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Abstract: Oxylipins are metabolized from dietary ω3 and ω6 polyunsaturated fatty acids and are
involved in an inflammatory response. Adipose tissue inflammatory background is a key factor
of metabolic disorders and it is accepted that dietary fatty acids, in terms of quality and quantity,
modulate oxylipin synthesis in this tissue. Moreover, it has been reported that diet supplementation
inω3 polyunsaturated fatty acids resolves some inflammatory situations. Thus, it is crucial to assess
the influence of dietary polyunsaturated fatty acids on oxylipin synthesis and their impact on adipose
tissue inflammation. To this end, mice fed an ω6- or ω3-enriched standard diet (ω6/ω3 ratio of
30 and 3.75, respectively) were analyzed for inflammatory phenotype and adipose tissue oxylipin
content. Diet enrichment with anω3 polyunsaturated fatty acid induced an increase in the oxylipins
derived from ω6 linoleic acid, ω3 eicosapentaenoic, and ω3 docosahexaenoic acids in brown and
white adipose tissues. Among these, the level of pro-resolving mediator intermediates, as well as
anti-inflammatory metabolites, were augmented. Concomitantly, expressions of M2 macrophage
markers were increased without affecting inflammatory cytokine contents. In vitro, these metabolites
did not activate macrophages but participated in macrophage polarization by inflammatory stimuli.
In conclusion, we demonstrated that an ω3-enriched diet, in non-obesogenic non-inflammatory
conditions, induced synthesis of oxylipins which were involved in an anti-inflammatory response as
well as enhancement of the M2 macrophage molecular signature, without affecting inflammatory
cytokine secretion.
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1. Introduction

ω6 linoleic acid (LA), a precursor of dihomo-γ-linolenic acid (DGLA) and arachidonic acid
(ARA), andω3 α-linolenic acid, a precursor of eicosapentaenoic (EPA) and docosahexaenoic (DHA)
acids are essential polyunsaturated fatty acids (PUFAs) only supplied by food. These PUFAs are
required for healthy development from embryonic steps to adult life and are involved in a variety
of biological processes, especially, in adipose tissue [1,2]. It is now well accepted that insufficient
intakes of ω3 PUFAs, as well as an excess of ω6 PUFAs, correlate with various diseases; especially,
metabolic diseases [3–5]. For example, ARA intake correlates positively with being overweight/obese,
inflammatory diseases, and associated metabolic syndrome [6–10]. Indeed,ω6 oxylipins (oxygenated
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derivatives of PUFAs) are known to favor inflammatory responses [11], as well as to promote energy
storage [12] and to inhibit energy expenditure [13,14]. The dietary ω6/ω3 PUFAs ratio is more
important than the total amount of PUFA intake as it determines the level of synthesizedω6-derived
oxylipins. Indeed,ω3 PUFAs modulateω6-derived oxylipins synthesis [15]. Mechanistically this is
characterized by (i) the capacity ofω6 andω3 PUFAs to compete at the level of lipoxygenase (LOX)
and cyclooxygenase (COX), their two major metabolization pathways and ii) the capacity of various
ω3 PUFAs to inhibit these pathways.

The increase in the number of overweight or obese people has reached an epidemic stage in the
21st century. More than 2 billion adults are overweight (body mass index (BMI) > 25 kg/m2) and
at least 600 million are clinically obese (BMI > 30 kg/m2). Obesity and being overweight are the
consequences of a positive energy balance that leads to an increase in the mass of subcutaneous and
visceral white adipose tissue. White adipocytes are storing energy under the form of triglycerides
whereas brown adipocytes dissipate energy from triglycerides by producing heat (=thermogenesis).
In addition, white and brown adipocytes are able to secrete molecules acting on their environment, and
especially, on immune cells [16]. For example, white adipocytes secrete adipokines (e.g., adiponectin)
and pro-inflammatory factors (e.g., PAI-1, MCP-1, or IL-6) which are able to recruit and activate
macrophages [17]. Furthermore, it has also been shown that the white adipose tissue of obese subjects
is characterized by low-grade inflammation that can lead to metabolic disorders such as insulin
resistance [18]. This inflammation, characterized by an increase in inflammatory markers such as
TNFα, PAI-1, or interleukins 1 and 6 (IL-1, IL-6), promotes the macrophage infiltration of adipose
tissue and the polarization of macrophages of the alternative M2 type in classic pro-inflammatory M1
type [19].

The macrophages respond to environmental cues by acquiring specific functional phenotypes.
Pro-inflammatory M1 macrophages are involved in the fight against many infections. They are
activated by Toll-like receptor (TLR) ligands such as lipopolysaccharide and saturated fatty acids,
but also by IFNγ and TNFα. They participate in the inflammatory environment by secreting many
cytokines such as IL-1, IL-6, IL-12, IL-23, and TNFα, and by participating in the chemo-attraction of
other immune cells [20]. M2 macrophages are more heterogeneous at functional and secretory levels.
Considered as anti-inflammatory or inactive, they normally reside in tissues and are involved in tissue
homeostasis by participating in the remodeling, repair, and activation of certain metabolic functions.
They can be activated by cytokines such as IL-4, IL-10, and IL-13, but also by more specific signals
from the tissue environment [21].

The accumulation of immune cells, especially that of macrophages, as well as their inflammatory
phenotype, affect adipose tissue homeostasis and, more specifically, the recruitment and function of
adipocytes in white and brown adipose tissues [16]. It has been shown that TNFα secreted by M1
macrophages inhibited adipocyte differentiation [22] and that IL-1β blocked insulin signaling [23],
thus favoring insulin-resistance. Recently, it has also been shown that IL-1β and TNFα can affect the
thermogenic function of brown adipocyte [24–26]. These inflammatory cytokines thus participate
in the deregulation of tissue homeostasis by limiting its ability to dissipate an excessive supply of
substrate in the form of heat. On the contrary, it was shown that M2 macrophages, via the secretion of
factors such as IL-4 or IL-13 favored the formation of brown adipocytes and their activation [27,28].
In addition, immune cells can modulate insulin sensitivity and local secretion of catecholamines [29].
This secretion, that represents the preferential inducer of lipolysis and thermogenesis through the
activation of the β-adrenergic pathway, appears to be crucial during prolonged exposure to cold or
aging [28,30].

Similarly to adipokines, the oxygenated derivatives of ω6 PUFAs such as the n-2 series
prostaglandins or the n-4 series leukotrienes, which are synthesized and secreted by adipocytes,
participate in the inflammatory state of the tissue [31,32]. Furthermore, adipocytes are able to
metabolizeω3 PUFAs, in the same way asω6, to produce oxygenated anti-inflammatory derivatives
such as n-3 series prostaglandins (PG), n-5 series leukotrienes (LT), as well as resolvins (Rv) and
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protectins (PD) [32]. For example, the administration ofω3 PUFAs to obese mice as well as resolvin D1
(RvD1), an oxygenated derivative of DHA, limits macrophage infiltration, favors their polarization
toward the M2 phenotype, and rescues adipocyte metabolic dysfunction [33,34]. Thus, ω6- and
ω3-derived oxylipins are able to modulate the inflammatory phenotype of immune cells, especially
macrophages [11,35]. As dietary ω6 and ω3 PUFAs directly affect the quality and the quantity of
oxylipins synthesized and secreted by the adipocytes, it is of high interest to characterize the impact of
ω3 PUFA diet supplementation on the inflammatory state of adipose tissue.

2. Materials and Methods

2.1. Reagents

Culture media and buffer solutions were purchased from Lonza (Ozyme, St-Quentin en Yvelines,
France), fetal bovine serum (FBS) from Eurobio (Courtaboeuf, France), insulin and trypsin from
InVitrogen (Cergy Pontoise, France). Oxylipins and inhibitors were purchased from Cayman
(BertinPharma, Montigny le Bretonneux, France). Other culture reagents were from Sigma-Aldrich
Chimie (Saint-Quentin Fallavier, France).

2.2. Animals and Diets

The experiments were conducted in accordance with the French and European regulations
(Directive 2010/63/EU) for the care and use of research animals and were approved by national
experimentation committees (MESR 01947.03). Ten-week-old C57BL/6J male mice from Janvier
Laboratory (France) were maintained at thermoneutrality (28 ± 2 ◦C) and 12:12-h light-dark cycles,
with ad libitum access to food and water to not hide any behavioral modification. Mice were fed for
12 weeks with isocaloric isoenergetic (3.2 kCal/g–13.5 kJ/g) ω6- or ω3-enriched diets (12% energy
content as lipids). The diets were prepared by Harlan (WI, USA) from standard chow diets (reference
number 2016) by the addition of specific fatty acid ethyl-esters from NuChekPrep (Elysian, MIN, USA).
Detailed compositions are displayed in Table 1. Blood, interscapular brown adipose tissue (iBAT),
epididymal (eWAT), and inguinal subcutaneous (scWAT) white adipose tissues were sampled and
used for different analyses.

Table 1. Diet compositions.

ω6-Enriched Diet ω3-Enriched Diet

Protein [% by weight] 16
Carbohydrate [% by weight] 52

Fat [% by weight] 5
Saturated fatty acids (FAs) [% of total FAs] 12

Monounsaturated FAs [% of total FAs] 26 14
Polyunsaturated FAs [% of total FAs] 62 74

Linoleic acid [% by weight] 3
α-linolenic acid [% by weight] 0.1 0.64

EPA [% by weight] - 0.08
DHA [% by weight] - 0.08
ω6/ω3 PUFA ratio 30 3.75

2.3. Cell Culture

THP-1, a human pro-monocytic cell line, was cultured in RPMI GlutaMax medium, supplemented
with 10% FBS and 10 mM sodium pyruvate, at 37 ◦C and 5% CO2. Differentiation in macrophages-like
cells was induced by treatment with 20 nmol/L phorbol 12-myristate 13-acetate (PMA) for 72 h.
Then, media were replaced and polarization was induced for 48 h either with lipopolysaccharides
(LPS, 100 ng/mL) for M1 like-phenotype or with IL-4/IL-10 (10 ng/mL each) for M2 like-phenotype
acquisition. Treatments with a LOX inhibitor (=carnosic acid (CA), 10 µM), and/or with 9-HODE and
13-HODE (50 nmol/L + 50 nmol/L), were performed during the 48 h polarization step.
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2.4. Oxylipin Quantification

For quantification of unesterified oxylipins, tissues were snap-frozen with liquid nitrogen
immediately after retrieval and stored at −80 ◦C. Extraction and analysis by mass spectrometry
were performed at METATOUL platform (MetaboHUB, INSERM UMR 1048, I2MC, Toulouse, France)
as previously described [13,36].

2.5. Cytokine Quantification

For blood analysis, plasmas were diluted twice and analysis following manufacturer’s instructions
using the mouse V-PLEX Proinflammatory Panel 1 Kit (Meso Scale Discovery, # K15048D) on a
QuickPlex SQ 120 apparatus (Meso Scale Discovery).

For tissue analysis, proteins were extracted from frozen organs using an ULTRA TURRAX T25
(Ika, Germany) and lysis buffer (25 mM Tris-Cl (pH 7.4), 100 mM NaCl, 1 mM EDTA, 1% Triton X-100,
0.5% Nonidet P40 and protease inhibitors (Roche Diagnostics, Meylan, France)). Protein concentration
was evaluated by BCA assay (Sigma-Aldrich Chimie, Saint-Quentin Fallavier, France). 10 µg proteins
were used to evaluate cytokine concentration using the same kit and apparatus as those used for blood
cytokine analysis.

2.6. Histology

Freshly sampled tissues were fixed in 4% paraformaldehyde overnight at RT and then
paraffin-embedded. Embedded tissues were cut into 5-µm sections and dried overnight at 37 ◦C.
For immunohistochemistry, sections were then deparaffinized in xylene, rehydrated using alcohol,
and washed in phosphate-buffered saline (PBS).

For histology analysis, sections were stained with hematoxylin-eosin and mounted in Mowiol.
For immunohistochemistry analysis, antigen unmasking was performed in boiling citrate buffer

(10 mM, pH 6.0) for 6 minutes. Sections were then permeabilized in PBS with 0.2% Triton X-100
at room temperature for 20 minutes and blocked in the same buffer containing 3% BSA for 30 min.
Sections were co-incubated with rat anti-F4/80 antibody (Biorad, clone Cl:A3-1, dilution 1:100) and
rabbit anti-Arginase-1 (ThermoFisher Scientific, #PA5-29645, dilution 1:100) overnight at 4 ◦C.

Following a 30-min incubation with biotinylated anti-rat and TRITC-coupled anti-rabbit
secondary antibodies, the sections were incubated for another 30 min at room temperature with
avidin–biotin complex (Vector Lab, VECTASTAIN ABC Kit, PK-4000), and were then labeled with
3,3′-diaminobenzidine solution (Vector Lab, DAB, SK-4100). Nuclear staining was performed with
DAPI and sections were mounted in Mowiol.

Visualization was performed with an Axiovert microscope. Pictures were captured using
AxioVision software (Carl Zeiss, Jena, Germany).

2.7. Isolation and Analysis of RNA

Procedures follow MIQE recommendations [37]. Total RNA was extracted using a TRI-Reagent
kit (Euromedex, Souffelweyersheim, France) according to the manufacturer’s instructions. For RNA
isolation from organs, tissues were homogenized in TRI-Reagent using a dispersing instrument
(ULTRA TURRAX T25). A reverse transcription-polymerase chain reaction (RT-PCR) was performed
using M-MLV-RT (Promega). SYBR qPCR premix Ex TaqII from Takara (Ozyme, France) was used
for quantitative PCR (qPCR), and assays were run on a StepOne Plus ABI real-time PCR machine
(PerkinElmer Life and Analytical Sciences, Boston). The expression of selected genes was normalized
to that of the TATA-box binding protein (TBP) and 36B4 housekeeping genes and then quantified using
the comparative-∆Ct method. Primer sequences are available upon request.
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2.8. Statistical Analysis

Data were expressed as mean values ± standard error of the mean (SEM). Data were analyzed
using InStat software (GraphPad Software) by one-way ANOVA followed by a Mann-Whitney
(for in vivo experiments) or a Student-Newman-Keuls (for in vitro experiments) post-test to assess
statistical differences between experimental groups. Differences were considered statistically
significant with p < 0.01.

3. Results

3.1. Impact of ω3 PUFA Supplementation on General Parameters of Mice

3.1.1. General Metabolic Parameters

Ten-week-old male mice were fed for 12 weeks with an isocaloric isoenergetic standard diet
enriched inω6 PUFAs (ω6-enriched diet, ω6/ω3 = 30), or supplemented withω3 PUFAs (ω3-enriched
diet, ω6/ω3 = 3.7), see Table 1. Mice were housed at 28 ◦C, near thermoneutrality, in order to
limit energy expenditure due to thermogenic metabolism and to avoid any effect of this activity
on inflammatory response, as demonstrated previously [38].

Mice body weight, see Figure 1a, as well as food intake (ω6-enriched diet, 4.49 g/day;ω3-enriched
diet, 4.46 g/day per mouse) were similar between the two groups. Epididymal white adipose tissue
mean weight, see Figure 1b, and fed glycaemia, see Figure 1c, were not different after 12 weeks of
the diets. Altogether, these results indicated that the ω6/ω3 ratio of a standard diet, equilibrated in
carbohydrate, protein, and fat quantities (respectively, 20.1%, 65.4%, and 14.5% of energy supply), did
not modify general metabolic parameters of mice.
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Figure 1. Mice general metabolic parameters. (a) Mouse body weight, (b) epididymal white adipose
tissue weight, and (c) blood glycaemia evaluated after 12 weeks ofω6- orω3-enriched diet. Results are
displayed as independent mouse values (dots) and mean ± SEM (histograms). n = 12.

3.1.2. Plasmatic Inflammatory Phenotype

To characterize the systemic inflammatory effect of a PUFA-enriched diet, we evaluated the blood
circulating level of a panel of cytokines, see Figure 2.
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Figure 2. Analysis of blood cytokines. Results are displayed as independent mouse values (dots) and
mean ± SEM (histograms). n = 8. *, p < 0.01.

As expected, the level of most of the pro-inflammatory and anti-inflammatory cytokines was
unchanged between the two groups of mice. Only TNFα (pro-inflammatory cytokine) and IL-4
(anti-inflammatory cytokine) levels slightly but significantly decreased in mice fed anω3-enriched diet.

3.1.3. Impact ofω3 PUFA Supplementation on Adipose Tissue Oxylipin Content

To investigate the modification induced by the two different diets within adipose tissues, we
quantified the levels of 33 PUFA-metabolites within iBAT, see Figure 3, and scWAT, see Figure 4, of
mice. These oxylipins were analyzed by groups following their PUFA origin, see Figures 3a and 4a, or
separately, see Figures 3b and 4b. In the iBAT, ω3 PUFA supplementation led to a significant increase
of the oxylipins deriving from ω3 PUFAs EPA (PGE3, LTB5, 18-HEPE) and DHA (RvD2, RvD1, MaR1,
PDx, 17-HDoHE, 14-HDoHE), but did not affectω6-derived metabolites (6kPGF1a, TxB2, 11B-PGF2a,
PGF2a, PGE2, PGD2, 8isoPGA2, 15dPGJ2, LxB4, LxA4, LTB4, 5,6-DiHETE, 15-HETE, 8-HETE, 12-HETE,
5-HETE, 5oxoETE, 14,15-EET, 11,12-EET, 8,9-EET, 5,6-EET derived from ARA; 13-HODE, 9-HODE
derived from LA), see Figure 3a.

In scWAT, while similar results were found for ω3 PUFA-derived and ARA-derived oxylipins,
LA-derived metabolites were highly increased, as shown in Figure 4a.

LA and ω3-PUFA derived oxylipins are considered as anti-inflammatory and pro-resolving
mediators, especially through the modulation of macrophage function. Along with these oxylipins, we
have found that 14- and 17-HDoHEs and 18-HEPE levels were increased in iBAT and scWAT of mice
fed theω3-enriched diet, and 9- and 13-HODEs were increased only in scWAT, see Figures 3b and 4b.
14- and 17-HDoHE are metabolized in pro-resolving mediators as RvD1, RvD2, Mar1, PDx, and PD1,
while 18-HEPE leads to RvE1 synthesis. It is interesting to note that these final metabolites were barely
(PDx) or not detected within the tissue, see Figures 3b and 4b.
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Figure 3. Quantities of oxylipins derived from dietary polyunsaturated fatty acids (PUFAs) in
interscapular brown adipose tissue (iBAT). (a) Quantities of oxylipins derived from arachidonic acid
(ARA) and linoleic acid (LA) ω6 PUFAS or eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA) ω3 PUFAs. (b) Quantities of oxylipins considered as anti-inflammatory or pro-resolving
mediator intermediates. Results are displayed as independent mouse values (dots) and mean ± SEM
(histograms). n = 8. *, p < 0.01.
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Figure 4. Quantities of oxylipins derived from dietary PUFAs in inguinal subcutaneous white
adipose tissues (scWAT). (a) Quantities of oxylipins derived from ARA and LA ω6 PUFAS or EPA
and DHA ω3 PUFAs. (b) Quantities of oxylipins considered as anti-inflammatory or pro-resolving
mediator intermediates. Results are displayed as independent mouse values (dots) and mean ± SEM
(histograms). n = 8. *, p < 0.01.
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3.2. Effect on Inflammatory Phenotype of Adipose Tissue

3.2.1. Histology and Cytokine Content

The histological analysis of iBAT and scWAT, see Figure 5a, revealed neither cell infiltration nor
crown structure that were typical of an adipose tissue inflammatory response in both groups of mice.
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(a) Hematoxylin and eosin staining of tissue sections. (b) Analysis of adipose tissue cytokine levels.
Results are displayed as independent mouse values (dots) and mean ± SEM (histograms). n = 6.
*, p < 0.01.
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In the same way, analysis of the iBAT and scWAT cytokine contents showed similar levels of both
pro- and anti-inflammatory cytokines in the two groups of mice, as shown in Figure 5b.

3.2.2. Expression of Inflammatory Markers

As we did not find any modulation of cytokine levels, we analyzed marker expression of
specialized macrophages to evaluate the inflammatory background of the tissue, see Figure 6.Nutrients 2019, 10, x FOR PEER REVIEW  10 of 18 
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Figure 6. Macrophage marker expression in adipose tissue of mice submitted toω6- orω3-enriched
diet. mRNA level analysis of general (CD11c, CD11b), M1 (TNFα, IL-1β, IFNγ, IL-6) and M2 (IL-1RA,
IL-10, MRC1, FIZZ1, MGL2, ARG1, YM1) macrophage markers in (a) iBAT and (b) scWAT. Histograms
display mean ± SEM. n = 12. *, p < 0.01.

The analysis of macrophage markers in iBAT derived from the ω3-enriched diet group, see
Figure 6a, revealed an increase in CD11b (or ITGAM, integrin αM) and CD11c (or ITGAX, integrin αX)
mRNA expression, concomitantly to an increase in major M2 macrophage markers, namely MRC1
(mannose receptor 1), FIZZ1 (found in inflammatory zone 1 or RELMα), and MGL2 (macrophage
galactose N-acetyl-galactosamine specific lectin 2). No change was found for other M2 macrophage
markers or for M1 macrophage markers. To note, ARG1 (arginase 1) and Ym1 (chitinase 3-like 3) were
either barely detected or undetected in this tissue.

The analysis of the scWAT, see Figure 6b, fromω3-supplemented mice, showed an increased the
expression of the M2 macrophage markers MRC1 and FIZZ1 (not MGL2), but no increase of CD11c
(CD11b was undetected). In contrast to iBAT, our data revealed an increase of ARG1 mRNA expression
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and the induction of YM1 mRNA expression. Finally, as for iBAT, no change was found for mRNA
expression of M1 macrophage markers.

Altogether, these results demonstrated that anω3-enriched diet led to a general increase in M2
anti-inflammatory macrophage marker expression without modification in M1 pro-inflammatory
markers. This was correlated and perhaps due to the increased amount of substrates for pro-resolving
mediator synthesis, as well as an increased quantity of M2 polarizing oxylipins.

3.3. Effect of Potential Anti-Inflammatory Oxylipins Modified in an ω3-Enriched Diet on THP1
Monocyte Cells

The oxylipins 9- and 13-HODEs (LA-derived oxylipins metabolized by LOX) are not known
to be precursors of pro-resolving mediators but display high contents in iBAT, see Figure 3b, and
scWAT, see Figure 4b, and are strongly increased in scWAT after the implementation of anω3-enriched
diet. In order to investigate the role of 9- and 13-HODEs on macrophage polarization, we used
THP-1 macrophage cell lines activated in pro-inflammatory M1 (LPS 100 ng/mL, Figure 7a) or
anti-inflammatory M2-like phenotype (IL4 + IL-10 10 ng/mL each, Figure 7b). THP-1 cells were
treated with 9- and 13-HODEs (9/13-HODEs, 50 nmol/L each) or with carnosic acid (CA, 10 µM), a
lipoxygenase inhibitor [39], or a combination of both.
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Figure 7. Macrophage marker expression in THP-1 cells under 9- and 13-HODE treatment. mRNA
level analysis by RT-qPCR of M1 (TNFα, IL-1β) and M2 (MRC1, TGM2) macrophage markers in control,
lipopolysaccharides (LPS) (upper panel) or IL-4/IL-10 (lower panel) treated THP-1 macrophages. Cells
were co-treated for 48 h with carnosic acid (CA, 10 µM) and or 9- and 13-HODEs. (a) CA treatment
induced opposite effects in M1- and M2-like macrophages as it increased inflammatory markers in
THP-1 M1-like macrophages, and (b) decreased M2-like macrophages’ markers. Histograms display
mean ± SEM. n = 3. *, p < 0.01 vs. ctrl and $, p < 0.01 vs. CA.
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None of the treatments modulated non-polarized THP-1, see Figure 7. Treatment with
9/13-HODEs alone showed no effect on macrophages’ M1-like phenotype but increased TGM2
expression on M2-like macrophages. Remarkably, CA treatment induced opposite effects in M1-
and M2-like macrophages as it increased inflammatory markers in THP-1 M1-like macrophages, see
Figure 7a, and decreased M2-like macrophages’ markers, see Figure 7b. Interestingly, 9/13-HODEs
supplementation reversed CA effects, see Figure 7.

4. Discussion

Dietary fats are the source of essential PUFAs that are required for fetal and newborn development
and trigger a variety of biological responses in adults, especially, in adipose tissue. New dietary
recommendations warn against the insufficient intake ofω3 PUFAs and the excess ofω6 PUFAs which
correlate with various disease developments [3,4]. In the first year of life, a high dietary ω6/ω3 ratio is
positively associated with adiposity of infants [40–42]. In the same way, in adults, a high ω6/ω3 ratio
can correlate to an increase of fat mass and the development of metabolic complications [6–10].

Conversely, it has been described that a low ω6/ω3 ratio seems to be correlated with metabolic
disorder protection in different populations [43]. On a metabolic point of view, diets exhibiting a high
ω6/ω3 ratio allow a higher ARA bioavailability for the synthesis ofω6-derived eicosanoids due to an
insufficient compensatory effect of EPA and DHA [15]. Indeed, bothω6 andω3 PUFAs are metabolized
using the same enzymatic pathways. First, LA and LNA are modified by common ∆-desaturases
and elongases [44]; then, their metabolites, i.e., ARA, DGLA, EPA, and DHA, are metabolized in
oxygenated derivatives also using common pathways involving cyclooxygenases, lipoxygenases, and
CYP450 enzymatic reactions. Here, we provided evidence that, compared to a high ω6/ω3 PUFA ratio,
an equilibrated ratio of four allows the synthesis of LA and EPA/DHA oxylipins instead of ARA
oxylipins. As LA and LNA use a common pathway (∆-desaturase) to be transformed, respectively, into
DGLA/ARA and EPA/DHA, we hypothesize that LNA supplementation could limit LA desaturation
and thus increase LA bioavailability and metabolization in oxylipins through the LOX pathways. Thus,
these competitive phenomena, in addition to dietary intake, determine PUFA availability in oxylipins
synthesis and, in turn, their various metabolic effects, especially for inflammatory responses [45].

It has already been described in rodents that an increase of white adipose tissue mass can be
related to an ω6 PUFA-enriched high-fat diet and can be prevented by ω3 PUFA supplementation [12,
46]. It is suggested that this could only be due to a specific subset of ω3 PUFA such as EPA [47].
Moreover, eicosanoids derived from ω6 PUFA inhibit adipocyte thermogenic activity both in vitro
and in vivo [11,13,48]. We and others demonstrated previously, using the same nutritional approach
as in the present work, that anω3 PUFA diet supplementation improved the thermogenic adipocyte
function by promoting a more oxidative phenotype in response to β-adrenergic stimulation [14,49].
In the present study,ω3 PUFA supplementation does not induce any change in body mass, glycaemia,
or white and brown adipose tissue morphologies since the mice were fed diets with normal fat content
and did not receive any β-adrenergic challenge.

Most studies concerning ω3 PUFA supplementations were carried out in a context of
obesity (high-fat diet) or infection (LPS treatment) and demonstrate a positive effect of ω3 PUFA
supplementation on the analyzed parameters [35]. Nevertheless, other studies demonstrate the
inability of ω3 PUFAs to modulate inflammation after LPS treatment [50] or in obese mice [51,52].
These discrepancies are essentially due to the differences in the experimental approaches (diet
composition, mouse strain, challenge . . . .) and in the analyzed parameters (cytokine concentration,
mRNA expression, histology . . . ). In humans, several experimental approaches have tried to link
an ω3 PUFA intake to inflammatory response, again with inconsistent conclusions. For example, a
one-year dietary supplementation in ω3 PUFA does not modify the circulating cytokine levels in
healthy volunteers [53]. Conversely, other studies show a decrease of blood inflammatory markers
afterω3 PUFA supplementation [54,55]. It is important to note that a plasma inflammatory mediator
profile seems to be less representative compared to the one of adipose tissue [56]. The same discrepancy
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is found for studies analyzing adipose tissue inflammation. Although one human trial (4g ω3
PUFAs/day; 12 weeks) on insulin-resistant adults demonstrates a decrease in the crown-like structure
number [57], corresponding to phagocytic activity of macrophage on adipocyte, another trial on
the same type of patients (4.2g ω3 PUFAs/day; 6 months) demonstrates no effect of ω3 PUFA
supplementation on the same parameter [58]. Moreover, a recent paper establishes that the oxylipin
profile in rat adipose tissue after dietary ω3 PUFA supplementation (ratio ω6/ω3 of 0.6) is dependent
of (i) the kind ofω3 PUFA used, (ii) the kind of adipose tissue analyzed, and (iii) the sex [59].

In view of these heterogeneities, we decided to analyze the effect of PUFA intake in normal
physiological conditions (thermoneutrality, no β-adrenergic challenge) using an isocaloric, isoenergetic
standard diet supplemented with ethyl esters of fatty acids (instead of classic oil supplementation)
and various technical approaches to characterize the inflammatory profile. With this strategy, we
characterize fatty acid metabolism within subcutaneous and brown adipose tissues and the related
inflammatory phenotype. Our results linking ω3 PUFA supplementation and M2 macrophage are
in line with other studies, such as a recent one demonstrating that (i) treatment of human adipose
tissue explants withω3 PUFAs lead to an anti-inflammatory phenotype characterized by a decrease
of M1 marker expression, and (ii) treatment of THP-1 cells increased expression of M2 markers [60].
In the same way, DHA supplementation in a high-fat diet context promotes mRNA expression of
M2 markers within white adipose tissue without affecting the total macrophage number [61]. In this
study, the authors describe the same effect for RvD1, DHA metabolites, and conclude that DHA leads
to an anti-inflammatory phenotype via RvD1 synthesis. Unfortunately, they never quantify RvD1
production in vivo and thus do not link DHA supplementation to RvD1 synthesis [61]. In our study,
we have not been able to detect resolvins but only their substrates. We assume that without a specific
inflammatory signal, intermediates of pro-resolving mediators are synthesized but not metabolized.
Indeed, these mediators are involved in the resolution of inflammation and appeared late in the process
as they are not required before, differently to prostaglandins and leukotrienes which appear early [62].

In our study, we measure a defined set of oxylipins. Even if this panel includes oxylipins
deriving from all pathways and PUFAs, we cannot exclude that unmeasured oxylipins triggered the
anti-inflammatory effect of ω3 PUFA supplementation found in our model. In this way, epoxide
and diol metabolites derived from CYP epoxygenase/soluble epoxide hydrolase activity [63], as well
as endocannabinoids, are known and interesting potential mediators of the inflammatory effect of
PUFA [64]. In addition, the esterification of oxylipins, especially of eicosanoids, was described as
an active and major mechanism in various cell biological responses including inflammation [65].
These esterified oxylipins can represent the majority of cell oxylipins and can be hydrolyzed from
the membrane under specific stimuli [66]. In this way, it could be interesting to quantify all oxylipins
(unesterified and esterified) in adipose tissue underω3 PUFA diet supplementation and to evaluate
their hydrolysis under inflammatory conditions. Nevertheless, our unexhaustive analysis allowed a
correlation between the synthesis of several oxylipins and the expression of M2 macrophage markers.
We propose that 9- and 13-HODEs could drive this effect. In our in vitro results on the THP-1 cell
line, we demonstrate that 9- and 13-HODEs are not enough to directly drive the polarization of THP-1
macrophage but are required to maintain the phenotype. Indeed, their supplementation restores control
level expression of M1-like and M2-like markers after CA treatment. Moreover, 9- and 13-HODEs seem
to play a role in the anti-inflammatory effects since they are able to increase M2 markers such as TGM2.
These results are consistent with some studies describing 9- and 13-HODEs as known mediators of
macrophage polarization [67] in a PPARγ-dependent manner [68]. Of course, other oxylipins could be
involved in the anti-inflammatory environment found in our mice. For example, the study of Fat-1
mouse, which is able to synthesizeω3 PUFAs itself, displays a lowered inflammatory environment
induced by obesity, correlatively to 17-HDoHE synthesis [69]. In addition to oxylipins involvement,
we cannot exclude a direct action of ω3 PUFAs on the membrane receptor. Indeed, it is shown that
DHA is able to directly activate, via GPR120, an anti-inflammatory response driven by macrophage
within adipose tissue [33]. This activity could be linked to the recent characterization of the DHA
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inhibitory effect on NLRP3 inflammasome activity, an effect triggered by GPR40/GPR120 pathways
and leading to a decreased production of mature IL-1β [70]. As NLRP3 is activated essentially in
response to an infectious environment, we do not correlateω3 PUFA supplementation with a decrease
in IL-1β production in our physiological context.

It is interesting to note that theω3 PUFA intake finely drives the kind of oxylipins synthesized.
A recent study analyzed the effect of anω3 PUFA dietary supplementation of an already equilibrated
diet (ratio ω6/ω3 = 6.7) to reach an ω6/ω3 ratio of 0.8. Thus, differently to our situation, LA and
LNA are already desaturated equivalently, and the increase in ω3 PUFA intake leads to a decrease
of LA-derived oxylipins (9/13-HODEs) in favor of EPA and DHA derived oxylipins in the brain.
Moreover, this “over”-supplementation ameliorates against an inflammatory response [71].

5. Conclusions

Previous studies have demonstrated the positive effect of ω3 PUFA intake to counteract the
adverse consequences of a high-fat diet or inflammatory situation. Herein, our study was conducted
in non-obesogenic non-inflammatory conditions and also showed a beneficial influence of ω3 PUFA
dietary supplementation on the adipose tissue inflammatory phenotype. Moreover, whileω3 PUFA
metabolites have been involved in this effect, we additionally highlighted the unsuspected role of
LA-derived metabolites. Finally, this already assumed beneficial outcome ofω3 PUFA supplementation
is in line with a human situation where a high ω6/ω3 ratio is correlated with the development of
inflammatory diseases in metabolic tissue.
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