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Abstract: The efficient transformation of carbon dioxide into useful chemical feedstock is of great
significance, attracting intense research interest. The widely studied porous-coordinated polymers
possess large pores to adsorb guest molecules and further allow the contact and to transfer the
substrate molecule within their microenvironment. Here we present the synthesis of a silver-based
metal-organic frameworks (MOFs) material with a three-dimensional structure by incorporating a
tetraphenyl-ethylene moiety as the four-point connected node via the solvothermal method. This
polymer exhibits as an efficient heterogeneous catalyst for the carboxylative cyclization of CO2 to
α-methylene cyclic carbonates in excellent yields. Moreover, the introduction of silver (Ag (I)) chains
in this framework shows the specific alkynophilicity to activate C≡C bonds in propargylic alcohols to
greatly accelerate the efficient conversion, and the large pores in the catalyst exhibit a size-selective
catalytic performance.

Keywords: metal-organic framework; heterogeneous catalysis; carbon dioxide fixation

1. Introduction

Recently the utilization and transformation of carbon dioxide as a C1 source into valuable
chemical products has become important for research purposes and attractive for both chemists and
environmentalists [1–3]. Until now, a great deal of effort has been made to develop porous materials
towards the adsorption and fixation of carbon dioxide [4–8]. Within the numerous examples, the porous
coordination polymers, the metal-organic frameworks (MOFs), have been regarded as an excellent
platform because of their intriguing structural diversity, modular nature and facile tenability [9–12].
Moreover, in terms of catalysis, these materials usually possess rich open metal sites, which are capable
of CO2 activation and further converting into catalysis products, highlighting the advantages of MOF
materials for applications in many fields [13–16].

Silver (Ag (I)) complexes, which function as σ- and/or π-Lewis acids, have been shown to be
powerful catalysts for alkyne transformations due to their d10 electronic configurations, favoring
interactions with the carbon–carbon π-bond of the alkynes, referred to as alkynophilicity [17,18].
The superior alkynophilicity leads to the facilitating of the π-coordination of Ag···C≡C bonds by
nucleophilic attack.

Therefore, the silver (I) ion is considered as one of the most ideal activators of the
carbon–carbon triple bond in many usable organic reactions, including cycloaddition, hydroazidation
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and cross-coupling reactions starting with alkynes and its derivatives [19,20]. Among them,
the carboxylative cyclization of propargylic alcohols and carbon dioxide to α-methylene cyclic
carbonates, which are important natural products with potential bioactivity and chemical value, have
shown a great promise pathway for the direct incorporation of carbon dioxide, and have achieved
considerable reactivity and selectivity catalyzed by many kinds of Ag-based catalysts via the benign
π-activation [21,22].

Inspired by these considerations, we envision that the combination of the alkynophilic Ag
(I) ion into the porous and unique structural features of MOFs makes it possible to develop a
potential synthetic strategy to construct efficient heterogeneous catalysts for the reactions starting
with alkynes and its derivatives [23–25]. Herein, we present the synthesis of silver-based MOFs
materials, (noted as 1, Figure 1a), with a three-dimensional structure by the incorporation of
the tetrakis(4-carboxyphenyl)ethylene (H4TCPE) moiety as the four-point connected node via the
solvothermal method. The catalytic properties for the carboxylative cyclization of carbon dioxide were
investigated by performing the reaction starting with propargylic alcohols and carbon dioxide.
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Figure 1. (a) The representation of ligand tetrakiscarboxyphenylethylene (TCPE) and the coordinated
modes with Ag ions; (b) Ball-and-stick representation of 1 in an asymmetric unit with atomic-numbering
scheme; (c) The coordination environment of Ag1 and Ag2 with tetrahedral fashion; (d) Connected
mode of Ag chains. Color code: Ag, green; O, orange; C, gray. H atoms are omitted for clarity.

2. Materials and Methods

2.1. General Experimental Details

All chemicals were of reagent grade quality obtained from commercial sources and used without
further purification. All epoxides were purchased from Acros (Shanghai, China) and distilled under
a nitrogen atmosphere from calcium hydride (CaH2) prior to use. Carbon dioxide (CO2, 99.995%)
was purchased from the Dalian Institute of Special Gases (Dalian, China), and was then used as
received. The elemental analyses of C, H and N were performed on a Vario EL III elemental
analyzer (Frankfurt, Germany). Inductively-coupled plasma (ICP) analysis was performed on a
Jarrel-AshJ-A1100 spectrometer (Waltham, MA, USA). The powder XRD diffractograms were obtained
on a Rigaku D/MAX-2400 X-ray diffractometer (Tokyo, Japan) with a Cu sealed tube (λ = 1.54178 Å). IR
spectra were recorded as KBr pellets on a NEXUS instrument (Madison, WI, USA). Thermogravimetric
analyses (TGA) were carried out at a ramp rate of 10 ◦C min−1 in nitrogen flow with a SDTQ600
instrument (TA Instruments, New Castle, DE, USA). Gas sorption isotherms were measured using an
Autosorb-IQ-C analyzer of Quantachrome (Boynton Beach, FL, USA). The CO2 adsorption isotherms
for desolvated compounds were collected in a relative pressure range from 10 to 1.0 × 105 Pa. Liquid



Nanomaterials 2019, 9, 1566 3 of 12

UV-Vis spectra were performed on a TU-1900 spectrophotometer (Beijing, China). 1H spectra were
recorded on a Varian INOVA-400 MHz type spectrometer (Varian, Palo Alto, CA, USA). Their peak
frequencies were referenced versus an internal standard (TMS) shifts at 0 ppm for 1H NMR.

2.2. Preparation of 1

All reagents were used as purchased without further purification. Tetrakis (4-carboxyphenyl)
ethylene (H4TCPE) was prepared according to the literature methods [26] and characterized by
1H NMR.

Synthesis of 1: A mixture of H4TCPE (30 mg, 0.06 mmol) and silver nitrate (AgNO3) (196.9 mg,
0.52 mmol) were dissolved into 4 mL dimethylformamide (DMF) in a screw-capped vial. The resulting
mixture was kept in an oven at 100 ◦C for three days. After cooling the autoclave to room temperature,
green block single crystals were separated, washed with water and air-dried. Yield: 10% (based on the
crystal dried in vacuum). Anal. calcd. for C90H54Ag12O27 [Ag12(TCPE)3(H2O)3]: C 37.73, H 1.88, Ag
45.23%. Found: C 37.95, H 2.02, Ag 45.12%. IR (KBr): 3421 (br, s), 1677 (w), 1552 (w), 1532 (w), 1414 (s),
1196 (s), 1128 (s), 854 (w) and 763 (w) cm−1.

2.3. Crystallography

X-ray intensity data were measured on a Bruker SMART APEX CCD-based diffractometer
(Mo–Kα radiation, λ = 0.71073 Å, Karlsruhe, Germany) using the SMART and SAINT programs [27,28].
The crystal data was solved by direct methods and further refined by full-matrix least-squares
refinements on F2 using the SHELXL-97 software (Göttingen, Germany) and an absorption correction
was performed using the SADABS program (Göttingen, Germany) [29,30]. The remaining atoms were
found from successive full-matrix least-squares refinements on F2 and Fourier syntheses. Non-H
atoms were refined with anisotropic displacement parameters. The hydrogen atoms within the
ligand backbones were fixed geometrically at calculated distances and allowed to ride on the parent
non-hydrogen atoms. Details of the crystal parameters, data collection and refinement are summarized
in Table 1.

2.4. Catalysis Experiments

In a typical reaction, the catalytic reaction was conducted by adding propargylic alcohols (3 mmol),
catalyst (0.3 mmol% loading, based on each Ag site), triphenylphosphine (Ph3P, 2.5 mmol%) and
acetonitrile (CH3CN) (1 mL) in a 25 mL autoclave reactor, purged with 0.5 MPa CO2 under a constant
pressure for 10 min to allow the system to equilibrate. The vessel was set in an oil bath with frequent
stirring at the temperature of 50 ◦C for 30 h. At the end of the reaction, the reactor was placed into
an ice bath for 20 min and then opened. The catalysts were separated by centrifugation, and a small
aliquot of the supernatant reaction mixture was taken to be analyzed by 1H NMR to calculate the yields
of the reaction. The organic phase was collected and then purified by flash column chromatography
on silica gel using petroleum ether–ethyl acetate as an eluent to give the desired products.
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Table 1. Crystal data and structure refinements.

Compound 1

Empirical formula C90H54Ag12O27

Formula weight 2861.77

T/K 200(2)

Crystal system Monoclinic

Space group C 2/c

a/Å 31.9216(11)

b/Å 56.6381(18)

c/Å 11.0729(4)

α/o 90

β/o 97.905(2)

γ/o 90

V/Å3 19829.3(12)

Z 4

Dcalc/Mg m–3 0.959

µ/mm–1 1.191

F(000) 5496

Rint 0.1206

Data/parameters 17,459/672

GOF 1.052

R [I > 2σ(I)] a R1 = 0.0747
wR2 = 0.2088

R indices (all data) b R1 = 0.1357
wR2 = 0.2376

∆ρmax,min/eÅ–3 1.444/−0.783

CCDC number 1918824
a R1 = Σ||Fo| − |Fc||/Σ|Fo|; b wR2 = Σ[w(Fo

2
− Fc

2)2]/Σ[w(Fo
2)2]1/2.

3. Results and Discussion

3.1. Structure Description

The synthesis of 1 was starting with the raw materials of AgNO3 and H4TCPE under the
solvothermal reaction at 100 ◦C with the yield of 10%. Elemental and powder X-ray diffraction
(XRD) analyses indicated that the bulk samples of 1 consisted of a pure, single phase (Figure S5).
Single-crystal X-ray structural analysis revealed that 1 crystallizes in C2c space group. There are six
independent Ag ions and one and a half ligands in its asymmetric unit (Figure 1b). All the Ag (I)
ions are four-coordinated in a tetrahedral fashion and possess the same coordination environment,
which includes two µ2-O bridges, one µ-O atom and onelattice water molecules. The Ag (I) ions are
connected to form an infinite 1D chains (Figure 1d).

The H4TCPE ligands are well-ordered arranged and the eight carboxylic groups in each ligand
are all coordinated, acting as a µ4-bridge to connect each Ag chains extending the structure to the 3D
frameworks (Figure 2, see Figures S1 and S2 in the supplementary materials for details). 1 possesses
two kinds of channels along the c axis; including a triangular channel (A) and a hexagonal channel (B).
These two channels are edge-sharing each other, with the overall lengths of the edges approximately



Nanomaterials 2019, 9, 1566 5 of 12

16.8 Å, and thus one hexagonal channel is surrounded by six triangular channels. The diagonal
distances of the hexagonal channel are ranged from 31.1 to 33.8 Å. In the absence of guest molecules,
the effective free volume of 1 calculated by PLATON program, was proven to be 59.3% of the crystal
volume. The Ag chains are regarded as four-point-connected nodes, and the ligands are considered to
be the linkers. The 3D framework of 1 can be depicted with the Schläfli symbol of 4664

·7·8 (Figure S3).
Notably, the type of this framework is similar to the reported MOF PCN-222, which self-assembly is by
Zr ions and porphyrin ligand [31]. The major difference between these two MOFs is the vertex of each
hexagonal and triangular one-dimensional open channel. Unlike the metal oxide Zr6 clusters as the
vertices in PCN-222, the Ag chains in 1 are regarded as the edges of each hexagonal and triangular
channel, and the C=C bonds of the TCPE ligands are located at the vertices (Figure S4).
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Figure 2. The triangular channel (a) and a hexagonal channel (b) in 1; (c) Structure of 1 showing the
three-dimensional network with one-dimensional channels.

3.2. XPS Analysis and CO2 Sorption Studies

The XPS analysis of 1 was examined in the solid state. Both survey and high-resolution spectra
of Ag 3d are shown in Figure 3. The binding energy for the C 1s peak at 284.8 eV was used as a
reference. From the XPS survey spectrum, we can observe that the elements Ag, O and N were
contained in 1. In Figure 3b, two peaks at 374.7 and 368.8 eV are ascribed to Ag+ (3d3/2) and Ag+

(3d5/2), respectively [32].
To evaluate the porosity and affinity toward CO2 of this material, the CO2 sorption capability of 1

was evaluated. Before the measurement, the crystal samples were immersed in ethanol to exchange the
uncoordinated solvent molecules. The PXRD pattern of the activated sample is a match with the fresh
sample and calculated patterns, indicating the unchanged structure after desolvation (Figure S5), and
the TG curve of 1 has also been presented (Figure S6). Then, the outgassing process was conducted at
100 ◦C under high vacuum for 6 h to obtain the activated samples. First of all, for further confirmation
of the porosity, the N2 adsorption measurement of the activated 1 was carried out at 77 K (Figure S7)
and this indicated a high uptake of 927.4 cm3 g−1. The Brunauer-Emmett-Teller (BET) surface area was
calculated to be 1241.0 m2 g−1.
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As shown in Figure 4, The CO2 adsorption measurements for the activated 1 at 275 and 298 K are
reversible, and the CO2 absorbent amounts show a steady rise tendency as the increase of pressure
with the uptake of 55.4 cm3 g−1 (corresponding 2.47 mmol g−1) and 20.8 cm3 g−1 (0.928 mmol g−1) at
1 bar, respectively. These results give a strong evidence of the high porosity for this MOF material and
the possibility of adsorbing the CO2 molecules within the pores. We envision that the high CO2 uptake
ability could play a significant role in facilitating this material to activate and catalyze CO2 molecules
as a C1 source in the following catalysis studies.
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3.3. Dye Adsorption Properties

To verify the ability of this porous material to accommodate guest molecules, the dye adsorption
studies of 1 have been examined. The dye molecule rhodamine B (RhB, where the structure of RhB is
shown in the supplementary materials as Figure S8) was chosen for the adsorption experiments, not
only due to its excellent photophysical properties, such as long adsorption, long emission wavelength
and high fluorescence quantum yield [33], but also the suitable kinetic size with the window scale of the
hexagonal channel in 1. By immersing the 5 mg sample 1 in 10 mL aqueous solution containing RhB,
we can observe that the color of the solution has been gradually faded within 2 h. 10 µL supernatant of
the solution was taken at several time intervals and diluted for UV-Vis analysis. As shown in Figure 5,
the UV-Vis absorption spectra of RhB solution exhibited an intense absorption band centered at 554 nm,
which is assignable to the typical absorption band of RhB. With the addition of 1, the absorption
intensity of the maximum absorption peak decreases from 2.4 to 0.2 in 120 min and no additional
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decrease was observed after that. These results indicate the absorption of RhB molecules, which
are accessible into the pores of 1. We speculate that the π···π interactions and potential hydrogen
bonds between the framework and dye molecules play an intrinsic role in the adsorption process [34].
Additionally, the dye-adsorbed crystals, after the UV-vis measurement and being isolated from the
solution, have been further examined by confocal laser scanning microscopy. The bright-field images
and confocal images of the obtained samples were scanned at λem = 510–610 nm, exited by λex = 488 nm
through a 405/488 nm filter. A strong green fluorescence response can be observed in the bright-field
image that can be assigned to adsorbed RhB molecules. These results are consist with the UV-vis
experiments and suggest that the accessible pores and adsorption ability of 1 provides the superiority
for further catalysis studies.Nanomaterials 2019, 9, x FOR PEER REVIEW 7 of 12 
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3.4. Catalysis Studies

Our catalytic experiments were initially investigated for the carboxylic cyclization of propargylic
alcohols as the model reacted with CO2. In a typical experiment, the reactions were conducted in an
autoclave reactor using the propargyl alcohol (3 mmol) with CO2 purged to 0.5 MPa in 1 mL CH3CN
at 50 ◦C. 1H NMR analysis reveal that catalyst 1 (0.3 mol% loading, based on each Ag site) could act as
an effective heterogeneous catalyst for this catalysis reaction in the presence of 2.5 mol% triphenyl
phosphine (Ph3P), which afforded the 97% yield, and the TON value is 320 within 30 h (Table 2).
Control experiments suggest that no detectable conversion occurs in the absence of catalysts or the
additive Ph3P, and we replaced the Ph3P with other additives (such as, TBUP, DBU and TEA), which
also could not afford the high yields (20%, 32% and 18%, respectively). However, Ph3P itself was
ineffective to this reaction under the given conditions.

The high yield of our Ag-based catalytic system was mainly attributed to the abound presence
of Ag (I) ions capable of activating carbon–carbon triple bonds of the substrate propargyl alcohol.
As for the catalyst 1, this react ion was also carried out and underwent the smooth CO2 balloon at
room temperature to afford a low yield of 4.9%, suggesting that relatively high temperature and slight
CO2 pressure were required for the activation of the substrates. However, when we just increased
the pressure of CO2 to 1 MPa, the reaction yields were not remarkably increased under other fixed
conditions, and at a fixed CO2 pressure (0.5 MPa), the yields increased from 6.2 to 97% with an increased
temperature from 25 to 50 ◦C, but remained almost invariable with the temperature further increased to
80 ◦C (Figure 6). These results fully suggest that the activation of CO2 was not the rate-limit step, but the
activation of carbon–carbon triple bonds by the Ag (I) ions. Additionally, the removal of 1 by filtration
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after 18 h shut down the reaction, and no additional conversions were observed for another 18 h
under the same reaction conditions. This observation suggested that 1 features a typical heterogeneous
catalyst nature in the catalytic system and is stable enough to ensure that no leaching of metal ions
occurs during the catalysis process. The recyclability studies of catalyst 1 were also performed by
simple filtration, washed with dichloromethane and dried, and reused for successive rounds with fresh
Ph3P under the same conditions. The yields of cyclic carbonates were not significantly affected in the
five catalytic cycles (Figure S9), ranging from 97% to 90%, although the loss of small amounts of the
catalyst is unavoidable. IR spectroscopy of the catalyst after recycle reactions could match with the
fresh catalyst (Figure S10), indicating the structural integrity and chemical stability of 1.

Table 2. 1-catalyzed cyclization of propargylic alcohols with CO2.
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Entry R1 R2 Yield TON

1 H H 97% 320
2 Me H 94% 310
3 Et H 93% 310
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5 t-Bu H 78% 260
6 Cl H >99% 330
7 MeO H 97% 320
8 H Ph 28% 90

Reaction conditions: Propargylic alcohols (3 mmol), catalyst (0.3 mmol% loading, based on each Ag site), Ph3P
(2.5 mmol%), and CH3CN (1 mL) under CO2 (0.5 MPa), 50 ◦C and 30 h. The yields were determined by 1H NMR
analysis using durene as internal standard.
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Subsequently, several propargyl alcohols with various substituted R1 groups were performed for
the carboxylative cyclization with CO2 under the same reaction conditions, and no significant change
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in the conversion was observed which all gave high yields, except for the CMe3 group, which showed
a large decline in the reaction yield (78%, Entry 5). Moreover, changing a larger aromatic substrate in
the substituted R2 group of propargyl alcohols could also cause the yield and TON value to obvious
decreases (Entry 8). These results indicate that the electron-drawing or the electron-donating groups
on the phenyl of propargyl alcohol have less effect on the reaction yields, and the main factor affecting
the yield is the size of substrates.

It is postulated that the strong interaction between the substrate propargyl alcohol and our catalyst
existed as a significant factor to enhance the high conversion of the catalytic reaction. Combining the
analysis of dye absorption studies, we envision that the propargyl alcohol molecules were adsorbed
and activated within the channels of our MOFs. Thus, the size of the channels is also an important
factor that controls the efficiency of the conversion by influencing the transport of the substrates and
products through the channels, which shows the size-selectivity in the catalytic reaction. Additionally,
the unique decentralized silver (I) chains, which endow the specific alkynophilicity to activate C≡C
bonds, and thus greatly accelerate the efficient conversion of CO2 to α-alkylidene cyclic carbonates
in a heterogeneous manner. From a mechanistic point of view, the Ph3P plays a key role in the
promotion of CO2 fixation and activation in the first step of the catboxylative cycloaddition, which
the alcoholic hydroxyl was activated by the catalyst 1, and CO2 was activated by Ph3P to form the
carbonate intermediate (Figure 7). The O atom in hydroxyl group is more favorable to the electrophilic
attack of the C atom in CO2. Subsequently, a nucleophilic attack to the silver propargylic carbonate
intermediate that generated the Ag···C≡C bonds by π-activation occurred for the next intramolecular
ring-closing [35]. The corresponding carboxylative cyclization product is thus yielded with the process
of proto-demetallation and the regeneration of Ph3P [36].Nanomaterials 2019, 9, x FOR PEER REVIEW 3 of 12 
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4. Conclusions

In conclusion, a porous Ag(I)-based polymer has been synthesized by incorporating the
tetraphenylethylene moiety as the backbone, and proven to be an efficient heterogeneous catalyst for
the carboxylative cyclization of CO2 to α-methylene cyclic carbonates in excellent yields. The large
pores of 1 benefit for the adsorption of dye molecules and also allow the interaction and a fast
transportation of the substrate molecule within their microenvironments. The introduced Ag (I) chains
in the frameworks play an important role in the activation of subtract molecules for the internal alkynes
by π-activation. This approach provided a highly promising method for the development of more
practical industrial synthesis. Further work will focus on designing more efficient catalysts to optimize
such reactions by improving the conversion and shortening the whole reaction times.
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