
Consecutive Measurements
after 30 s, in 5 s. Intervals,

No Averaging), ◦C

Setting Time after
Disabling Heater, s

Max
Overshoot, ◦C

Proposed method

250

248.1 247.9–248.2 0.3 1.3
Thermocouple inside, 10% 236.3 236.2–236.3 12.8 26

Thermocouple inside, 50% (reference) 250.1 250.0–250.2 6.3 11
Thermocouple inside, 90% 221.4 221.3–221.6 18.5 38

Thermocouple on surface, 10% 235.4 235.3–235.5 3.2 6
Thermocouple on surface, 50% 250.0 249.9–250.1 2.5 4
Thermocouple on surface, 90% 216.5 216.4–216.7 4.8 8

According to the Multiphysics FEM model described in our previous article [63] an
additional stage of modeling was completed with determination of a cooling rate of the
preheated low weight nozzle at various extrusion speeds. The proposed nozzle was heated
from 25 to 440 ◦C. After that, the nozzle was cooled for one second with such a variable
parameter as extrusion speed. The corresponding parametric task was numerically solved
using the ComsolMultiphysics modeling environment for the several values of extrusion
speed (0, 40, 100, 200 mm/s).

The results of numerical modeling of the physical processes at the initial nozzle
temperature of 440 ◦C and extrusion speed of 0, 40, 100, 200 mm/s, t = 1 s, are shown in
Figure 16. As can be seen, the cooling rate is the strong relation of extrusion speed.
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In addition, the Multiphysics FEM model for the conventional extruder almost the
same as the one described in [39] was formulated, and numerically solved using COMSOL
5.2a. The conventional hotend assembly (nozzle+heating block) was heated from 25 to
440 ◦C. After that, the nozzle was cooled for one second with such a variable parameter
as extrusion speed. The corresponding parametric task was numerically solved using the
ComsolMultiphysics modeling environment for the several values of extrusion speed (0, 40,
100, 200 mm/s). The results of numerical modeling of the physical processes at the initial
conventional extruder temperature of 440 ◦C and extrusion speed of 0, 40, 100, 200 mm/s,
t = 1 s, are shown in Figure 16. As can be seen, the cooling curves overlap each other,
hence, there is extremely weak dependence of cooling rate on extrusion speed since the
temperature sensor is installed in the heating block far away from the nozzle and extruding
material, as already mentioned.

Based on obtained data, we could state that compared to conventional hotend assem-
bly ramp rate of temperature versus time of induction heated nozzle is six times higher.
This provides rapid cooling and heating of the proposed nozzle. In contrast with the
conventional extruder, our induction heated nozzle allows one to control the heat input
into the extruding material and already deposited layers of the printing object, to control
viscosity of the extruding material and prevent spurious plastic efflux.

It is worth noting that the induction heated nozzle was cooled by 5 ◦C in 0.2 s: that
is extremely fast. To ensure the required dynamic characteristics of heating and cooling
processes in a high power induction heating system, an indirect (eddy-current) temperature
measurement method is proposed.

As a summary, we could state that the proposed indirect (eddy-current) temperature
measurement method has a number of important features:

1. There is no need for additional temperature sensors. The method is based on the
analysis of the corresponding resonant circuit parameters;

2. It is a non-contact method of measuring temperature;
3. There is fast measurement due to a lack of inertial components and thermal contact

conduction between the induction heating coil and the nozzle.

4. Conclusions

To ensure the required dynamic characteristics of heating and cooling processes in a
high power induction heating system (peak power > 300 W), an indirect (eddy-current)
temperature measurement method was proposed.

Fast and reliable temperature measurement of the low weight nozzle (<1 g) during
high frequency induction heating was provided due to a lack of inertial components and
thermal contact conduction between the induction heating coil (as well as sensing coil) and
the nozzle.

An LCL series-parallel resonant circuit containing induction heating coil, sensing
circuit, algorithms for digital signal processing (oversampling and exponential moving
average filter), a regression model that determines the dependence of the desired signal on
temperature and magnetic field strength were proposed to provide accurate measurement
of the nozzle temperature.

The results of the completed experiment showed an absence of spurious plastic efflux
and an absence of overheated areas with temperature-driven changes in filament color.
With an accuracy of ±3 ◦C, the measurement time is 20 ms in the operating temperature
range from 50 to 350 ◦C. The designed temperature control system based on an indirect
measurement method will provide high mechanical properties and consistent quality of
printed objects.
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