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Introduction
Glycophosphatidylinositol (GPI) anchorage is a common fea-

ture of surface proteins that leads to membrane raft localization. 

The observation of different functional GPI anchors (Screaton 

et al., 2000; Nicholson and Stanners, 2006) as well as the fact 

that different rafts show markedly different lipid and protein 

profi les (Madore et al., 1999; Wang et al., 2002; Brugger et al., 

2004) implies the existence of a heterogeneous set of anchors 

and matching rafts. Anchor addition is determined by the GPI 

anchor signal sequence, which consists of a set of small amino 

acids at the site of anchor addition (the ω site) followed by a 

hydrophilic spacer and ending in a hydrophobic stretch (Low, 

1989). Cleavage of this signal sequence occurs in the ER before 

the addition of an anchor with conserved central components 

(Low, 1989) but with variable peripheral moieties (Homans 

et al., 1988).

Carcinoembryonic antigen (CEA) is a GPI-anchored pro-

tein, whereas the closely related CEACAM1 (CEA-related cell 

adhesion molecule 1 [CC1]) contains a transmembrane (TM) 

domain. In vitro, both proteins mediate intercellular adhesion 

(Benchimol et al., 1989; Rojas et al., 1990), but CEA, not CC1, 

blocks cellular differentiation (Eidelman et al., 1993) and inhib-

its the apoptotic process of anoikis (Ordonez et al., 2000; Soeth 

et al., 2001). Exchanging the membrane anchors of these pro-

teins results in a TM version of CEA that does not show CEA-

like activity and a GPI-anchored CC1-like protein that now 

exhibits CEA-like properties, demonstrating the importance of 

the membrane anchor (Screaton et al., 2000). Replacing the GPI 

anchor signal sequence of neural cell adhesion molecule 

(NCAM) for that of CEA results in a functionally CEA-like 

protein (NCB), demonstrating the existence of functionally spe-

cifi c anchors whose addition is determined by a particular sig-

nal sequence (Screaton et al., 2000). The sole role of the external 

domains is to mediate self-binding and, thereby, concentration-

dependent clustering (Taheri et al., 2003; Camacho-Leal et al., 

2007), as external domain mutations that disrupt the self-bind-

ing of CEA abrogate CEA function, whereas irrelevant self-

binding external domains (such as that of NCAM in NCB) 

suffi ce for function.

Because the amino acid sequence of various GPI anchor 

signal sequences radically affects protein function, we hypothe-

sized that a signal existed within the GPI anchor signal sequence 

specifying the addition of a particular functional GPI anchor. 
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 E
xchanging the glycophosphatidylinositol (GPI) an-

chor signal sequence of neural cell adhesion molecule 

(NCAM) for the signal sequence of car ci noembryonic 

antigen (CEA) generates a mature protein with NCAM 

external domains but CEA-like tumorigenic activity. We 

hypothesized that this resulted from the presence of a 

functional specificity signal within this sequence and 

generated CEA/NCAM chimeras to identify this signal. 

 Replacing the residues (GLSAG) 6–10 amino acids down-

stream of the CEA anchor addition site with the corre-

sponding NCAM residues resulted in GPI-anchored 

proteins lacking the CEA-like biological functions of 

integrin modulation and differentiation blockage. Trans-

ferring this region from CEA into NCAM in conjunction 

with the upstream proline (PGLSAG) was suffi cient to 

specify the addition of the CEA anchor. Therefore, this 

study identifi es a novel specifi city signal consisting of 

six amino acids located within the GPI anchor attach-

ment signal, which is necessary and suffi cient to specify 

the addition of a particular functional GPI anchor and, 

thereby, the ultimate function of the mature protein.
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Chimeras were generated by exchanging fragments of the CEA 

and NCAM GPI anchor signal sequences and were tested for 

CEA-like biological properties. We identify a specifi city signal 

consisting of fi ve amino acids that is necessary and suffi cient in 

conjunction with an upstream proline for addition of the CEA-

specifi c GPI anchor.

Results and discussion
Although the primary sequences of the GPI anchor signal 

sequences of CEA and CEACAM6 are very similar, mirroring 

their identical tumorigenic functions, that of NCAM differs 

greatly (Fig. 1 A). The signal sequence from CEA is capable on 

its own of specifying the addition of the CEA anchor, so chime-

ras were generated reducing (in fi ve–amino acid increments) 

the CEA-derived sequence in NCB to localize the sequence re-

sponsible for this effect (Fig. 1 B). These chimeras were tested 

for biological activity in the CHO-derived LR-73 and the rat 

myoblast L6 cell lines, although NCB∆20 was not expressed in 

L6 transfectants (Fig. 1 B). The sensitivity of these proteins to 

phosphatidylinositol PLC (PIPLC) and their insolubility in cold 

Triton X-100, with most of each protein present in the insoluble 

fraction, confi rmed GPI anchorage (Fig. 1 C; Screaton et al., 

2000). LR transfectants showed strong intercellular adhesive 

ability (Fig. 1 D), which is indicative of the retention of the self-

binding activity of their external domains (Eidelman et al., 

1993; Taheri et al., 2003), although NCB∆20 adhered some-

what less, likely because of its lower expression level.

CEA and NCB but not NCAM alter the activity of integrin 

α5β1 (Nicholson and Stanners, 2006; Ordonez et al., 2007) and 

block differentiation (Eidelman et al., 1993; Screaton et al., 

2000), which are characteristics used to determine which chi-

meras retained the functional activities conferred by the CEA 

GPI anchor. LR transfectants were tested for binding to the ma-

jor α5β1 ligand fi bronectin (Fn; Fig. 1 E), with NCB expression 

signifi cantly increasing binding compared with NCAM (P < 

0.01). Replacing the fi rst fi ve CEA-derived amino acids of NCB 

with the equivalent NCAM residues had no effect on CEA-like 

function (P < 0.005 vs. NCAM), but replacing 10 residues 

resulted in a protein (NCB∆10) that no longer altered binding. 

Figure 1. Reducing the CEA-derived sequence 
in NCB. (A) The amino acid sequences of the 
GPI anchor signal sequences of CEA, 
CEACAM6, CEACAM7, NCAM, and the 
NCAM-CEA chimera NCB. SAD, small amino 
acid domain; ω, GPI anchor attachment site. 
The underlined sequences represent the key 
residues determined in this study. (B) Represen-
tation of the CEA-NCAM chimeras, with the 
GPI anchor attachment site (ω) denoted. FACS 
means in arbitrary units for cell surface levels 
of NCAM and chimeric proteins are indicated. 
(C) The chimeric constructs are GPI anchored 
on LR transfectants; Western blots of Triton 
X-100 solubility assays (top) demonstrated that 
the majority of each chimera localized in the 
pellet (P) fraction. The integrin α5 was a lysis 
and gel-loading control. The proteins were 
also PIPLC sensitive (bottom), and the percent 
decrease in surface levels are given. (D) LR 
transfectants showed increased intercellular 
adhesive ability compared with the parental 
cell line. (E) Binding of LR parental and trans-
fectant cells to immobilized Fn. (F) Binding 
of L6 transfectant cells to Fn. (E and F) Values 
represent means relative to the parental cell ± 
SEM (error bars) for three independent 
 experiments. *, P < 0.01. (G) Morphological 
differentiation of L6 parental and transfected 
myoblasts. Inset values indicate the fusion index 
expressed as a percentage. (H) Differentiated 
cultures were lysed, and 5 μg was probed for 
the biochemical differentiation marker myosin.
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In L6 myoblasts, NCB∆5 had a similar effect on binding to Fn 

compared with NCB (P < 0.005; Fig. 1 F), whereas NCB∆10 

transfectants lost this ability completely. NCB expression 

completely blocks L6 morphological differentiation, whereas 

NCAM transfectants differentiate readily to form large multi-

nucleated myotubes (Screaton et al., 2000). NCB∆5 expression 

also blocked differentiation, whereas NCB∆10-expressing cells 

fused substantially, which is comparable with the parental and 

NCAM controls (all fused between 75 and 80%; Fig. 1 G). 

NCAM and NCB∆10 transfectants up-regulated myosin, a bio-

chemical differentiation marker, but NCB and NCB∆5 transfec-

tants did not (Fig. 1 H). Thus, addition of the CEA-specifi c GPI 

anchor is determined by the residues that differ from NCB∆5 to 

NCB∆10 (GLSAG), as their substitution with the corresponding 

NCAM amino acids (SASYT) abrogated the CEA-like biologi-

cal function.

Five amino acid stretches in the CEA GPI anchor signal 

sequence were next replaced with the corresponding NCAM 

residues (Fig. 2 A). CC1-CEA (1C) chimeras were used because 

previous attempts to attach the NCAM anchor to CEA failed 

(Screaton et al., 2000), whereas the CC1-NCAM chimera (1N) 

is partially processed (Fig. 2 B), as seen previously in certain 

CC1 mutants (Naghibalhossaini and Stanners, 2004). These 

proteins were expressed at high levels with the exception of 1N 

(Fig. 2 A) and were GPI anchored (Fig. 2 B) and mediated 

strong intercellular adhesion (Fig. 2 C).

In LR cells, the expression of 1C caused a signifi cant 

 increase (P < 0.001) in cellular binding to Fn compared with 

Figure 2. Replacing fi ve–amino acid stretches in the GPI anchor signal sequence of CEA. (A) Representation of the replacement of CEA amino acids with 
the corresponding NCAM residues. Expression of the various chimeras is given in terms of FACS mean fl uorescence. (B) The CC1 chimeras were GPI 
anchored, as shown by insolubility in cold Triton X-100 (top, localization to the pellet [P] fraction). Note that the TM CC1 was found entirely in the soluble (S) 
fraction. This was confi rmed by PIPLC treatment, in which surface levels decreased after treatment (bottom), except for CC1. (C) LR transfectants aggregated 
in suspension, demonstrating that the chimeras mediate intercellular adhesion. (D) Binding of LR cells to Fn. Values represent the mean relative binding com-
pared with parental cells ± SEM (error bars) for four independent experiments (*, P < 0.001). (E) L6 transfectants showed similar effects on Fn binding as 
in LR. Values represent the mean ± SEM for fi ve independent experiments relative to parental cells (*, P < 0.0001). (F) The effects of these chimeras on 
morphological differentiation of L6 cells. Percent fusion is given in the insets. (G) Probing 5 μg of differentiated cell lysates by immunoblotting for myosin 
up-regulation.
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 parental cells (Fig. 2 D). Replacing the fi rst fi ve CEA amino 

acids (1CN5) or amino acids 11–15 (1CN15) downstream of the 

ω site resulted in proteins that were still active (P < 0.001); 

however, replacing amino acids 6–10 (1CN10) completely 

 abrogated the increased binding. In L6 cells, 1C, 1CN5, and 

1CN15 expression signifi cantly increased binding to Fn (P < 

0.001; Fig. 2 E), whereas 1CN10 transfectants bound the same 

as parental cells. Although the expression of 1CN10 was lower 

than 1C in L6 cells, 1CN5 and 1CN15 still showed increased 

binding despite having expression levels similar to 1CN10 (Fig. 

2 A). The expression of 1C, 1CN5, and 1CN15 but not 1CN10 

also strongly inhibited L6 morphological (Fig. 2 F) and bio-

chemical (Fig. 2 G) differentiation. Replacing amino acid 

stretches shorter than fi ve residues in this region had no effect 

on the binding of LR transfectants to Fn (Fig. S1 D, available 

at http://www.jcb.org/cgi/content/full/jcb.200701158/DC1). 

Therefore, these results confi rm the importance of the residues 

GLSAG in determining the addition of the CEA anchor.

It was next examined whether this sequence was suffi cient 

to confer CEA-like biological properties. CEA amino acids 

were inserted into NCAM at positions 1–5, 6–10, or 11–15 

downstream of the ω site, with NC10 containing the GLSAG 

sequence (Fig. 3 A), resulting in GPI-anchored proteins (Fig. 3 B). 

Although the proteins mediated intercellular adhesion (Fig. 3 C), 

chimera expression did not result in increased Fn binding in 

 either LR or L6 cells (Fig. 3, D and E). Differentiation of L6 

cells was not blocked because morphological (Fig. 3 F) and 

 biochemical (Fig. 3 G) differentiation was observed in these 

transfectants. Thus, inserting the sequence GLSAG into NCAM 

was insuffi cient to give CEA-like biological activities, suggesting 

a requirement for further CEA residues.

Therefore, larger amounts of the CEA-derived sequence 

were inserted into NCAM to determine the minimum sequence 

suffi cient for specifying the addition of the CEA GPI anchor 

(Fig. 4 A). All chimeras contained the GLSAG sequence, with 

variable amounts of upstream and/or downstream CEA se-

quence, and the resulting proteins were GPI anchored (Fig. 4 B) 

and mediated intercellular adhesion (Fig. 4 C). When examined 

for the effects on LR binding to Fn, adding fi ve upstream CEA 

amino acids (N∆110C) but not fi ve downstream amino acids 

(N∆615C) resulted in increased binding (P < 0.0001; Fig. 4 D). 

Simply adding one CEA residue on each side of GLSAG (PGL-

SAGA; NC7) also produced increased cellular binding, sug-

gesting, along with the N∆110C result, that the upstream proline 

was required for CEA anchor addition. This was examined 

directly by generating constructs containing only the upstream 

proline (NC6P) or the downstream alanine (NC6A; Fig. 4 A). In 

LR cells, NC6P expression increased binding to Fn, whereas 

Figure 3. Inserting fi ve–amino acid se-
quences into NCAM is insuffi cient to create a 
protein with CEA-like properties. (A) Five–
amino acid CEA sequences were inserted into 
the corresponding regions of NCAM. FACS 
means for LR and L6 transfectants are shown. 
(B) Insolubility as shown by localization to the 
pellet (P) fraction of all chimeras after cold 
Triton X-100 lysis demonstrated GPI anchorage 
(top). Cell surface levels of each protein also 
decreased after PIPLC treatment (bottom). (C) 
Adhesion assay demonstrating that these pro-
teins mediated intercellular adhesion. (D) Bind-
ing to Fn by LR transfectants. (E) L6 transfectant 
binding to immobilized Fn. (D and E) Values 
relative to parental cells represent the mean ± 
SEM (error bars) from four independent ex-
periments (*, P < 0.002). (F) Effect of chimera 
expression on L6 morphological differentia-
tion; the fusion index, which is given as a per-
centage, is also provided in the insets. (G) 
Immunoblotting on 5 μg of lysate from differ-
entiated cells to examine biochemical differen-
tiation through myosin up-regulation.
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NC6A had no effect, confi rming the importance of the proline 

(P < 0.0001; Fig. 4 D). These results were recapitulated in L6 

cells, where only transfectants of N∆110C, NC7, and NC6P 

showed a signifi cant difference in binding to Fn compared with 

the parental cell line (P < 0.0001; Fig. 4 E).

All chimeras containing the sequence PGLSAG blocked 

differentiation, whereas those lacking the proline fused similarly 

to NCAM transfectants (Fig. 4 F). Thus, inserting the sequence 

PGLSAG into the GPI anchor signal sequence of NCAM 

is suffi cient to generate a protein with CEA-like biological 

properties, demonstrating a requirement for the presence of the 

proline. In CEA and all of these NCAM chimeras, this proline 

is a part of a G(X)XP sequence (Fig. 1 A). This consensus se-

quence has been shown to result in a kink in TM helices (Cordes 

et al., 2002) and can be suggested to serve a similar function in 

this GPI anchor signal sequence. The resulting altered structure 

may be important to determine the addition of a certain functional 

anchor. However, it should be noted that the lack of the proline 

can be overcome if a suffi cient downstream CEA sequence is 

included (Fig. 1, NCB∆5).

The sequence GLSAG was also randomly scrambled to 

give sequences of ASGGL (denoted NCB-K) and SGLGA 

(NCB-S; Fig. 5 A). It was hypothesized that a complete loss of 

biological function would be observed if there was a require-

ment for a particular amino acid sequence or a particular amino 

acid at a given position, whereas at least partial function should 

be retained if the signal resulted from a general characteristic of 

this stretch. These proteins were GPI anchored (Fig. 5 B) and 

promoted intercellular adhesion (Fig. 5 C). LR transfectants of 

both chimeras signifi cantly increased binding to Fn compared 

with the NCAM cell line (P < 0.001; Fig. 5 D). However, both 

scrambled transfectants bound less than NCB, particularly 

NCB-S (P < 0.002). L6 transfectants showed altered binding 

compared with the parental cell line (P < 0.003 for NCB and 

Figure 4. The upstream proline is required to confer CEA-like properties. (A) NCAM chimeras that were used to localize the CEA-specifi c signal. Mean 
FACS surface expression is indicated for LR and L6 transfectants. (B) The chimeric constructs were GPI anchored, as shown by cold Triton X-100 insolubility 
(top) and PIPLC sensitivity (bottom). (C) LR transfectants demonstrated that all proteins had the ability to mediate intercellular adhesion. (D) Binding by LR 
transfectants to immobilized Fn, in which values represent the mean ± SEM (error bars) for at least four independent experiments. (E) L6 cells showed similar 
effects on Fn binding. Values relative to parental cells represent the mean ± SEM for at least four independent experiments. (D and E) *, P < 0.0001. 
(F) Morphological differentiation of L6 transfectants. The fusion index, which is provided as a percentage, is given in the insets.
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P < 0.05 for NCB-K and NCB-S; Fig. 5 E), although transfec-

tants of NCB-K and NCB-S again bound signifi cantly (P < 

0.05) less compared with the NCB transfectants. L6 (NCB-K) 

and L6 (NCB-S) cells differentiated substantially less than the 

parental or NCAM controls but did not show completely blocked 

morphological fusion (Fig. 5 F). Myosin up-regulation was seen 

in the NCB-K and NCB-S cell lines, which is contrary to NCB, 

although at lower levels than the NCAM transfectant (Fig. 5 G). 

Thus, scrambling this region results in an incomplete loss of 

function, indicating that the primary source of the signal is the 

overall region’s characteristics, although this signal is maxi-

mized by the sequence PGLSAG.

The signal for the addition of a GPI anchor consists of a 

set of small amino acids followed by a spacer and a hydro-

phobic region (Fig. 1 A; Coyne et al., 1993). Work on the bovine 

liver 5′-nucleotidase has demonstrated the requirement for par-

ticular lengths of both the spacer and the hydrophobic domain 

for proper processing (Furukawa et al., 1994, 1997). Differ-

ences in the effi ciency of GPI anchor addition for various signal 

sequences suggest that these stretches are not processed identi-

cally (Chen et al., 2001). However, these previous studies have 

been concerned with the effi ciency of anchor addition; this 

study is the fi rst to demonstrate that the specifi city of anchor 

addition is the result of a second signal within this sequence. 

We have previously demonstrated that the CEA GPI anchor sig-

nal sequence determines function and localization to a specifi c 

membrane raft despite being cleaved in the ER (Screaton et al., 

2000; Nicholson and Stanners, 2006). This study was designed 

to establish the residues that are critical for this specifi cation, 

with the demonstration that the amino acids PGLSAG in the 

hydrophilic region of the GPI signal sequence are necessary and 

suffi cient for this effect. The identifi ed sequence from CEA is 

fairly well conserved in CEACAM6 (PVLSAV) and CEACAM7 

(PDLSAG; Fig. 1 A), which are proteins that show similar bio-

logical effects to CEA (Rojas et al., 1996; unpublished data), 

suggesting that it may have a similar role in determining the 

function of these proteins. Because GPI anchors from fi ve other 

proteins did not show any of these effects when bound to the 

CC1 external domain (unpublished data), this amino acid set is 

quite specifi c.

This work has identified a novel signal within the GPI 

anchor signal sequence of CEA, which determines protein 

functionality. Studies using various GPI-anchored protein 

comparisons such as CEA and NCAM (Nicholson and Stanners, 

2006), Thy-1 and the prion protein (Madore et al., 1999), and 

folate receptor and placental AP (Wang et al., 2002) have sug-

gested that different GPI-anchored proteins exist in different 

microdomains on the cell surface. This distribution is important 

Figure 5. Scrambling the amino acid se-
quence in the identifi ed key region. (A) Sche-
matic of the constructs containing scrambled 
amino acids at positions 6–10, with the amino 
acid sequence shown underneath. Relative cell 
surface expression is shown. (B) GPI anchor-
age of these chimeric proteins was demon-
strated by insolubility in cold Triton X-100 
(top) and sensitivity to PIPLC treatment (bottom). 
(C) The scrambled constructs mediated inter-
cellular adhesion in LR cells. (D) Binding to Fn 
by LR transfectants of the scrambled constructs. 
Values represent the mean ± SEM (error bars) 
for four independent experiments (*, P < 
0.0005). (E) Effect of expression of the scram-
bled constructs on L6 Fn binding. Values repre-
sent the relative mean ± SEM for three 
inde pendent experiments (*, P < 0.004; **, P < 
0.03). (F) Morphological differentiation of L6 
transfectants. The fusion index, which is pro-
vided as a percentage, is given in the insets. 
(G) Bio Biochemical differentiation in terms of 
myosin production as demonstrated by West-
ern blotting on 5 μg of cellular lysate. 
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because switching the anchor and the subsequent distribution of 

NCAM to that of CEA is suffi cient to radically alter its function 

(Screaton et al., 2000; Nicholson and Stanners, 2006). This oc-

curs through association with particular rafts and their specifi c 

signaling elements, which determine the downstream tumori-

genic effects of CEA (Camacho-Leal et al., 2007). Examining 

the GPI anchor signal sequences of various other proteins 

should further elucidate the specifi city and importance of this 

signal in determining specifi c anchor addition and, ultimately, 

protein function.

It will also be important to characterize how this region is 

capable of determining the addition of a particular anchor. It is 

possible that this stretch of amino acids interacts directly with 

the GPI anchor precursor before the transamidation binding re-

action, and only combinations that match structurally proceed 

enzymatically. Alternatively, the transamidase complex, which 

is composed of fi ve different subunits, may play a direct role in 

this effect. One component, Gaa1p, has been suggested to rec-

ognize the signal sequence (Chen et al., 2003), whereas another, 

Gpi8p, functions as the enzymatic subunit (Ohishi et al., 2000). 

Either of these or one of the three complex components (PIG-S, 

PIG-T, and PIG-U) with currently unknown function could 

serve to bring together specifi c signal sequences and GPI 

anchors. This study demonstrates that a specifi c six–amino acid 

stretch of the GPI anchor signal sequence determines the addi-

tion of a particular functional anchor, which, in turn, can deter-

mine the ultimate function of the protein.

Materials and methods
Constructs
All chimeras were generated by PCR overlap extension. The ω site of 
NCAM remains unknown and was assigned to be A736 on the basis of 
 sequence alignment with chicken NCAM, in which other potential anchor 
addition sites were not conserved between humans and chickens and, as 
such, are unlikely to serve as the ω site (Screaton et al., 2000). Constructs 
were generated using NCAM, NCB, or C1-C cDNA (note that the C1-C 
used in this study did not contain the I to F point mutation described in the 
original study [Screaton et al., 2000] and was called 1C to allow for differ-
entiation between the two proteins) and the primers indicated in Table S1 
(available at http://www.jcb.org/cgi/content/full/jcb.200701158/DC1). 
Initial PCR reactions involved separate extensions using the CC1 or NCAM 
sense primer with the corresponding antisense chimera primer and the 
sense chimera primer with the antisense CEA or NCAM primer. These frag-
ments were joined by overlap PCR using the CC1 or NCAM sense primer 
and the CEA or NCAM antisense primer. The resulting NCAM-like frag-
ments were inserted into the EcoRI sites of NCAM (at positions 1,616 and 
2,794) in the p91023b expression vector. The C1-C chimeras replaced the 
corresponding sequence in C1-C using the internal CC1 BamHI digestion 
site (at position 971) and the BamHI digestion site located in the polylinker 
region of the vector pEGFP-C2 (used as a cloning vector; BD Biosciences) 
and were subcloned into p91023b using fl anking EcoRI sites.

Cell culture, FACS analysis, and transfection
CHO-derived LR-73 fi broblasts and rat L6 myoblasts were cultured as previ-
ously described (Nicholson and Stanners, 2006). Cell surface protein ex-
pression was determined by FACS analysis using the mouse mAbs J22, 
which recognizes CEA and CC1 (Zhou et al., 1993), and 123C3 (Santa 
Cruz Biotechnology, Inc.), which recognizes the NCAM external domain. 
Transfection and sorting for high expression was performed as previously 
described (Nicholson and Stanners, 2006).

Differentiation assays
L6 myoblasts were seeded at 104 cells/cm2 in 60-mm dishes in medium con-
taining 10% FBS on day 0. 3 d later, the culture medium was changed to 2% 
horse serum. Myogenic differentiation was assayed 5 d after changing 

media either by staining with hematoxylin (Sigma-Aldrich) to assess fusion 
into multinuclear myotubes by light microscopy (Screaton et al., 2000) or by 
lysing cells and performing Western blots for myosin expression using mouse 
mAb 47A (De Giovanni et al., 1993). Photomicrographs of representative 
fi elds of stained cells were obtained at room temperature using a microscope 
(Eclipse E800; Nikon) and a 10× NA 0.30 Ph1 ∞/0.17 objective. Images 
were acquired with a digital camera (DXM1200; Nikon) and ACT-1 image 
acquisition software (Nikon). The fusion index was determined by counting 
the number of nuclei present in fused myotubes (taken as cells with three or 
more nuclei) and comparing this to the total number of nuclei in the fi eld.

Triton X-100 solubility and PIPLC sensitivity assays
Assays were performed essentially as described previously (Screaton 
et al., 2000). For Triton X-100 solubility, cells were collected with PBSCE 
and resuspended in cold 1% Triton X-100 with protease inhibitors. Cells 
were syringed through a 27-gauge needle, incubated on ice for 15 min, 
and centrifuged at 13,000 g for 15 min. The supernatant fraction was re-
moved, and the pellet was resuspended in the same volume as the super-
natant. Partitioning between pellet and soluble fractions was assessed by 
immunoblotting; integrin α5 should be found in the supernatant (soluble) 
fraction and was used as a lysis control, with detection by a rabbit poly-
clonal anti-α5 (H-104; Santa Cruz Biotechnology, Inc.). For PIPLC sensi-
tivity, monolayer cultures were incubated with 0.1 U bacterial PIPLC 
(Sigma-Aldrich) in a 1:1 solution of DME/PBS containing 0.2% BSA for 
45 min at 37°C. Treated and control untreated cultures were then washed 
with PBS, rendered single-cell suspensions by light (0.063%) trypsin treat-
ment, and were processed for FACS analysis. Percent sensitivity was deter-
mined as the percent decrease in mean fl uorescence value (relative units) 
in the treated sample compared with the untreated control.

Adhesion assays
Adhesion assays were performed as previously described (Zhou et al., 
1993). Cells were removed from culture fl asks by light trypsin treatment 
(for CC1 external domain chimeras, which are insensitive to trypsin) or PBS 
citrate + 4 mM EDTA (PBSCE; for NCAM external domain chimeras, which 
are cleaved by trypsin) and resuspended at a concentration of 106 cells/ml 
in α-MEM containing 0.8% FBS and 10 μg/ml DNase I (Roche). Single-cell 
suspensions were obtained by syringing through a 27-gauge needle and 
were allowed to aggegrate at 37°C with stirring at 100 rpm using a mag-
netic stirring bar (Spinbar Micro Stir Bar; VWR International). Aliquots 
were removed at the indicated times, and the percentage of single cells 
was determined by a hemocytometer (Bright-Line; VWR International).

Fn-binding assay
Assays were performed essentially as previously described (Nicholson and 
Stanners, 2006). Cells were resuspended at a concentration of 4 × 105 
cells/ml for LR or 2 × 105 cells/ml for L6. 100 μl of this suspension was 
added to Fn-coated plates (Chemicon international) and incubated for 1 h 
at 37°C. Adherent cells were stained with crystal violet, and the optical 
density was determined with a plate reader (PowerWave; Bio-Tek Instru-
ments) at 570 nm. Note that in certain cases for L6 cells, depending on the 
particular experiment, integrin activation resulted in decreased cellular 
binding to Fn, which is likely the result of the previously described integrin 
activation-dependent formation of a cocoon of polymerized Fn around the 
cells (Ordonez et al., 2007). However, the relative difference between pa-
rental cells and activated transfectant cells remained in the inverse sense, 
so data is presented for ease of interpretation as an increase in all cases. 
Statistical signifi cance was determined using the t-test (http://www.physics
.csbsju.edu/stats/t-test_bulk_form.html).

Immunoblotting
Cellular lysates were resolved by SDS-PAGE and transferred to a 0.45-μm 
polyvinylidene difl uoride membrane (Millipore). Antibody binding was 
 detected using the ECL Plus chemiluminescent reagent (GE Healthcare).

Online supplemental material
Table S1 contains the nucleotide sequences of the primers used to generate 
the chimeras. Fig. S1 demonstrates that replacing less than fi ve CEA amino 
acids in the region 6–10 is insuffi cient to cause a complete loss of biological 
function. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200701158/DC1.
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