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Abstract: Single-cell RNA sequencing (scRNA-seq) technology provides a powerful tool for un-
derstanding complex biosystems at the single-cell and single-molecule level. The past decade has
been a golden period for the development of single-cell sequencing, with scRNA-seq undergoing
a tremendous leap in sensitivity and throughput. The application of droplet- and microwell-based
microfluidics in scRNA-seq has contributed greatly to improving sequencing throughput. This review
introduces the history of development and important technical factors of scRNA-seq. We mainly
focus on the role of microfluidics in facilitating the development of scRNA-seq technology. To end,
we discuss the future directions for scRNA-seq.
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1. Introduction

The most powerful way to study overall cell state, differentially expressed genes,
gene functions and gene expression regulation mechanisms is to delineate gene expression
profiles. Comprehensive gene expression profiling was first achieved by microarrays,
which enabled the study of thousands of genes simultaneously. However, microarrays
are limited to the analysis of known genes, and their sensitivity and dynamic range is not
sufficient to meet further needs [1]. With the development of next-generation sequencing,
the cost of nucleic acid sequencing has been greatly reduced, and the throughput has been
improving continuously [2]. Transcriptome sequencing has gradually replaced microarrays
with its obvious advantages, and has become the preferred method for transcriptome
analysis [3,4]. According to the frequency of reads, the expression level of corresponding
genes can be directly quantified by transcriptome sequencing [5]. More importantly, some
previously unknown genes can be discovered without the need to design specific probes in
advance [6,7].

The expression profile generated by traditional bulk RNA sequencing reflects the
average of cell populations, and the true expression profiles of each cell is blurred, since
nucleic acids need to be extracted from cultured cell populations or tissue blocks to obtain
sufficient input material for sequencing [8,9]. However, it is now well established that
the gene expression profiles can be very different between the same type of cells due to
stochastic processes or extrinsic factors [10]. Cellular heterogeneity plays an important
role in normal physiological functions and pathological changes of tissues [11,12]. For
example, intratumoral heterogeneity is considered to be the main driver of tumor therapy
resistance, metastasis and poor prognosis [13–15]. Unlike bulk RNA sequencing, to analyze
transcriptome at the single-cell level can reveal the true gene expression profile of single
cells, and build a deeper knowledge of the molecular mechanism [16,17]. scRNA-seq is
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the most powerful tool for characterizing cellular heterogeneity, which has helped us to
gain a comprehensive cell atlas of organs, discover new cell types and new transcripts,
identify cell-type-specific genes and cell markers, depict fine gene regulatory networks,
reveal potential gene functions, reconstruct the trajectory of cell differentiation and disease
occurrence, and study responses of single cells to perturbation [18–23]. However, due
to the difficulty of single-cell manipulation, low nucleic acid content of single cells, and
multidimensional data, scRNA-seq technology is costly and difficult to operate, which limit
its extensive application [24,25]. Since the introduction of the first scRNA-seq technology,
this field has developed rapidly, driven by the requirements of precision medicine and the
advancement of other technologies, especially microfluidics.

Microfluidics are systems that manipulate small (10−9 to 10−18 liters) amounts of fluids
in micrometer-scale channels or chambers [26]. With the advantages of simplifying complex
assay protocols, drastically reducing sample volumes, reducing reagent costs, processing
batches of samples in parallel and so on, it has demonstrated widespread utility in the
fields of biology and medicine [27]. Microfluidics systems used in single-cell sequencing
are the basis for large-scale single-cell sequencing, capable of processing and analyzing
tens of thousands of single cells in parallel. Microfluidics occupies an important position in
the development of scRNA-seq.

Improved scRNA-seq methods allow us to obtain higher-resolution and more com-
prehensive information on single-cell gene expressions and their regulations. However, to
study cellular interactions beyond single-cell transcriptomes, and the regulation mecha-
nisms behind it, researchers need to obtain the positional information of gene expression,
and understand the relationships between transcripts and other molecules, such as pro-
teins, epigenetic modifications and regulators. Therefore, spatial transcriptomics (ST) and
single-cell multiple omics sequencing technologies, evolved from scRNA-seq technologies,
have emerged as new scientific points of interest, and provide us with more powerful
analysis tools [28–31].

In this review, we will introduce the general process of scRNA-seq library construction,
and summarize the development of scRNA-seq technology, followed by the introduction
of Smart-Seq, CEL-Seq and MATQ-seq chemistry in detail to illustrate the important
biochemical reaction strategies. Then, we will focus on the application of microfluidic
technologies, which gave birth to high-throughput sequencing methods. Finally, we share
our viewpoints on the future development directions of scRNA-seq technologies from the
aspects of improving the sensitivity of high-throughput scRNA-seq, joint omics analysis
and spatial transcriptomics.

2. General Process of scRNA-seq

Although dozens of different scRNA-seq methods have been published [32–35], they
all follow a similar general process, which is shown in Figure 1. In short, it includes
single-cell dissociation and isolation, cell lysis and RNA release, reverse transcription
(RT), second-strand cDNA synthesis, amplification, library preparation, sequencing and
data analysis. In this section, we will introduce some technical points and solutions in
sequencing library construction.

Specifically, there are two ways of single-cell dissociation: enzymatic and mechanical
dissociation [36]. The dosage, digestion time, temperature, and other parameters of en-
zymatic digestion need to be adjusted according to the property of tissue to maintain the
integrity and activity of cells as much as possible. Mechanical dissociation or laser capture
microdissection (LCM) uses a microscope and laser beam to carefully dissect single cells
from frozen tissue sections [37]. This technology was developed at the National Cancer
Institute (NCI), originally for the study of heterogeneous cell populations in tumors [38].
LCM has been widely used for single-cell analysis [39–42], with the advantage of preserving
the spatial information of single cells in tissues and facilitating the analysis of cell–cell
and cell–environment interactions [43–45]. However, the main restriction that limits the
application of LCM in single-cell sequencing is its low throughput. In contrast, a large
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number of single cells can be easily obtained by enzymatic digestion, which is suitable
for high-throughput analysis. However, the spatial information of the cells is inevitably
lost in the dissociation step [46]. In addition, it is difficult to obtain intact single cells
from some samples (e.g., brain tissue), so it is necessary to extract a single nucleus for
sequencing. At present, many sequencing technologies [47–50] have been optimized for
single-nucleus sequencing.
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Figure 1. General workflow of scRNA-seq. Firstly, single-cell suspensions are obtained from cultured
cells or tissue blocks. Then, cells are isolated and lysed. The released RNAs are reverse-transcribed
into cDNAs. After second-strand synthesis and amplification, sequencing adapters are added to both
ends of the cDNAs to construct the final sequencing library. Finally, bioinformatics pipelines are used
to analyze the sequencing data and re-establish gene expression signatures of single cells.

Single-cell isolation is a crucial point in single-cell sequencing. In the early days, the
common method to isolate single cells is plate-based isolation. Single cells are picked
manually with microcapillary pipettes under the microscope or sorted by flow cytometry,
and then distributed into individual wells of a 96/386-well capture plate, and prepared for
the subsequent operations [51]. Manual cell picking is time-consuming, low-throughput,
inefficient, and requires a certain degree of micromanipulation skill. Fluorescence-activated
cell sorting (FACS), a widely used technique for cell sorting, can process thousands of
cells in a short time, which greatly increases the throughput, but it is hard to operate
for non-professionals. In addition, >10,000 cells are required as a starting input [52];
therefore, FACS should be used conservatively when analyzing rare samples. Currently,
microfluidic-based single-cell manipulation methods have become the mainstream methods
of cell isolation, including droplet-based methods, microwell-based methods and the
commercialized Fluidigm C1 integrated fluidic circuit (IFC) system.

Due to the limited amount of nucleic acid in a single cell, RNA molecules need to
be amplified after RT to meet the requirements of sequencing. The general methods of
amplification include exponential amplification based on polymerase chain reaction (PCR),
and linear amplification based on in vitro transcription (IVT). PCR-based amplification
can easily amplify a large number of cDNAs in a short time. However, since PCR is an
exponential process that creates amplification bias, the excessive amplification of some
sequences, and insufficient amplification of others, will result in inaccurate transcript
quantification, and amplification errors will be propagated permanently if not properly
corrected [53,54]. Linear amplification is thought to be more accurate and reproducible
than PCR [55]. The second method, IVT, was first introduced by Eberwine [56]. In this
strategy, an upstream T7 promoter sequence, which is used to initiate IVT, is included in
the RT primer. After RT and second-strand cDNA synthesis, T7 polymerase recognizes



Biosensors 2022, 12, 450 4 of 22

the T7 promoter and catalyzes transcription to produce more RNA molecules. Amplified
RNAs need to be reconverted into DNAs for sequencing library construction. Therefore,
this method is time-consuming (~28 h starting from IVT), and increases the complexity of
operation, so it is not as widely used as PCR [32].

In addition to the technical difficulties in library construction, the development of
analysis pipelines that are valid for scRNA-seq data analysis is also an important technical
challenge. Summaries of sequencing data analysis can be obtained in other reviews [57–59],
and are not covered here.

3. Developmental Course of scRNA-seq
3.1. Scaling of Sequencing Throughput

Since Tang et al. performed RNA sequencing in single mouse blastomeres, for the first
time, in 2009 [35], many complex questions about living systems composed of cells have
been answered by scRNA-seq [51,60,61]. One of the main focal points is how many types
of cells are present in functional tissues. Identifying all kinds of cell types in an unbiased
and accurate manner, especially those with a low proportion, requires us to analyze a
large number of cells [62]. With the efforts of many researchers, scRNA-seq technology
has developed from low-throughput mode to high-throughput mode. Figure 2 shows
several landmark techniques that mark the development of scRNA-seq technology in terms
of throughput.
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Figure 2. Timeline of the development of scRNA-seq technology. The upper half of the graph
shows the main events marking the development of sequencing throughput, and the bottom half the
improvement in sensitivity.

The initial scRNA-seq methods can only analyze a few cells at a time, because of the
time-consuming and laborious manual cell isolation and separate sequencing library con-
struction. In order to pool all of the transcripts from different cells for library construction
and sequencing, while preserving information about their cellular origin, protocols such
as STRT-seq [1] and CEL-Seq [32] introduced cell-specific barcodes. All transcripts from a
single cell are labeled with the same barcode, which is unique for each cell. The barcode
is a short oligonucleotide sequence that can be identified through sequencing. According
to the barcode information, transcripts can be easily assigned to the corresponding cells.
Barcoding is an excellent strategy to achieve parallel processing. However, the introduction
of barcodes alone cannot solve the difficulty of isolating a large number of cells. Later, by
combining FACS with automatic liquid handling, MARS-Seq [63] successfully sequenced
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thousands of cells at one time. Three levels of barcodes are used to tag mRNAs, cells
and plates, respectively, to pool all the materials for the subsequent automated processing.
Similarly, STRT-Seq-2i [64] utilizes a specialized FACS and barcoding protocol to increase
the scale of sequencing. A custom aluminum plate with 9600 wells arranged in 96 subarrays
is constructed for two rounds of barcode addition, allowing 9600 cells to be sequenced in
parallel. However, these plate-based methods are not easy to carry out, and the number of
cells analyzed is still limited.

With the introduction of microfluidic technology, the technical barriers of high-throughput
single-cell operations have been fundamentally solved. The first commercial automated
microfluidic platform, the Fluidigm C1 system, enables 96 single cells to be automati-
cally processed at one time [65]. Nonetheless, its processing capacity is far from meeting
the needs of large-scale analysis. In 2015, the emergence of two droplet-based scRNA-
seq technologies [33,66] was a revolutionary breakthrough in the single-cell sequencing
field, enabling the simultaneous processing of thousands of cells, and truly realizing high-
throughput parallel sequencing. Based on microfluidic droplets, the commercial platform
10x Genomics Chromium [67] was developed rapidly, which can characterize tens of
thousands of cells at a time. The three technologies will be described in detail below.

More recently, sci-RNA-seq [68] and SPLiT-seq [69] using a combinatorial indexing
strategy to label cells were successively published. Instead of physical compartmentation
of single cells, the purpose of labeling more than 100,000 single-cell transcriptomes at one
time can be achieved simply by multiple rounds of splitting and pooling. These methods
are very easy to operate, have high cell labeling efficiencies, and can considerably reduce
the cost of sequencing. Furthermore, the more cells sequenced at one time, the lower the
cost of sequencing per cell.

3.2. Improvement in Sensitivity

In addition to the capacity to sequence multiple cells in parallel, sensitivity, accuracy,
repeatability, technical noise, cost and other features are also important aspects to be
considered in the design of scRNA-seq methods. Especially, sensitivity is the most critical
feature, being a fundamental indicator of the performance of a method. The main events
marking the development of sensitivity are shown in Figure 2.

Sensitivity can be interpreted as the probability of capturing a particular transcript
and eventually detecting it by sequencing [70]. For some transcripts with low expression
levels, drop-out events occur frequently in low-sensitivity sequencing platforms [71]. Low
sensitivity will also reduce the accuracy and repeatability of transcript quantification, which
is detrimental for the distinction of subtle differences between cell subpopulations and
accurate cell type classification [72]. Every step of sequencing library construction may
cause the loss of transcripts, thereby impairing the sensitivity of sequencing methods. The
primary aim of all methods is to convert mRNA into cDNA for amplification. Most methods,
including Smart-Seq [73] and CEL-Seq [32], use poly(T) primers to capture mRNA through
the poly(A) tail to initiate RT reactions. While it can selectively capture mRNA and easily
filter out numerous rRNA molecules, it also excludes some important transcripts without a
poly(A) tail, such as circRNA, miRNA and nascent RNA. By contrast, MATQ-seq [74] uses
random primers to capture transcripts, which can not only detect all types of transcripts,
but also improve the mRNA capture efficiency, and thus achieve higher sensitivity. Another
whole-transcriptome analysis method, SUPeR-seq [75], also takes advantage of random
primers. After first-strand cDNA synthesis, in those methods that use PCR for cDNA
amplification, the addition of the second PCR handle is also a key step in determining
the efficiency of conversion. Some methods use a transferase to add a homopolymer tail,
such as the poly(A) tail in SUPeR-seq or the poly(C) tail in MATQ-seq, to the 3′ end of the
first-strand cDNA. A poly(T) or poly(G) primer containing the second PCR handle anneals
to the homopolymer tail for second-strand synthesis. Smart-Seq uses a more convenient
approach known as template-switching to incorporate another PCR handle. This method
can obtain the full-length transcripts and reduce the 3′-end bias that exists in homopolymer
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tailing approach. However, the efficiencies of both these reactions are not 100%, and a
proportion of cDNAs will inevitably be lost. To address this problem, Seq-Well S3 [76]
uses random primers to initiate second-strand cDNA synthesis, and recovers most cDNA
molecules without the second PCR handle. In addition, avoiding the loss of nucleic acid
molecules during operation contributes substantially to the improvement in sensitivity.
This is particularly evident in high-throughput methods. Cell fixation is necessary in some
sequencing methods, resulting in the loss of transcripts and impaired sensitivity. For this
reason, methods based on combinatorial indexing, such as sci-RNA-seq and SPLiT-seq,
cannot completely replace the microfluidic-based method, despite having many benefits.

The microfluidics method reduces the reaction volume from microliters to nanoliters;
thus, the sensitivity will be improved, along with an increased concentration of the tar-
gets, i.e., transcriptomes from single cells. However, when optimized, the sensitivities
of the reactions in the tubes can reach the same levels as those using microfluidics. The
application of microfluidics in scRNA-seq is key to improving the throughput. To improve
the sensitivity, we still need to focus on the fundamental chemistry utilized in scRNA-seq
methods. The key to improving the sensitivity of scRNA-seq can be split into two aspects:
(1) increasing the capture efficiency of RNA during the first-strand synthesis; (2) increasing
the efficiency of the conversion of cDNA into amplifiable products, regardless of using
second-strand synthesis or the template-switching activity of RT enzymes. Therefore, by
integrating scRNA-seq chemistry with microfluidics, a higher sensitivity could be more
easily achieved; meanwhile, the target concentration is greatly increased and background
signal is reduced. Other smart strategies improving accuracy, reducing cost and so on will
be discussed in the introduction of specific methods.

4. Low-Throughput scRNA-seq Methods

The chemistry developed in low-throughput methods is also fundamental to high-
throughput methods. We will focus on the critical chemistries of three classic low-throughput
methods to pave the way for the introduction to high-throughput methods.

4.1. Smart-Seq Chemistry

Smart-Seq [73] is the most popular method, and is still considered the “gold standard”
of scRNA-seq. The key of the Smart-Seq technique is to use the template-switching mecha-
nism at the 5′ end of the RNA transcript (SMART) to convert mRNA into an amplifiable
cDNA sequence. The Moloney murine leukemia (M-MLV) reverse transcriptase used in
Smart-Seq for RT reactions has the characteristics of automatically adding three additional
nucleotides (usually three cytosines) at the end of the cDNA, and inducing the activity of
template-switching. After first-strand synthesis, template-switching is performed using a
template-switching oligo (TSO, carrying three riboguanosines at its 3′ end) to add the PCR
adaptor to the 3′ end of cDNA. The resulting cDNA molecules can be amplified by PCR.
All of the above reactions are completed in one step.

In the following years, Rickard Sandberg’s group continued to improve this technology,
and developed Smart-Seq2 [10] and Smart-Seq3 [77] to further improve the sensitivity,
accuracy and so on. In Smart-Seq2, the buffer composition, reaction temperature and
TSO sequence are improved to obtain higher sensitivity, fewer technical biases and less
variability. The specific scheme is not discussed in this review, but can be found in the
Smart-Seq2 protocol [10].

In Smart-Seq3, the sensitivity is further improved by optimizing the enzymes and
buffers used in RT and preamplification reactions. More importantly, this technique com-
bines full-length transcriptome coverage with a unique molecular identifier (UMI) counting
strategy to improve the accuracy of transcript counting without loss of coverage. UMIs are
extensive synthetic random sequences. There are enough different sequences to ensure that
all transcripts in a single cell can be tagged with unique tags. After sequencing, the number
of original transcripts can be counted accurately by UMIs to eliminate the bias of PCR
amplification [78]. At present, almost all scRNA-seq techniques use the second-generation
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short-read sequencing platform; that is, long sequences need to be sheared into short
fragments for sequencing. For most of the sequencing library construction methods using
barcodes and UMI tags, the effective cDNA sequences that can be used for analysis are
only the 3′ or 5′ ends of the complete cDNA sequences, because barcodes and UMI tags can
only be added to the ends of the cDNA. When a large amount of sequence information in
the middle of the transcript is lost, the nucleotide and splicing variation information of the
transcript is unobtainable. On the contrary, Smart-Seq and Smart-Seq2 do not use barcodes
or UMIs to label transcripts, so full-length cDNA can be recovered. One of the consequent
disadvantages is that not all fragments analyzed by sequencing carry cell barcodes, which
means that this method is incompatible with high-throughput, parallel single-cell sequenc-
ing. Secondly, the amplification bias caused by PCR cannot be corrected without a UMI
tag. Smart-Seq3 addressed the incompatibility between UMI and full-length transcript
coverage. The TSO primer used in Smart-Seq3 contains an 11-bp tag sequence and an 8-bp
UMI sequence, as well as three riboguanosines. After sequencing, 5′ UMI-labeled reads
with different lengths and a group of internal reads without UMIs are obtained. The 11-bp
tag is used to unambiguously distinguish 5′ UMI reads from internal reads. 5′ UMI reads
are used to accurately count the number of transcripts, and the internal reads are used to
reconstruct full-length transcripts.

4.2. CEL-Seq Chemistry

The sequencing library construction strategy of CEL-Seq [32] is significantly different
from that of Smart-Seq. In CEL-Seq, IVT is used for cDNA amplification. The RT primer
contains poly(T), a cell-specific barcode, 5′ Illumina sequencing adaptor and T7 promoter.
Since barcode sequences are introduced in the RT step, cDNA molecules in different cells
can be pooled together for IVT after RT. The IVT reaction requires 400 pg total RNA as the
minimum input material for a single round of amplification, and the pooling of cDNAs in
several cells can meet the material requirement of IVT. Then, driven by the T7 promoter,
cDNAs can be linearly amplified by IVT. Then, these amplified RNAs are converted to
cDNAs for sequencing. In CEL-Seq2 [79], UMI is added to the RT primer to accurately
count transcripts.

4.3. MATQ-seq Chemistry

At present, the most sensitive sequencing method is MATQ-seq [74], published by
Zong’s group in 2017.

They used random primers developed from multiple annealing and looping-based
amplification cycles (MALBAC) [80] to capture RNAs. Combined with ten cycles of an-
nealing, full-length RNA can be converted into cDNA with high efficiency. In addition,
non-polyadenylated RNA can also be captured. After RT, a poly(C) tail is added to the
3′ end of cDNA for second-strand synthesis. UMI is introduced during second-strand
synthesis to reduce the bias caused by subsequent PCR. MATQ-seq achieved 89.2 ± 13.2%
capture efficiency, and greatly increased the detection efficiency for low-abundance genes.
The high sensitivity and accuracy of MATQ-seq enables the detection of subtle differences
in gene expression between single cells from the same population.

5. High-Throughput scRNA-seq Methods
5.1. Application of Microfluidic Technology in scRNA-seq

Small sample volume and a large number of samples are two evident characteristics
of single-cell operation. Microfluidics, as a technology for manipulating liquid at the
nanoliter level and in a multiplexing manner, has inherent advantages in single-cell research.
Microfluidics, also known as lab-on-a-chip, is to perform sample preparation, reaction,
separation, detection and other basic operations involved in the fields of chemistry and
biology on a single chip of several square centimeters, or even smaller [81,82].
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Beyond chemistry, single-cell manipulation is a main technical challenge of single-cell
sequencing. Microfluidics enables parallel manipulation of single cells in a high-throughput
manner. In scRNA-seq, it is primarily used to physically isolate individual cells.

The first widely used commercial microfluidic system for scRNA-seq is the Fluidigm
C1 system, developed in 2012. The core of this platform is an integrated fluidic chip, which
can isolate 96 cells at a time. After isolation, the number and quality of captured cells
can be assessed using a microscope. Then, cells are sent to subsequent processing stage
in an automated and parallelized manner. The disadvantages of this system are obvious.
To begin with, it requires at least 10,000 cells as input, and the number of cells it can
handle is very limited, suggesting that it is very inefficient and unsuitable for analyzing
rare cell populations [60]. Additionally, the C1 system performs badly on heterogeneous
cell populations due to it requirements for cell size and shape. [65]. A specific model of
C1 chip can only capture cells of a certain size. Small cells are difficult to confine to the
capture site, resulting in low capture efficiency. On the other hand, large cells are prone
to becoming stuck. The C1 system assumes that cells are in a rounded shape, so some
types of cells, such as adult cardiomyocytes, whose shapes are irregular, are incompatible
with this platform [65]. Furthermore, the throughput of this system is far from meeting the
needs of large-scale sample analysis. An scRNA-seq study in mouse pancreatic islet cells
by Xin et al. using the C1 system showed that a large number of cells are damaged or fuse
with other cells during the capture process, resulting in severe cross-contamination and
markedly altering gene expression patterns [83].

In the laboratory, two kinds of integrated microfluidic systems are designed for single-
cell isolation. The original design for physically isolating cells is to trap them in droplets
using droplet microfluidic chips. There are three widely used geometric structures of
droplet microfluidic channels: T-junctions, flow-focusing and co-flow (Figure 3a–c). By
connecting multiple droplet generators in tandem, we can obtain oil-in-water, water-in-oil
and/or multiple droplets (O/W/O, W/O/W, etc.). Here, we illustrate the principle of
droplet generation, taking the most commonly used flow-focusing channel for the genera-
tion of water-in-oil droplets as an example. The flow-focusing geometry consists of two
vertically crossing channels. The oil phase flows in from two side channels perpendicular
to the water phase, and converges into the channel of the water phase. When the shear
force or stress of the oil phase reaches a certain value, the water phase can form small
emulsions (10−15~10−9 L), which are carried by the oil [84]. As long as the flow rates of
the two phases remain stable, droplets can be generated continuously and stably at a high
frequency. In single-cell sequencing experiments, a single-cell suspension is loaded as an
aqueous phase after diluting it to an appropriate concentration according to the principle
of Poisson distribution. A droplet containing one cell can be regarded as an independent
reactor for subsequent experiments.

Another strategy is to use a microwell array as a single-cell container (Figure 3d).
Tens of thousands of nanoliter or picoliter microwells are fabricated in an area of several
square centimeters. Each individual cell is loaded into a single well, which is used as an
independent reactor for cell lysis, RT and barcode labeling.

In the following, we will discuss and compare the scRNA-seq methods based on
microfluidics in detail.
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5.2. Droplet-Based scRNA-seq Methods
5.2.1. inDrop

In 2015, Klein et. al. [66] and Macosko et. al. [33] each published a droplet-based
scRNA-seq technology, respectively, in Cell. The publication of these two technologies is
another milestone in this field.

Figure 4a(i) shows the inDrop workflow. The core of the inDrop [66] method is to
co-encapsulate the cell and the barcoded hydrogel microsphere (BHM) to produce cell-
specific barcodes. BHMs are generated using droplet microfluidic devices. An acrylamide:
bis-acrylamide solution is used as the aqueous phase to generate droplets, which are then
polymerized into tangible microspheres in the presence of APS (ammonium persulphate)
and TEMED (N, N, N′, N′-tetramethylethylenediamine). Acrydite-modified DNA primers
are added to the prepolymer and incorporated into the hydrogel mesh upon acrylamide
polymerization. Then, they use a split-pool combinatorial barcoding strategy to synthesis
unique barcodes from BHMs through two extension steps. Each BHM carries one of the
147,456 unique barcodes, and this BHM library can label 3000 cells in one reaction with a
99% unique labeling ratio. It is worth noting that the 5′ end of the DNA primer connected
to the bead has a photo-cleavable spacer. After the co-encapsulation of the cell and BHM,
the spacer is cleaved under UV irradiation, and the primer is released and anneals with
RNA to start RT reactions. This is the key to improving RNA capture efficiency, because,
compared with most other bead-based barcoded primer delivery methods, the released
primers can bind RNA molecules more effectively.
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Figure 4. Application of droplet microfluidics in scRNA-seq: (a) i, inDrop RNA sequencing workflow;
ii, design of the microfluidic device for co-encapsulation of cells and BHM; iii, schematic diagram
of the process of co-encapsulation of cells and BHM. Reprinted from ref. [66]. (b) Schematic of
sequencing library preparation with Drop-Seq. Reprinted from ref. [33]. (c) i, scRNA-seq workflow
on 10x genomics platform; ii, cells and gel beads are co-encapsulated in microfluidic chip; iii, barcoded
primer annealing with RNA; iv, finished library molecule. Reprinted from ref. [67]. (d) BAG-seq
workflow. Reprinted from ref. [85].

A droplet microfluidic device was designed to realize the co-encapsulation of a single
cell and BHM. The structure is shown in Figure 4a(ii). Cells, BHMs and RT/lysis reagents
are pumped into each inlet, respectively, and co-emulsified into droplets by carrier oil.
The size of the channel is well-designed to ensure that the BHMs are closely packed and
regularly released (Figure 4a(iii)). When BHM release synchronizes with droplet formation,
100% hydrogel packaging efficiency can be achieved. By contrast, cell loading follows the
Poisson distribution. Through the limited dilution of single-cell suspension, the probability
of two cells being packed into the same droplet can be low.

Although this method realizes large-scale parallel RNA sequencing, the capture effi-
ciency of transcripts is relatively low, and genes with transcriptional abundance less than
20–50 transcripts cannot be reliably detected in a single cell.

5.2.2. Drop-Seq

The twin of inDrop, Drop-Seq [33], shares the same strategy with inDrop in terms of
barcoding transcripts (Figure 4b). The two technologies differ in the following aspects:

First, the material of the beads used in Drop-Seq is a type of hard resin that is not
deformable. Both beads and cells obey the Poisson distribution, resulting in a lower package
efficiency. Only 1% of droplets are the desired droplets, which contain one cell and one
barcoded bead. Barcoded primers are synthesized directly onto the resin beads. Twelve
split-pool cycles of oligonucleotide synthesis are used to synthesize barcode sequences,
resulting in 412 (16,777,216) possible unique sequences.
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Secondly, the primers cannot be released from the beads. After RT, all cDNAs are
covalently connected to beads, which are called “single-cell transcriptomes attached to
microparticles” (STAMPs). This might be another drawback of Drop-Seq compared to
inDrop, which we have mentioned above.

Thirdly, in Drop-Seq, droplets are broken immediately after the annealing of primers
and mRNAs, and all STAMPs are pooled together for RT reactions. By contrast, in inDrop
protocol, RT reagents are co-encapsulated into droplets, and RT reactions are performed
individually in each droplet. Notably, bulk RT reactions can prevent the risk of RT inhibition
in picoliter volume reactions and reduce batch effect [36].

Finally, after obtaining cDNA molecules, Drop-Seq uses the Smart-Seq library construc-
tion method to build a sequencing library, while inDrop uses the CEL-Seq method. There-
fore, they inherit the advantages and disadvantages of Smart-Seq and CEL-Seq, respectively.

5.2.3. 10x Genomics

At present, the commercial 10x Genomics Chromium platform has the best compre-
hensive performance among the high-throughput scRNA-seq platforms [67].

This platform is also droplet-based, and has some similar characteristics to Drop-Seq
and inDrop. The overall workflow of 10x Chromium is shown in Figure 4c. The core of
this technology is gel beads in emulsion (GEM). An eight-channel microfluidic chip is
used to generate GEM. In each microfluidic channel, about 100,000 GEMs are generated
every 6 min, encapsulating thousands of cells in GEMs. Short droplet generation times
can minimize the transcriptional perturbation. Gel beads are encapsulated by the inDrop
method, and the encapsulation efficiency can reach about 80%. Gel beads are functionalized
with barcoded primers. Once the beads are encapsulated into droplets, these primers are
released as the beads dissolve. Interestingly, this is considered to be the key to the high
sensitivity of 10x Genomics Chromium. The cell capture efficiency can also reach 50%,
which gives this system the advantage of analyzing rare samples.

5.2.4. BAG-seq

All of the above droplet-based methods basically use the strategy of co-encapsulation
of cells and barcoded beads to deliver cell-specific barcodes during RT. Recently, Li et al. [85]
reported a completely different strategy utilizing cell barcodes (Figure 4d).

They used the droplet generation microfluidic chip in DroNc [47] (a modified version
of Drop-Seq for single-cell nuclear sequencing) to package single cells. One aqueous
phase is cell suspension, and the other aqueous phase consists of reagents containing
polyacrylamide prepolymer, 5′-acrydite-modified primers and detergents. In addition, the
oil phase contains TEMED, which can accelerate the polymerization of polyacrylamide
hydrogel. Once the droplets are formed, they begin to polymerize under the action of
TEMED, and the 5′-acrydite-modified primers co-polymerize into the gel network. The
cells are lysed by the detergents, and the released mRNAs are captured by the covalently
bonded primers, and restricted to the ball of acrylamide gel (BAG). After polymerization,
each BAG is treated as an independent reaction vessel. The size of the gel mesh can allow
enzymes, oligonucleotides and other reagents to diffuse freely for the subsequent reactions.
Following RT, split-pool is performed to add barcodes to transcripts in each BAG.

One of the advantages of BAG-seq is that it does not rely on two simultaneous Poisson
events when packaging cells, because the oligonucleotide primers used to capture mRNAs
are not bound to the beads, but directly added to the reagents. Therefore, compared with
other co-encapsulation methods, BAG-seq has a higher cell capture efficiency, which is
particularly important for the analysis of rare and precious samples. In addition, using
free primers to capture mRNAs is equivalent to increasing the volume of capture beads,
which can theoretically improve the capture efficiency. Li et al. [85] have demonstrated that
BAG-seq can detect more genes and unique templates than other high-throughput methods
at the same sequencing depth. Furthermore, BAG-seq adds barcodes directly to cDNAs
by splitting and pooling the BAGs, rather than synthesizing barcoded beads in advance.
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Therefore, the cost is greatly reduced. Finally, this platform can also be used for single-cell
whole-genome sequencing, which demonstrates its flexibility.

5.3. Microwell-Based scRNA-seq Methods
5.3.1. CytoSeq

CytoSeq [86], published in 2015, proved that microwells can also be used for cell
isolation and barcoding. A schematic of the workflow of CytoSeq is shown in Figure 5a.
At first, cells are loaded into the picoliter microwell array at a concentration that ensures
monodispersity, and are then simply settled into wells by gravity. Next, the barcoded
beads are loaded into the array. The optimized sizes of the wells and beads prevent two
beads being loaded into one well. The beads are magnetic, so after mRNA capture, all
beads can be retrieved conveniently from the array by magnet. Then, the beads can be
processed together in a tube. In this protocol, instead of amplifying and sequencing the
whole transcriptome, they sequenced a set of selected genes by multiplex PCR.
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Figure 5. Application of microwell microfluidics in scRNA-seq: Schematic of the workflow of
(a) CytoSeq. Reprinted from ref. [86]. (b) i, single-cell RNA printing; ii, single-cell RNA capture on
beads. Reprinted from ref. [87]. (c) Seq-Well and (d) Microwell-seq. Reprinted from ref. [88].

This protocol uses an unsealed microwell array, which significantly limits mRNA
capture efficiency and increases the chance of cross-contamination.

5.3.2. RNA Printing

In 2015, Bose et al. [87] reported a method that used microwell chips to print RNAs
on glass, or capture RNAs on beads, to achieve solid-phase capture of RNAs. The chip
consists of a microwell array and a flow channel connecting all wells. Reagents are injected
into the channel and distributed into each well. The material of the chip is hydrophobic
and deformable polydimethylsiloxane (PDMS), which can facilitate reversible sealing of
wells by mechanical squeezing or an oil layer.
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In RNA printing mode (Figure 5b(i)), cells are first loaded into the wells by gravity.
After adding the lysis buffer, the microwell array is sealed immediately on the glass surface
by mechanical sealer prior to cell lysis. The glass surface is covalently functionalized with
oligo (dT) primers, and mRNAs released from cells are captured by these primers and
“printed” on the glass surface. After mRNA immobilization, the sealer is released, and the
subsequent treatments can be carried out directly on the chip.

Another mode is bead-based mRNA capture (Figure 5b(ii)). Barcoded mRNA capture
beads with 1 of 960 possible barcode sequences are synthesized by the split-pool strategy.
After cell loading, beads are also loaded by gravity settlement. Cell suspensions loaded
into the microwell can be agitated with laminar flow by reversing the flow direction
repeatedly to achieve >50% cell capture efficiency. Oil is injected into the channel to seal
the microwell array after adding lysis buffer. The mRNAs released from cells can hybridize
to the primers on the beads. Once the mRNAs are immobilized, the oil can be removed.
After washing, RT, cDNA second-strand synthesis and IVT (for preamplification) can be
performed on the chip.

Solid-phase capture of RNAs can facilitate reagent exchange, removal of contaminants
and imaging, which is one of the advantages of this system. More importantly, the microw-
ell array can be reversibly sealed during cell lysis and RNA capture, which greatly improves
the RNA capture efficiency and reduces the risk of cross-contamination. However, the
complex manual or computer-based control of temperature, pressure and sample loading
greatly limits its application.

5.3.3. Seq-Well

Due to the cross-contamination, low capture efficiency, poor sealing effect and oper-
ation complexity of most microwell-based techniques, in 2017, Gierahn et al. published
Seq-Well [89], which addressed these issues to some extent.

Seq-Well confines cells and barcoded beads in sub-nanoliter wells of PDMS chips to
label single cells. The loading efficiency can reach ~95% for beads and 80% for cells. The
operation and equipment of Seq-Well are very simple. Experiments can be completed with
only a few PDMS chips, sealing membranes, pipettes, manual clamps, an oven and a tube
rotator.

More importantly, Seq-Well uses a semi-permeable polycarbonate membrane
(10 nm pore size) and surface-functionalized PDMS array to limit the nonspecific bind-
ing of RNA to the array, and to increase the sealing efficiency. In short, the array contains a
unique three-layer surface functionalization. The surface of the nanowells is covered by
poly(glutamate), while the top surface of the array is covered by chitosan. Poly(glutamate)
coating can prevent the nonspecific binding of RNA, which helps reduce the loss of RNA.
Chitosan coating can facilitate reversible attachment of the sealing membrane, enabling
rapid solution exchange, improving the efficiency of cell lysis and transcript capture, and
reducing cross-contamination.

Given the inefficiency of the template-switching strategy used in Drop-Seq for second-
strand cDNA synthesis, more recently, this group published an updated method named
Seq-Well S3, which incorporates a randomly primed second-strand synthesis [76]. This
mode of second-strand synthesis recovers most of the RNA molecules that are reverse-
transcribed into cDNAs, but failed to be tagged with the secondary PCR handle. This
method has been proved to be more sensitive than Seq-Well, with sixfold gene detection
sensitivity and tenfold UMI detection sensitivity.

5.3.4. Microwell-seq

Another microwell-based technique, known as Microwell-seq [88], uses similar bar-
coded beads to capture mRNA (Figure 5d). Compared with other methods, its advantage
is that single cells are captured in an agarose microarray constructed from a PDMS micro-
column array mold. The agarose microarray is easy and quick to manufacture, resulting in
substantial reduction in cost. In addition, the magnetic beads can be collected conveniently
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and effectively. The cost of sequencing library construction for each cell is as low as USD
0.02. These authors used Microwell-seq to analyze more than 400,000 cells, covering all of
the major mouse organs to construct a complete mouse cell atlas.

5.4. Comparison of Droplet- and Microwell-Based Methods

In this subsection, we summarize the advantages and disadvantages of the different
methods to provide the reader with some guidance for choosing the appropriate method
for experiments. The characteristics of each method are summarized in detail in Table 1.

Table 1. A summary of the various scRNA-seq methods mentioned in this review.

Field Publication
Year Name Barcode UMI Amplification

Method
Sequencing

Method Throughput * Conclusion Reference

Low-throughput
methods

2009 Tang’s
method no no PCR Nearly full

length + The first scRNA-seq
method

Tang F, et al. Nat
Methods. 2009 [35]

2011 STRT-seq yes no PCR 5′ sequencing +

1. Being able to
analyze transcription

start sites
2. Cell-specific

barcode

Islam S, et al.
Genome Res. 2011 [1]

2012 Smart-seq no no PCR full length +

1. High sensitivity
2. High coverage

3. Template-switching
strategy

Ramsköld D, et al.
Nat Biotechnol. 2012

[73]

2012 CEL-seq yes no IVT 3′ sequencing + Linear in vitro
transcription

Hashimshony T,
et al. Cell Rep. 2012

[32]

2014 Smart-seq2 no no PCR full length + Optimized conditions Picelli S, et al. Nat
Protoc. 2014 [10]

2016 CEL-seq2 yes yes IVT 3′ sequencing + Optimized conditions
Hashimshony T,

et al. Genome Biol.
2016 [79]

2017 MATQ-seq no yes Multiple
annealing full length + The most sensitive

scRNA-seq method
Sheng K, et al. Nat
Methods. 2017 [74]

2020 Smart-seq3 no yes PCR full length + Highly sensitive and
isoform-specific

Hagemann-Jensen
M, et al. Nat

Biotechnol. 2020 [77]

Automatic liquid
handling

high-throughput
method

2014 MARS-Seq yes yes IVT 3′ sequencing ++
Combination of FACS
and automatic liquid

handling

Jaitin DA, et al.
Science. 2014 [63]

Droplet-based
high-throughput

methods

2015 inDrop yes yes IVT 3′ sequencing ++

1. High hydrogel
packaging efficiency

2. UV-initiated primer
release

3. High-throughput
CEL-seq method

Klein AM, et al. Cell.
2015 [66]

2015 Drop-seq yes yes PCR 3′ sequencing ++ High-throughput
Smart-seq method

Macosko EZ, et al.
Cell. 2015 [33]

2017 10x
Chromium yes yes PCR 3′ sequencing +++

The most sensitive
high-throughput

scRNA-seq method.

Zheng GX, et al. Nat
Commun. 2017 [67]

2020 BAG-seq yes yes PCR 3′ sequencing ++ Capturing nucleic acid
directly in hydrogel

Li S, et al. Genome
Res. 2020 [85]

Microwell-based
high-throughput

methods

2015 CytoSeq yes yes PCR 3′ sequencing ++ Using microwell to
isolate and label cells

Fan HC, et al.
Science. 2015 [86]

2015
Single-cell

RNA
printing

yes no IVT 3′ sequencing ++ Solid-phase capture of
RNA

Bose S, et al. Genome
Biol. 2015 [87]

2017 Seq-Well yes yes PCR 3′ sequencing ++

Semi-permeable
polycarbonate
membrane and

surface-functionalized
PDMS array

Gierahn TM, et al.
Nat Methods. 2017

[89]

2018 microwell-
seq yes yes PCR 3′ sequencing ++ Cheap agarose

microarray
Han X, et al. Cell.

2018 [88]

Combinatorial
indexing-based

high-throughput
methods

2017 sci-RNA-
seq yes yes PCR 3′ sequencing ++ High-throughput and

low cost
Cao J, et al. Science.

2017 [68]

2018 Split-seq yes yes PCR 3′ sequencing +++ High-throughput and
low cost

Rosenberg AB, et al.
Science. 2018 [69]

Spatial
transcriptomics 2016 LCM-seq no no PCR full length + Providing spatial

information

Nichterwitz S, et al.
Nat Commun. 2016

[41]

* Number of cells analyzed in one experiment. +, Below 100; ++, between 1000–10,000; +++, above 10,000.
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Here, we mainly discuss the differences between droplet-based and microwell-based
methods. Among these two kinds of methods, droplet-based methods were proposed
earlier and are used more widely due to several advantages. First, theoretically, there is no
upper limit on the number of droplets that can be generated in one experiment. That is,
the number of cells that can be detected is scalable. The ability of the sequencing method
to detect a large number of cells is necessary for identifying rare cell types and drawing
detailed cell maps. Second, the generation and operation of droplets is very flexible. It is
easy to fuse, split, sort and reload droplets through channel design, and to control their
size and generation rate through flow rate control.

However, since a single cell and a single-barcoded bead need to be co-encapsulated
into a droplet, the encapsulation efficiencies might be very low, despite some studies having
proposed strategies to realize a sub-Poisson distribution. Additionally, the generation pro-
cess of the droplets might lead to asynchronous cell lysis, cell expression profile disturbance
and, thus, technical noise.

By comparison, microwell-based techniques are more efficient in co-encapsulation.
Moreover, the loading time of cells is shorter, which reduces the differences in lysis times
among cells. In addition, microwell chips are easier to operate and require less complicated
peripheral equipment. Although microwell-based techniques are simpler and portable,
there are two main drawbacks that make them less popular than droplet-based techniques.
Firstly, the chip needs to be redesigned and refabricated when the experimental conditions,
such as cell number and bead size, change. Secondly, the low RNA capture efficiency and
cross-contamination issues remain poorly addressed.

6. Future Perspectives
6.1. Improvement in Sensitivity of High-Throughput Sequencing Methods

Due to the ingenuity and efforts of researchers, single-cell transcriptome sequencing
technology has developed rapidly. So far, dozens of different sequencing methods have
been reported. In some comparative studies [70,90–92], the authors have systematically
compared the performance of these sequencing technologies. Interestingly, the sensitivity
and accuracy of high-throughput sequencing technologies are generally lower than those
of low-throughput technologies. So far, 10x Chromium, the most sensitive high-throughput
sequencing technology, can only detect ~7000 genes per cell; meanwhile, MATQ-seq,
the most sensitive low-throughput technology, can detect about 18,000 genes, more than
twice that of 10x Chromium. An insensitive high-throughput scRNA-seq method yields
unreliable data, and loses a lot of useful information. It is still one of the challenges in
this field, to improve the sensitivity of high-throughput methods to be close to the level of
low-throughput methods.

6.2. Development of Multiomics Joint Sequencing Methods

In the era of precision medicine, a comprehensive understanding of the molecular
mechanisms in normal and disease processes has become an urgent demand for both
basic and clinical research. Some large international research projects, such as the Human
Tumor Atlas Network (HTAN) project (https://ccr.cancer.gov/research/cancer-moonshot,
accessed on 1 September 2018), are not satisfied with the analysis of life systems in a
single dimension, they require analysis of the deeper machinery in multiple dimensions
across space and time [93]. As a result, multiomics analyses have emerged as a critical
impetus for advancing precision medicine. One benefit from the rapid development of
single-cell transcriptomics and other omics methods, joint profiling of multiomics has been
able to perform in the same cell. Single-cell multiomics analysis is the most powerful
strategy to reflect the real interaction among RNA, DNA and proteins, and to reveal
regulatory networks.

Some joint sequencing methods, which integrate transcriptomics with genomics, epige-
nomics, proteomics and other omics methods, have been developed to analyze molecular
regulatory mechanisms in single cells. G&T-seq integrates transcriptome and genome

https://ccr.cancer.gov/research/cancer-moonshot
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sequencing [94] to explore the relationship between genomic changes and gene expression
levels. In 2019, Ren Bing’s group developed Paired-seq [95], a technology that combines
single-cell chromosome accessibility analysis and transcriptome sequencing. Integrative
analysis of chromosome accessibility and gene expression profile enables deconvolution of
the regulatory relationship between cis-regulatory elements and their putative target genes
at the single-cell level. This group further developed Paired-Tag [96], a high-throughput se-
quencing method for joint profiling of histone modifications and the transcriptome in single
cells to reveal the epigenetic regulatory mechanisms of cell-type-specific gene expression.
Another group reported a method called scM&T-seq [97] for single-cell methylome and
transcriptome sequencing. By performing it on mouse embryonic stem cells, they revealed
novel associations between heterogeneously methylated distal regulatory elements and
the transcription of key pluripotency genes. Fan et al. analyzed the DNA methylome,
chromatin accessibility and the transcriptome simultaneously in pancreatic ductal adeno-
carcinoma cells [98]. The relationships among methylation, chromatin accessibility and
gene expression in tumor cells have been revealed, and a set of novel candidate biomarkers
for prognosis have been identified.

In conclusion, multiomics comprehensive analyses provide a large amount of gene
regulation information that single-omics methods are not able to cover. Although many
multiomics sequencing technologies have been reported, the development of this field is
still in its infancy. The technology that has higher throughput and can analyze more omics
information at the same time, and the bioinformatic pipeline for large amounts of data
analysis, need to be developed.

6.3. Acquisition of Spatial Information of Transcripts

Joint analysis of single-cell transcriptome and other omics data in the same cell has
increasingly become the future development trend of single-cell transcriptome sequencing
technology. In addition, preserving spatial information is also a target of current efforts. In
a multicellular system, cells do not play a role in isolation, but interact and coordinate with
each other and their surrounding environment. For example, during development, the
direction of cell differentiation is not only determined by its own genetic program, but is
also affected by its location and other cells. In tumors, the tumor microenvironment formed
by microglia, macrophages, lymphocytes, endothelial cells and other cells has a certain
form of spatial organization, and this affects the biochemical changes in the tumor and
the response to treatment [99]. However, in most of the scRNA-seq protocol, tissues need
to be dissociated before sequencing, resulting in the loss of spatial information. Spatial
transcriptomics makes up for this deficiency, and can provide us with a large amount of
information regarding the spatial gene expression heterogeneity.

The initial work to capture spatial Information was described by Nichterwitz et al.,
and was named LCM-seq [41]. The LCM method, which we have mentioned above, is
used to quickly cut target single cells from frozen tissues. It is suitable for analyzing rare
cell populations with known locations, and cell types that are difficult to isolate, such as
neurons. However, low sensitivity and throughput greatly limit its application.

Other studies have focused on creating a spatial barcode array to measure the spatial
distribution of transcripts in tissue sections. A spatial barcode array is composed of a
large number of information spots that contain unique positional barcodes encoded by
oligonucleotides. Barcodes can be transferred to tissue sections in parallel to achieve spatial
transcription mapping. After tissue section digestion, all transcripts are pooled and pro-
cessed in the same manner as in scRNA-seq. This strategy was first demonstrated by Ståhl
et al. [100]. However, in this work, the diameter of one spot is 100 µm, with a center-to-
center distance of 200 µm. Thus, several cells can receive the same positional barcode, which
means that the resolution of this method fails to reach the single-cell level. Several subse-
quent studies have been devoted to improving the spatial resolution. The Visium system
of 10× Genomics improved the resolution to 55 µm by reducing the spot size. Two simi-
lar studies, describing Slide-seq [101] and the high-definition spatial transcriptome [102],
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further pushed the resolution down to 10 µm and 2 µm, respectively. The sophisticated
decoding process and low sensitivity are the major limitations of these methods.

Microfluidics also contributes towards the development of ST. More recently, Rong
Fan’s team reported an easily operated method called dBiT-seq [103], based on microfluidic
technology. Two microfluidic chips with 50 parallel channels are successively placed on
the tissue section perpendicular to each other to deliver barcodes to transcripts. A unique
barcode is introduced into each channel to label mRNA. After two rounds of labeling,
cells at the intersection of two channels receive a distinct combination of barcodes. This
method can reach a spatial resolution of 10 µm, with higher sensitivity than all previous
methods. However, like other ST methods, dBiT-seq is not able to obtain spatial gene
expression patterns at the single-cell level. Some studies have tried to integrate ST data
with scRNA-seq data to identify the major cell types in each spatial spot to address this
gap [103,104].

Overall, to achieve single-cell resolution is still a major technical challenge in spatial
transcriptome sequencing technology at present, and more solutions need to be proposed.

An overall blueprint for the future orientation of scRNA-seq is shown in Figure 6.
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7. Conclusions

Single-cell RNA sequencing technology has come of age in the last 13 years. Many
strategies have been undertaken to resolve the technical challenges and contribute to the
improved sequencing data quality and increased throughput. With the development of
omics techniques and precision medicine, it has become an urgent requirement to obtain
a more comprehensive and refined single-cell molecular atlas. We have been able to
analyze single-cell transcriptomes in a fast and high-throughput manner with the help of
microfluidics. However, a high-throughput scRNA-seq method, that also exhibits high
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sensitivity and accuracy, is still needed. The sensitivity of single-cell RNA sequencing is the
basis for revealing accurate and comprehensive biological information, and for ensuring the
data quality of multiomics sequencing and spatial transcriptomics. In addition, to ensure
that scRNA-seq becomes a routine analysis method, rather than an exclusive technology
among a small group of laboratories, it is necessary to further simplify the operation steps
and reduce its cost. Various omics technologies at the single-cell level have also been
developed, and molecular information at the single-omics level has been revealed. The
acquisition of multiple omics-level information for a single timepoint and spatial location,
and information on molecules for analysis of genetic spatiotemporal regulation networks,
are other important directions for scRNA-seq in the future.
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