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Background: N6-methyladenosine (m6A) methylation and ferroptosis assist

long noncoding RNAs (lncRNAs) in promoting immune escape in

hepatocellular carcinoma (HCC). However, the predictive value of m6A-

and ferroptosis-related lncRNAs (mfrlncRNAs) in terms of immune efficacy

remains unknown.

Method: A total of 365 HCC patients with complete data from The Cancer

Genome Atlas (TCGA) database were used as the training cohort, and half of

them were randomly selected as the validation cohort. A total of 161 HCC

patients from the International Cancer Genome Consortium (ICGC) database

were used as external validation (ICGC cohort).

Results: We first identified a group of specific lncRNAs associated with both

m6A regulators and ferroptosis-related genes and then constructed

prognosis-related mfrlncRNA pairs. Based on this, the mfrlncRNA signature

was constructed using the least absolute shrinkage and selection operator

(LASSO) analysis and Cox regression. Notably, the risk score of patients was

proven to be an independent prognostic factor and was better than the TNM

stage and tumor grade. Moreover, patients with high-risk scores had lower

survival rates, higher infiltration of immunosuppressive cells (macrophages and

Tregs), lower infiltration of cytotoxic immune cells (natural killer cells), poorer

immune efficacy (both immunophenoscore and score of tumor immune

dysfunction and exclusion), higher IC50, and enrichment of the induced Treg

pathway, which confirmed that themfrlncRNA signature contributed to survival

prediction and risk stratification of patients with HCC.
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Conclusions: The mfrlncRNA signature, which has great prognostic value,

provides new clues for identifying “cold” and “hot” tumors and might have

crucial implications for individualized therapy to improve the survival rate of

patients with HCC.
KEYWORDS

long noncoding RNA pairs, N6-methyladenosine (m6A) methylation, ferroptosis,
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Introduction

Hepatocellular carcinoma (HCC) is the leading cause of

premature death worldwide (1). In 2020, primary liver cancer

was the sixth most frequently diagnosed cancer and the third

major cancer-related cause of death, with approximately 906,000

new cases and 830,000 deaths (2). Its occurrence is a complex

process that involves multiple risk factors (3). Advances have

been made in the study of HCC pathogenesis in recent years. For

example, viruses, type 2 diabetes, obesity, and alcohol-associated

liver disease have been confirmed to be risk factors for HCC (4).

Moreover, PD-1/PD-L1 blockade has made great progress in

cancer immunotherapy, and it has been proven to dramatically

increase the 5-year survival rate of patients with HCC (5).

However, the underlying molecular mechanisms of HCC

remain largely elusive (6); only 20%–30% of patients generally

benefit from PD-1/PD-L1 blockade therapy (7, 8). Therefore, we

need to find more prognostic markers to stratify patients with

HCC according to the risks and perform individualized therapy

to improve the survival rate of patients with HCC.

Long noncoding RNAs (lncRNAs) are one of the main

regulatory factors of gene expression (9). The expression of

lncRNA not only affects transcription, translation, protein

modification, and other mechanisms but also affects the

inhibition, treatment, and prognosis of cancer through cellular

signaling pathways, playing a key role in tumorigenesis,

metastasis, prognosis, and diagnosis (10). Research has shown

that the signature constructed by lncRNAs can function as a

prognostic biomarker for cancer to improve the survival of

patients with cancer (11). It has been shown that lncRNA, a

potential biomarker, is important in tumor growth and

metastasis (12). Therefore, it is feasible to study the expression

of lncRNAs to evaluate the prognosis of HCC (13). Equally

important is N6-methyladenosine (m6A), a methylated

modification that occurs in RNA and is involved in the

cleavage, transportation, stability, and degradation of

noncoding RNA (14). It is widely present in the transcriptome

and has become a prominent topic in the field of tumorigenesis

research (15, 16). The methylation modification of m6A in
02
various tumors and its effects on RNA metabolism provide

new ideas and methods for the early diagnosis and treatment

of cancer (17). In addition, researchers have found that m6A

regulates ferroptosis through the autophagy signaling pathway

in hepatic stellate cells, and m6A modification-dependent

ferroptosis contributes to the treatment of liver fibrosis (18).

As a new form of iron-dependent oxidative cell death,

ferroptosis is of great importance and affects cytological

changes, such as increased mitochondrial membrane density

and cell shrinkage (19, 20), and can influence the development of

liver diseases by regulating intracellular iron levels, production

of intracellular reactive oxygen species, and lipid peroxides (21).

Ferroptosis also has a tumor-suppressive function and can be

used for cancer treatment (22). Interestingly, the researchers

found that sorafenib, the only approved first-line agent for

patients with HCC, induced ferroptosis (23). Therefore,

ferroptosis is of great importance in the treatment and

prognosis of HCC (24).

Recently, the construction of a prognostic model based on

lncRNA expression has received increasing attention. For

example, a 6-lncRNA signature was constructed to predict

recurrence-free survival, which provided new clinical evidence

for the accurate diagnosis and targeted treatment of patients

with HCC (25). However, the 6-lncRNA risk score based on the

risk model did not show a better prognostic value than some

important clinical traits, such as the TNM stage. Therefore, more

prognostic markers that are superior to clinical characteristics

need to be identified to evaluate the prognosis of HCC. Recent

evidence indicates that the combination of the two biomarkers

contributes to improving the accuracy of the model (26).

Recently, it has been reported that an m6A-related lncRNA

signature was ident ified to predict prognosis and

immunotherapy of HCC (27). The results showed that the

prognostic value of this model was superior to that of other

clinical traits such as TNM stage and tumor grade. However, the

receiver operating characteristic (ROC) curve established based

on the m6A-related lncRNA signature indicated that the area

under the curve (AUC) values at 1, 3, and 5 years were 0.708,

0.635, and 0.611, respectively. As a result, the value of the
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signature is acceptable; thus, more accurate prognostic models

are needed for the prognosis of HCC. Therefore, it is appropriate

to combine more biomarkers to construct a prognostic model

with better accuracy. Therefore, we aimed to develop an

mfrlncRNA signature based on a group of specific lncRNA

pairs associated with m6A regulators and ferroptosis-

related genes.

In this study, we first identified a group of specific lncRNAs

associated with both m6A regulators and ferroptosis-related

genes and then constructed prognosis-related mfrlncRNA

pairs. Based on this, we constructed the mfrlncRNA signature

and divided patients into high- and low-risk groups.

Subsequently, we further evaluated the guiding value of the

mfrlncRNA signature to immune efficacy, as well as immune

infiltration, drug sensitivity, and biological function in the

training cohort, validation cohort, and International Cancer

Genomics Consortium (ICGC) cohort, respectively.
Materials and methods

Data acquisition

RNA-seq transcriptome data (FPKM value) were obtained

from The Cancer Genome Atlas (TCGA) database (https://portal.

gdc.cancer.gov). A total of 424 data files containing HCC

transcriptome data were downloaded. The same applies to

patient clinical information, whose data category was set as

“clinical” and the data format set as “BCR XML,” containing

377 data files. Transcriptome data were annotated using human

gene profiles to obtain a list of mRNAs and lncRNAs. Patients

with multiple locus samples had their gene expression replaced by

the average of the multiple samples. If the same gene is detected

more than twice, the expression value of the corresponding gene is

replaced by its average value. Patients who died on the day of

surgery were excluded (28, 29). Finally, 50 normal and 365 tumor

samples were enrolled in our study. Half of the HCC samples were

randomly selected to form the validation cohort, and the

prognostic value of the mfrlncRNA signature was validated. A

total of 365 HCC patients with complete data were used as the

training cohort, and half of them were randomly selected as the

validation cohort. Analysis of clinicopathological features of

patients with lung adenocarcinoma in training and validation

cohorts is shown in Supplementary Table S1. There were no

statistically significant differences in clinicopathological features

between the training and validation cohorts. The average survival

time for the training cohort was 2.045 years, with 121 deaths

within 5 years. The mean survival time in the validation cohort

was 1.995 years, with 55 deaths within 5 years.

The ICGC database provides sequencing results of

transcriptional samples from a variety of tumor tissues,

including hepatocellular carcinoma. RNAseq data of 161 cases

of hepatocellular carcinoma (LICA-FR) were obtained from the
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ICGC database (https://dcc.icgc.org/releases/current/Projects),

and relevant analysis was considered external validation.
Acquisition of mfrlncRNA pairs

A total of 502 frlncRNAs were obtained according to the

correlation analysis of 214 ferroptosis-related genes and 14,080

lncRNAs, with the following parameters: R = 0.5, p = 0.001. A

total of 108 mfrlncRNAs were obtained according to the

correlation analysis of 23 m6A regulators and 502 frlncRNAs

using the following parameters: R = 0.5, p = 0.001. A

coexpression network was used to visualize the coexpression

relationships. A difference analysis was conducted to identify

mfrlncRNAs that were differentially expressed between normal

and tumor samples with the following thresholds: logFC = 1 and

FDR = 0.05. According to the iteration loop, the expression of

two mfrlncRNAs in each mfrlncRNA pair was compared to

construct a 0-or-1 matrix. Taking a mfrlncRNA pair as an

example, the expression level of mfrlncRNA A/mfrlncRNA B

was defined as “1” when the expression level of mfrlncRNA A

was greater than mfrlncRNA B, otherwise, it was defined as “0.”

When the samples with mfrlncRNA pair expression levels of “0”

and “1” account for 20%–80% of all samples respectively, the

mfrlncRNA pair was retained.
Construction of mfrlncRNA signature

Survival-related mfrlncRNA pairs were identified using

univariate Cox regression analysis. In total, 35 mfrlncRNA

pairs were screened using LASSO regression, and 16 optimal

mfrlncRNA pairs with the minimum error used to construct the

mfrlncRNA signature were identified using Cox regression.

Based on the mfrlncRNA signature, the risk score of patients

with HCC was evaluated according to the following formula:

risk score = o
n
k=1coef mfrlncRNA pairk

� �
∗ expr mfrlncRNA pairk

� �

According to the risk score, a ROC curve was drawn, and the

AUC was calculated to check the accuracy of the mfrlncRNA

signature. Maximization of the sum of sensitivity and specificity

was taken as the optimal cutoff point to divide the high- and low-

risk populations. Kaplan–Meier analysis was performed between

the high- and low-risk populations to prove that the risk score

can be used as an independent clinical prognostic predictor.

Subsequently, the risk score was compared with other clinical

traits using univariate and multivariate Cox regression analyses.

Since two rare lncRNAs were not detected in the sequencing

results of the ICGC database, corresponding mRNA precursors

or small nuclear RNAs with the same transcription efficiency

were used to replace them, so as to construct the risk model

successfully. AC026356.1 [ENSG00000274964, novel transcript,

sense intronic to bicaudal D homolog 1 (BICD1)] was replaced
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by BICD1. Small nucleolar RNA, H/ACA Box 74A

(SNORA74A), encoded by the second intron of the SNHG4

(U19H) gene, was used to replace its host gene SNHG4 (30, 31).

Subsequently, we calculated the risk scores of 161 patients based

on the previous model coefficients and classified these 161

patients into high- and low-risk groups according to risk scores.
Immune infiltration analysis

Immune infiltration between high- and low-risk populations

was analyzed using several algorithms as follows: First, single-

sample gene set enrichment analysis (ssGSEA), which is an

extension of the GSEA method, was used to indicate the absolute

degree of enrichment of the gene set in patients based on

transcriptome data (32). Second, the estimation of stromal and

immune cells in malignant tumor tissues using expression data

(ESTIMATE) was used to assess the purity of tumors according

to the analysis of stromal and immune cells (33). Finally, cell-

type identification by estimating relative subsets of RNA

transcripts (CIBERSORT), based on gene expression data, was

used to estimate the abundance of member cell types in a mixed

cell population (34).
Prediction analysis of immune efficacy

Immune efficacy was analyzed using the LIHC module

immunotherapy score (http://tcia.at/). Samples with an immune

efficacy score of NA were excluded. The immune efficacy score was

used to analyze the differences in immune efficacy between the

high- and low-risk populations. Immune checkpoints were

analyzed to explore the differences in immune efficacy.
Function analysis

According to the difference analysis, differentially expressed

genes were obtained with the thresholds set as follows: logFC = 1,

p = 0.001. The duplicated genes were averaged, and genes with

low content in all the samples were deleted. The functions of

distinct genes between high- and low-risk populations were

analyzed using Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) analyses. The annotated gene

set file selected was c7.all.v7.4.symbols.gmt (immunologic

signatures). Pathway enrichment was analyzed according to

GSEA with the following threshold: p = 0.05.
Statistical analysis

Statistical analyses were conducted using R software 4.0.4

obtained (www.r-project.org). Survival, LASSO, and functional
Frontiers in Immunology 04
analyses were performed based on the Kaplan–Meier “survival”

package, “glmnet” package, and “enrichplot” package,

respectively. With the “rms” package, the nomogram and

calibration plot were analyzed. Half inhibitory concentration

(IC50) was used to represent drug sensitivity, and chemotherapy

response prediction was performed using R software with the

“pRRophetic” package. Statistical significance was set at p < 0.05.
Result

Construction of mfrlncRNA signature

To identify m6A- and ferroptosis-related lncRNAs

(mfrlncRNA), correlation coefficients between 14,080 lncRNAs

and 201 ferroptosis-related genes (ferrGene) were compared

according to coexpression, and 502 ferroptosis-related lncRNAs

(frlncRNAs) were identified (Figure 1A, R = 0.5, p = 0.001).

Using the same method, 502 frlncRNAs and 23 m6A regulators

were further coexpressed to obtain mfrlncRNAs (Figure 1B, R =

0.5, p = 0.001), and a total of 108 mfrlncRNAs were identified.

According to the difference analysis, 84 differentially

expressed mfrlncRNAs were identified between the normal

and tumor groups (Figure 2A, FDR = 0.05, logFC = 1). After

the construction of 1,619 mfrlncRNA pairs, a univariate Cox

analysis was performed to screen 129 prognostic mfrlncRNA

pairs (p = 0.01). Subsequently, 35 more precise mfrlncRNA pairs

were identified according to LASSO analysis (Figures 2B, C). The

mfrlncRNA signature was constructed based on 16 mfrlncRNA

pairs using Cox proportional hazard regression (Figure 2D).

The expression of each mfrlncRNA pair multiplied by the

coefficient was calculated to obtain risk scores. A ROC was

drawn, and an AUC was calculated to demonstrate the good

accuracy of the mfrlncRNA signature (Figure 2E). The 1-, 3-,

and 5-year ROC curve of the optimal model was 0.831, 0.850,

and 0.840, respectively, proving that the diagnostic value of the

mfrlncRNA signature was superior (Figure 2F). Maximization of

the sum of sensitivity and specificity was taken as the optimal

cutoff point (Figure 2G, cutoff = 0.703). Based on the cutoff

point, 365 samples were stratified into 146 high- and 219 low-

risk samples.
Prognostic value of mfrlncRNA signature

The prognostic value of the risk score was analyzed in the

training cohort. Based on the clinical data of 365 HCC patients,

the independent prognostic analysis showed that the area under

the ROC curve of the risk score was significantly better than that

of other clinical traits (Figure 3A). Therefore, the risk score

calculated from the mfrlncRNA signature had a better

prognostic value. The risk assessment, risk score, and survival

for each case are shown in Figures 3B, C, respectively. This
frontiersin.org
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B

A

FIGURE 1

Generation of mfrlncRNA. (A) The coexpression network of 201 ferroptosis-related genes (ferrGenes) and 14,080 lncRNAs, named as
ferroptosis-related lncRNA (frlncRNA, R = 0.5, p = 0.001). (B) The coexpression network of 23 m6A regulators and 502 frlncRNAs, named as
m6A- and ferroptosis-related lncRNA (mfrlncRNA, R = 0.5, p = 0.001).
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FIGURE 2

Construction of a prognostic signature based on mfrlncRNA pairs. (A) Heatmap of 84 differentially expressed mfrlncRNAs between normal and
tumor groups (FDR = 0.05, logFC = 1). (B) Crossvalidation for tuning parameter selection in the LASSO model. (C) LASSO coefficient profiles of
35 mfrlncRNA pairs. (D) The forest map indicated 16 mfrlncRNA pairs identified by Cox regression, used for the construction of the mfrlncRNA
signature. (E) The ROC of mfrlncRNA signature, whose maximum AUC value was 0.831. (F) The 1-, 3-, and 5-year ROC of the optimal model
was 0.831, 0.850, and 0.840, respectively. (G) Risk scores for 365 patients with HCC; the maximum inflection point was the cutoff point
(cutoff = 0.703). mfrlncRNA, m6A- and ferroptosis-related lncRNA. LASSO, least absolute shrinkage and selection operator; OS, overall survival;
HCC, hepatocellular carcinoma; ROC, receiver operating characteristic curve; AUC, area under the curve.
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FIGURE 3

Prognostic value of mfrlncRNA signature. (A) A comparison of 1-year ROC curves with other common clinical traits indicated the
advantage of the risk score in the training cohort. (B, C) Risk scores (B) and survival outcome (C) of each sample in the training cohort
were shown. (D) Kaplan–Meier analysis for OS of HCC patients based on the risk stratification in the training cohort. (E–H) Prognostic
value of mfrlncRNA signature in the validation cohort. HCC, hepatocellular carcinoma; OS, overall survival.
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showed that as the patient’s risk score increased, the patient’s

survival time decreased and the number of deaths increased,

proving that a higher risk score indicated poor survival. OS of

HCC patients was compared according to Kaplan–Meier analysis,

and patients with a low-risk score had a better prognosis than

those with a high-risk score (Figure 3D). Similar results were

observed in the validation cohort (Figures 3E–H).

Correlations between clinical traits and prognostic values

were also analyzed in the training cohort. The forest plot showed

that clinical staging and risk score were independent prognostic

factors, and poor prognosis was significantly associated with

high-risk scores in both the univariate and multivariate Cox

regression analyses (Figure 4A). The scatter plot showed that

there were differences in the risk scores of different TNM stages,

indicating a correlation between the risk scores and TNM stage

(Figure 4B). Therefore, TNM staging was not included in the

subsequent nomogram model. The tumor grade was similar to

the TNM stage, and the risk score also correlated with the tumor

grade (Figure 4C). To predict the patients’ 1-, 3-, and 5-year

survival rates, a nomogram plot was drawn based on clinical

traits (Figure 4D). The total score was determined based on

individual scores and contributed to the survival prediction. The

calibration curves of the model showed a high degree of

agreement between the predicted and observed survival

probabilities in the training cohort (Figure 4E). The AUC

values (Figure 4F) were all greater than 0.8, indicating that the

nomogram based on the mfrlncRNA signature had good

accuracy. Although the TNM stage had little significance for

survival prediction according to multivariate Cox regression, the

mfrlncRNA signature still showed good prognostic value in the

validation cohort (Figures 4G–L).
Immune infiltration and efficacy
prediction of mfrlncRNA signature

According to ssGSEA analysis, 11 of the 29 immune

signatures showed significant differences in immune

infiltration between the high- and low-risk populations in the

training cohort (Figure 5A). In addition, the stromal score was

higher in the low-risk population than in the high-risk

population according to the ESTIMATE analysis (Figure 5B,

p < 0.05). The same calculation was applied to the validation and

ICGC cohorts, and the results were similar to those of the

training cohort. Four immune signatures showed significant

dissimilarities in the training, validation, and ICGC cohorts,

such as activated dendritic cells (aDCs), macrophages, major

histocompatibility complex (MHC) class I, and regulatory T cells

(Tregs) (Figure 5C; Supplementary Figure S1A). Similar to the

training cohort, the stromal score in the validation cohort was

higher in the low-risk population (Figure 5D).

The CIBERSORT algorithm was used to calculate the

infiltration of 22 immune cells to compare immune infiltration
Frontiers in Immunology 08
between the high- and low-risk populations in the training

cohort (Figure 6A). Six immune cells were confirmed to have

different infiltrations between high- and low-risk populations in

both the training and validation cohorts, such as CD8+ T cells,

memory resting CD4+ T cells, resting NK cells, M0

macrophages, M1 macrophages, and neutrophils. Similar

results were observed in the validation cohort (Figure 6F).

Four immune cells were confirmed to have different

infiltrations between high- and low-risk populations in the

training and ICGC cohorts, such as memory B cells, naive

CD4+ T cells, activated NK cells, and activated dendritic cells

(Supplementary Figure S1B).

For the prediction of immunotherapeutic response based on

the mfrlncRNA signature, the immunophenoscore (IPS) of

patients who received different treatments was calculated, such

as patients with no treatment, anti-CTLA4 monotherapy, anti-

PD1 monotherapy, or combination therapy. In the training

cohort, the violin diagram showed that immune efficacy was

dissimilar between the high- and low-risk populations

(Figures 6B–E). Moreover, patients in the low-risk population

had higher scores, indicating that low-risk patients had greater

efficacy in receiving immunotherapy and were more suitable for

immunotherapy. Unfortunately, in the validation cohort, only

the immune response of patients without treatment or with anti-

CTLA4 monotherapy was similar to that in the training cohort.

(Figure 6G–J). In addition, we also analyzed the guiding value of

the mfrlncRNA signature for tumor immune dysfunction and

exclusion (TIDE), another immune response indicator,

suggesting that the patients with high risk had more potential

for immune escape and worse efficacy in receiving

immunotherapy (Supplementary Figure S1C). Furthermore,

s imilar results were obtained in the ICGC cohort

(Supplementary Figure S1D), which was consistent with

previous predictions of immune efficacy based on IPS.

To preliminarily analyze the reasons for the difference in

immune efficacy between the high- and low-risk populations, the

expression of immune checkpoints was analyzed in three

cohorts. It was found that eight immune checkpoints were

upregulated in the high-risk population in the training,

validation, and ICGC cohorts, such as CTLA4, CD80,

HAVCR2 (TIM3), LGALS9, CD86, TNFRSF4 (OX40),

TNFRSF9 (4-1BB), and TIGIT (Figures 7, S2A–H).

Furthermore, VSIR expression (p < 0.05, Figure 7H) was also

upregulated in the high-risk population in the ICGC cohort

(Supplementary Figure S2I).

GO and KEGG analyses were performed to reveal immune

function differences between high- and low-risk subgroups. GO

enrichment analysis indicated that the top 10 enrichment results

in the three categories of biological process, cellular component,

and molecular function, such as ribonucleoprotein complex

biogenesis, spliceosomal complex, and cadherin binding

(Figure 8A). According to the KEGG enrichment analysis, the

bubble map shows the top 30 enrichment pathways, including
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FIGURE 4

Development of a nomogram based on mfrlncRNA signature used to predict the survival of HCC patients. (A) Cox regression for the mfrlncRNA
signature in the training cohort. Red represents multivariate Cox regression and green represents univariate Cox hazard ratio analysis. (B, C) The
differences in stage (B) and tumor grade (C) between high- and low-risk populations in the training cohort. (D) Nomogram for predicting the 1-,
3-, and 5-year overall survival of patients with HCC in the training cohort. (E) Calibration curve for predicting OS in the training cohort. (F) The
1-, 3-, and 5-year ROC of the nomogram model were 0.788, 0.785, and 0.775 in the training cohort, respectively. (G–L) The development of a
nomogram in the validation cohort. HCC, hepatocellular carcinoma; ROC, receiver operating characteristic curve.
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spliceosome, nucleocytoplasmic transport, and cell cycle

(Figure 8B). GSEA was used to verify the immune signatures

of the high-risk population, and the first 10 active pathways in

the high-risk population were visualized to form a GSEA

enrichment map, indicating that the high-risk population was

significantly enriched with these genes. Briefly, the results of

functional enrichment analysis revealed potential pathways or

mechanisms that were activated during tumorigenesis and

development, which may help us to evaluate the prognosis of

HCC patients (Figure 8C).
Chemotherapy response prediction
based on mfrlncRNA signature

To predict the chemotherapy response in the training

cohort, antitumor drugs for liver cancer were selected for

chemotherapy response prediction. IC50 was used to represent

drug sensitivity. The IC50 of some HCC drugs, such as axitinib,

dasatinib, docetaxel, erlotinib, gefitinib, BMS.708163,

metformin, nutlin.3a, PD.0332991, and temsirolimus, were

found to be higher in the high-risk population than in the

low-risk population, suggesting that high-risk patients have
Frontiers in Immunology 10
poorer efficacy (Figures 9A–J). The same results were also

observed in the validation cohort (Figures 9K–T). In the ICGC

cohort, it is surprising that the IC50 of some HCC drugs, such as

BMS.708163 and gefitinib, were found to be higher in the high-

risk population than in the low-risk population (Supplementary

Figures S2J–M), which was consistent with previous predictions

of chemotherapy response in the training and validation cohorts.
Discussion

In this study, we first identified a group of specific lncRNAs

associated with both m6A regulators and ferroptosis-related

genes and then constructed prognosis-related mfrlncRNA

pairs. Based on this, the mfrlncRNA signature was constructed

using the LASSO analysis and Cox regression. Notably, the risk

score of patients was proven to be an independent prognostic

factor and was better than the TNM stage and tumor grade.

Moreover, patients with high-risk scores had lower survival

rates, higher infiltration of immunosuppressive cells

(macrophages and Tregs), lower infiltration of cytotoxic

immune cells (NK cells), poorer immune efficacy, higher IC50,

and enrichment of the induced Treg pathway. In conclusion, the
B

C D

A

FIGURE 5

The characteristics of immune infiltration based on mfrlncRNA signature. (A) Differential analysis of 29 immune signatures according to ssGSEA
analysis between high- and low-risk populations in the training cohort. (B) Differential analysis of stromal scores according to ESTIMATE analysis
between high- and low-risk populations in the training cohort. (C, D) The characteristics of immune infiltration based on mfrlncRNA signature in
the validation cohort. The asterisks represented the statistical p-value (p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001). ssGSEA, single-sample
gene-set enrichment analysis; ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data.
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mfrlncRNA signature was shown to contribute to the survival

predict ion and risk strat ificat ion of pat ients with

HCC (Figure 10).

As a research hotspot in the field of cancer, diagnosis, and

treatment (35), lncRNAs are associated with tumorigenesis and

metastasis through aberrant expression and mutations (36).

Some lncRNAs act as tumor suppressors, whereas others

promote tumor development (37). Some lncRNAs have been

reported to be potential biomarkers for patients with HCC alone,

either with high sensitivity or in combination with other

molecules to improve specificity (38). Studies have shown that

lncRNA-D16366 is a potential biomarker for the diagnosis and

prognosis of HCC (39) and that a 25-lncRNA prognostic

signature can be identified for early recurrence in HCC (40).

Although the lncRNA signature showed some prognostic

benefits for patients with HCC, the large number of variables

and lack of precision were its drawbacks. Inspired by the

construction of a prognostic model based on the combination

of two prognostic biomarkers (41), we attempted to combine

m6A and ferroptosis, which have been reported to be prognostic

biomarkers (42, 43), to improve the accuracy of the lncRNA

prognostic signature. In this study, a group of specific lncRNAs

associated with both m6A regulators and ferroptosis-related
Frontiers in Immunology 11
genes was identified (Figures 1, 2A) and used to construct the

mfrlncRNA signature. Based on the combination of three

prognostic biomarkers, the mfrlncRNA signature had better

accuracy, with AUCs for 1-, 3-, and 5-year survival rates of

0.831, 0.850, and 0.840, respectively (Figures 2E–G). In addition,

the specific expression of identified lncRNAs is required for the

construction of the common lncRNA signature. As a result,

normalization needs to be performed to decrease batch effects

before clinical application (44). However, this problem can be

solved by using lncRNA pairs, as Hong et al. constructed

immune-related lncRNA pairs to perform prognostic analysis

for HCC (45). This method was also applied in this study. The

mfrlncRNA signature was constructed using mfrlncRNA pairs,

which needed to be compared to the pairs instead of an exact

expression of every lncRNA (Figures 2B–D). In conclusion, it

was a great innovation to construct an mfrlncRNA signature,

which had greater predictive power than common clinical

prognostic models.

Recently, a variety of clinical traits, such as age, sex, tumor

grade, TNM stage, and treatment, have been used to construct a

nomogram to predict the survival of patients with HCC. For

example, nomogram development was constructed using clinical

traits such as treatment, survival, and prognostic factors of
B C
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FIGURE 6

The prediction of immunotherapeutic response based on mfrlncRNA signature. (A) The infiltration of 22 immune cells according to CIBERSORT
analysis between high- and low-risk populations in the training cohort. (B–E) IPS between high- and low-risk populations in the training cohort.
(F) The infiltration of 22 immune cells in the validation cohort. (G–J) IPS between high- and low-risk populations in the validation cohort.
CIBERSORT, Cell-type Identification by Estimating Relative Subsets of RNA Transcripts; IPS, immunophenoscore.
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HCC (46). A practical nomogram was constructed to predict the

prognosis of young patients with HCC after curative liver

resection (47). Therefore, it is feasible to evaluate the

prognosis of patients with HCC based on clinical traits.

Compared to the above studies, our prognostic model is more

valuable because the risk score calculated based on the

mfrlncRNA signature as an independent prognostic factor was

better than common clinical traits such as TNM stage and tumor

grade in predicting the OS for HCC (Figures 3A, E). The

mfrlncRNA signature contributed to building a nomogram

with better accuracy in predicting the survival rate of patients

with HCC (Figure 4). In addition, the mfrlncRNA signature has

great advantages because it contributes to the risk stratification

of patients with HCC (Figures 3B, C, F, G). Tumor stratification

is of great importance for patients to achieve better clinical

outcomes (48). For example, integrative molecular HCC

subtypes based on significantly mutated genes were reported

to provide potential directions for future therapeutic efforts (49).

HCC subtypes based on immunologic genes contribute to the

selection of HCC treatment modalities (50). In this study, we

identified two distinct risk populations with different prognoses,

which may help develop different therapeutic strategies

(Figures 3D, H). For example, risk stratification based on the

mfrlncRNA signature has been confirmed to contribute to the

prediction of chemotherapy response. Based on drug sensitivity
Frontiers in Immunology 12
analysis, we explored commonly used chemotherapeutic agents

for HCC, such as axitinib, dasatinib, docetaxel, erlotinib,

gefitinib, metformin, nutlin.3a, and temsirolimus (51–58). The

results indicated that patients with high-risk scores had a lower

sensitivity to multiple chemotherapy drugs for HCC (Figure 9).

Briefly, based on the mfrlncRNA signature, we can allocate

patients to more reasonable curative procedures that provide a

survival benefit, thus improving the survival rate of patients

with HCC.

HCC is a representative inflammation-induced cancer, and

immune cells have been reported to play pro- or antitumor roles

in HCC (59). For example, NK cells have strong antitumor

activity and contribute to immunotherapeutic approaches for

HCC treatment (60). It has been reported that macrophages,

which are proinflammatory, promote tumor formation by

suppressing the antitumor immune response (61). The

infiltration of Treg cells has also been reported to promote

tumor formation (62). As critical regulators of gene expression

in the immune system (63), lncRNAs are of great importance in

directing the development of diverse immune cells and in

controlling dynamic transcriptional programs (64). For

example, lncRNA MIAT correlates with immune infiltrates and

drug reactions in HCC (65). lncRNA TCL6, which was shown to

correlate with immune cells, showed a poorer prognosis in

patients with breast cancer (66). In this study, the mfrlncRNA
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FIGURE 7

Expression of immune checkpoints based onmfrlncRNA signature. (A–H) The expression of immune checkpoints between high- and low-risk
populations in the training cohort. (I–P) Expression of immune checkpoints in the validation cohort. (p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001).
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B
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FIGURE 8

Functional analyses based on mfrlncRNA signature. (A) Significantly enriched GO terms according to differential genes between high- and low-
risk populations. (B) Top 30 most enriched KEGG pathways of the common differently genes between high- and low-risk populations (C) GSEA
enrichment analysis showing the activation states of biological pathways in high- and low-risk populations. GO, gene ontology; KEGG, Kyoko
Encyclopaedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis.
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signature, which was constructed using a group of specific

lncRNAs, was able to evaluate the immune infiltration of

patients with HCC. Based on the risk stratification, it was

exciting that patients with high-risk scores had higher
Frontiers in Immunology 14
infiltration of immunosuppressive cells, such as macrophages

and Tregs, as well as lower infiltration of cytotoxic immune cells,

such as NK cells (Figures 4, 5A, F). Therefore, patients with a

high-risk score appeared to have an inflammatory
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FIGURE 9

Prediction of drug sensitivity based on mfrlncRNA signature. (A–J) Prediction of drug sensitivity between high- and low-risk populations in the
training cohort. (K–T) Prediction of drug sensitivity in the validation cohort.
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microenvironment that contributed to the development of HCC.

In addition, lncRNAs may contribute to the discrimination of

“cold” and “hot” HCC tumors. For example, it was proved that

necroptosis-related lncRNAs can be used to distinguish the cold

and hot tumors in gastric cancer (67). As opposed to a hot tumor,

the cold tumors lacked T-cell infiltration and were involved in

initial resistance to immune checkpoint inhibitors (68). In this

study, we found that CD8+ T cells, memory resting CD4+ T cells,

and resting NK cells were downregulated in patients with a high-

risk score than in those with a low-risk score. This suggested that

high- and low-risk populations based on mfrlncRNA signature

correspond to cold and hot tumors, respectively. Patients with

high-risk scores had poorer immune efficacy than those in the

low-risk population (Figures 6B–E, G–J). Furthermore, the

expression of immune checkpoints was analyzed in this study

to preliminarily explore the reasons for the difference in immune

efficacy between the high- and low-risk populations. In recent

years, inhibitory immune checkpoints, such as CTLA-4, have

been shown to suppress antitumor immune responses in HCC

(69). Recent studies have shown that immune checkpoint

inhibitors have made an indelible mark in the field of cancer

immunotherapy (70), and tumor immunotherapy has proven to

be of great importance (71). Therefore, it is important to monitor

the expression levels of immune checkpoints to evaluate

immunotherapy efficacy. In our study, we found that patients

with high-risk scores had an upregulation of immune

checkpoints (Figure 6), which means that the mfrlncRNA

signature has a potential predictive significance for the efficacy

of immunotherapy. Briefly, the results showed that the
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mfrlncRNA signature could predict survival rates and efficacy

in patients with HCC.

External validation is necessary to determine the

reproducibility and generalizability of the prediction model for

HCC patients (72). Therefore, in addition to the validation

cohort, external validation, which makes our conclusions more

convincing, was performed based on HCC data from the ICGC

database. However, in the available HCC data of the ICGC

database, two lncRNAs, AC026356.1 and SNHG4 in the

mfrlncRNA signature, were not detected. Corresponding

mRNA precursors or small nuclear RNAs with the same

transcription efficiency were used to replace them respectively,

so as to construct the risk model successfully. AC026356.1

(ENSG00000274964), as a novel transcript, is a sense intronic

to BICD1. Herein, AC026356.1 was replaced by BICD1.

SNORA74A was encoded by the second intron of host gene

SNHG4 (also named U19H). Therefore, SNORA74A was used

to replace SNHG4 (30, 31). The results of the external validation

nicely duplicated and confirmed the previous immune

infiltration, immune efficacy, and chemotherapy responses in

the training and validation cohorts, which suggested that the

mfrlncRNA signature was able to excellently predict the efficacy

of patients with HCC.

Admittedly, the present study has several limitations. First,

we constructed the validation cohort by randomly sampling half

of the HCC samples from TCGA database, and then used HCC

samples from the ICGC database as external validation (ICGC

cohort). However, further experimental studies are required to

verify the reliability of these results. In addition to this, more
FIGURE 10

Schematic diagram. A group of specific lncRNAs associated with both m6A regulators and ferroptosis-related genes was identified using correlation
analysis and named m6A- and ferroptosis-related lncRNA (mfrlncRNA). The mfrlncRNA signature was constructed based on mfrlncRNA pairs and
patients were stratified into high- and low-risk populations. Through further exploration, the prognostic value of the mfrlncRNA signature was evaluated
as well as immune infiltration, immune efficacy, and drug sensitivity.
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sufficient samples need to be collected to confirm the value of the

mfrlncRNA signature in the future. Second, the mfrlncRNA

signature has a good prognostic value for diagnosis and

prognosis, but the value of early diagnosis needs to be further

studied. Third, no suitable data from the GEO database are

available to validate our results. Fourthly, since this study is

purely a biological information analysis, more cohort studies are

required to confirm the outcomes of the clinical model before it

is applied to the clinic. Finally, there are some differences

between the results of the training cohort, the validation

cohort, and even the ICGC cohort. The potential reason

behind this phenomenon probably lies in the small sample

sizes of the verification cohort and the ICGC cohort. After all,

the sample size of the validation cohort was only half of the

training set, at 183 cases. The sample size of the ICGC cohort

was only 161 cases. However, the verification results were

basically in a reasonable and acceptable range.

In conclusion, the mfrlncRNA signature based on 16 optimal

mfrlncRNA pairs not only has good prognostic value and

prediction accuracy but also helps in risk stratification and

predicts the immune efficacy and drug sensitivity of patients

with HCC. As a result, the mfrlncRNA signature provides new

clues for identifying cold and hot tumors to optimize the status

of immune surveillance and might have crucial implications for

individualized therapy to improve the survival rate of patients

with HCC.
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