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Abstract: Quantifying the quality of upper limb movements is fundamental to the therapeutic process
of patients with cerebral palsy (CP). Several clinical methods are currently available to assess the
upper limb range of motion (ROM) in children with CP. This paper focuses on identifying and
describing available techniques for the quantitative assessment of the upper limb active range of
motion (AROM) and kinematics in children with CP. Following the screening and exclusion of
articles that did not meet the selection criteria, we analyzed 14 studies involving objective upper
extremity assessments of the AROM and kinematics using optoelectronic devices, wearable sensors,
and low-cost Kinect sensors in children with CP aged 4–18 years. An increase in the motor function
of the upper extremity and an improvement in most of the daily tasks reviewed were reported. In the
population of this study, the potential of wearable sensors and the Kinect sensor natural user interface
as complementary devices for the quantitative evaluation of the upper extremity was evident. The
Kinect sensor is a clinical assessment tool with a unique markerless motion capture system. Few
authors had described the kinematic models and algorithms used to estimate their kinematic analysis
in detail. However, the kinematic models in these studies varied from 4 to 10 segments. In addition,
few authors had followed the joint assessment recommendations proposed by the International
Society of Biomechanics (ISB). This review showed that three-dimensional analysis systems were
used primarily for monitoring and evaluating spatiotemporal variables and kinematic parameters of
upper limb movements. The results indicated that optoelectronic devices were the most commonly
used systems. The joint assessment recommendations proposed by the ISB should be used because
they are approved standards for human kinematic assessments. This review was registered in the
PROSPERO database (CRD42021257211).

Keywords: Kinect; kinematics; active range of motion; measurement; upper limb; cerebral palsy

1. Introduction

Kinematics is the study of motion without attending to the forces that create the move-
ment. In this sense, the kinematics of the human body describes the motion, type, direction,
magnitude, location in space, and rate of change of velocity of its bony segments [1].

A kinematic analysis describes the biomechanical characteristics of motor function
and provides objective and accurate information [2]. However, the accuracy is dependent
on the measuring instrument used. This type of measurement is relevant for a better
understanding of any risks or deficiencies involving specific parts of the human body. It
contributes to clinical decision-making concerning the need and type of surgery, drug
administration, and even the assessment of treatment efficacy [3]. In clinical settings, a post-
stroke recovery analysis is a recommended application [4]. However, a kinematic analysis
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is also used to assess the upper limb movement performance of patients with clinical
conditions such as CP [5]. CP is associated with a set of disorders that cause movement and
postural impairments, resulting in limitations in daily functional activities [6]. According
to the World Health Organization statistics, it is estimated that more than one billion
individuals have a physical limitation, comprising approximately 15% of the world’s
population [7]. CP is the most recurrent and expensive cause of motor limitation in
infancy [8]. Its frequency is 2.4 cases per 1000 infants born; in very pre-term infants, this
figure increases to 40–100 cases per 1000 [9]. An early diagnosis can significantly help when
selecting an adequate rehabilitation technique and improves the rehabilitation process
of the patient [10]. An efficient, objective, and accurate measurement of the upper limb
motor performance is relevant primarily to monitor the use of the upper limbs in the daily
activities of people with CP and to improve the patient’s rehabilitation treatments. Clinical
ROM measurements are essential for monitoring the progress of motor rehabilitation as
these assess the degree of impairment and evolution of the patient [1]. In general terms,
there are two ways to measure a ROM: the passive range of motion (PROM) and the AROM.
A PROM analysis involves a method of movement assisted by a person or by a mechanical
device. In this paper, we considered presenting the techniques of a self-assisted assessment
of motor skills. For this reason, this review focuses on the former. The AROM of the
upper limbs is an essential issue in a patient’s rehabilitation process because it provides
objective and helpful information in the diagnosis and clinical follow-up of the physical
condition progress.

The Melbourne Assessment of Unilateral Upper Limb Function (MUUL), Quality of
Upper Extremity Skills Test (QUEST), and Shriners Hospital Upper Extremity Evaluation
(SHUEE) are methods that qualitatively determine the motor performance of the upper
extremity whilst performing various functional tasks [11]. However, the application of
these methods only provides subjective results of limb motor performance as they employ
weighted scores based on the evaluator’s experience and observations, which is not always
accurate. As Bard et al. [12] point out, to measure the efficacy or consequences of a new
treatment in children with CP, it is essential to use valid and reliable quantitative tools;
they affirm that a subjective observation by a specialist is not enough. Meanwhile, the
application of quantitative measurement scales provides an objective result of the upper
limb performance based on measurements and calculations of joint angles, movement
duration, and velocity. De los Reyes-Guzmán et al. [13] proposed several kinematic metrics
of quantitative evaluation related to the upper limb movement such as speed, efficacy,
efficiency, accuracy, smoothness, control strategy (time to velocity peak), and the functional
ROM. These metrics can be applied in conjunction with clinical scales for the functional
assessment of the upper extremity in patients with neurological injuries such as CP as stated
by Jaspers et al. [5] who addressed quantitative measurement systems for analyzing reach,
gross, and fine motor functions as well as spatiotemporal characteristics. Furthermore,
they stated that it is necessary to complement this type of objective study with qualitative
scales for a better assessment of the upper extremity, which is indispensable for selecting
the best treatment of a patient with CP; the devices reported at that time ranged from
electrogoniometers to optoelectronic systems.

Traditionally, the ROM is measured using a universal goniometer because it is an
inexpensive, transportable, and easy to use device [14]. Other instruments currently used
are electrogoniometers [15], laser goniometers [16], digital inclinometers [17], optoelectronic
devices [18–21], smartphone applications [22,23], wearable sensors [24–27], and low-cost
sensors [28] including Kinect sensors [29,30]. It is also necessary to mention that Xsens
systems allow the determination of the ROM and kinematic variables. For example, authors
Franco et al. [31] used an Xsens device (Xsens, Enschede, Netherlands) to obtain kinematic
data of the shoulder in healthy people during different loading conditions. They have also
been applied in the field of ergonomics as well as lower limb assessments [31,32].

Recently, researchers have shown an increased interest in the use of Kinect sensors in
health-related areas [33–35]. Other applications of this device are in the area of agronomy,
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education, cartography, and robotics [36,37]. Studies utilizing virtual reality (VR) systems
for improving the functional skills of the upper limbs have shown the Kinect platform to be
a promising rehabilitation tool for CP treatments [38–49]. In this context, Microsoft Kinect
v2 (Microsoft, Redmond, WA, USA) is an RGB-D depth sensor that uses a grid of infrared
light. It consists of two cameras: an RGB camera and an infrared camera. Following the
time-of-flight principle, the software development kit generates a list of coordinates (X,
Y, Z) as a point cloud generating an artificial skeleton based on 25 artificial anatomical
markers projected onto depth data [50]. Similarly, a three-dimensional (3D) motion study
is a tool that allows an objective and quantitative evaluation of the ROM in all degrees of
freedom [5,51].

Currently, it is necessary to know how new technologies support the objective assess-
ment of the upper limbs in patients with CP. In this study, we assessed quantitative measure-
ment systems from optoelectronic devices and wearable sensors to new 3D measurement
technologies with a natural user interface (NUI), commercially known as Kinect (v1/v2).

This article aims to review the current status of available techniques for the quanti-
tative estimation of the AROM and kinematics of the upper limbs of patients with motor
impairments due to CP.

2. Methods

This paper is a bibliographic review regarding the quantitative assessment of the
upper extremity in patients with CP through optoelectronic devices, wearable sensors, and
Kinect. The concept of the quantitative assessment refers to the AROM and kinematic
assessment of the affected upper extremity in patients with CP.

2.1. Eligibility Criteria

In this study, the inclusion criteria were all study designs that included objective
upper extremity assessments of both the AROM and kinematics in children with CP
aged 4–18 years using optoelectronic devices, wearable sensors, and low-cost Kinect
sensors, which also included qualitative upper extremity assessments with clinically
validated scales.

2.2. Search Strategies

Papers published between 2011 and March 2021 were reviewed. Without language
restrictions, the main databases (Science Direct, PubMed, Cochrane Library, EBSCO host,
IEEE, Google Scholar) and specialized journals such as Developmental Medicine & Child
Neurology and Frontiers in Neurology were searched. Different search terms including
“cerebral palsy”, “active movement”, “movement analysis”, “upper limb”, “kinematics”,
“quantitative assessment”, “goniometer”, “Kinect”, “low-cost device”, “natural user in-
terface”, “RGB-D sensor”, “virtual reality”, “precision”, “accuracy”, “reliability”, and
“goniometer laser” were applied in the search for articles relevant to the research topic.
This review was registered in the PROSPERO database (CRD42021257211).

2.3. Study Selection

Figure 1 shows the selection of studies with the articles screened and the selection pro-
cess according to the PRISMA format. Several studies performed quantitative assessments
of cases other than CP during the data extraction; therefore, 32 studies were excluded. In ad-
dition, we found assessments involving non-child patients and healthy subjects; therefore,
we discarded 101 such studies. Similarly, after a consensus among the authors, we decided
to include two studies that did not mention any clinical scale. However, these studies
provided valuable information for the quantitative assessment of this study population.
Finally, 14 primary papers were selected for the analysis. The references of the selected
studies were grouped and formatted using the EndNote (Clarivate Analytics, London, UK)
reference manager.
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Figure 1. Flowchart showing the selection of the reviewed papers.

2.4. Data Extraction

To improve the integrity, transparency, quality, and consistency of the research, the
PRISMA methodology was applied [52]. Similarly, the methodological quality of the
selected studies was scored using the Downs and Black scale [53]. In this study, we did not
consider the power section score as this was not available in most of the studies analyzed;
therefore, the maximum score was 27, similar to a prior classification [54]; a score of 25–27
was measured as excellent, 19–24 was good, 14–18 was fair, and less than or equal to
13 was poor. All studies were included regardless of the methodological quality levels
in this review. However, in most studies, the methodological quality ranged from good
to excellent.

The number of patients who participated in the study, types of intervention, parame-
ters measured, assessment instrument, clinical scale, and study results were extracted from
the selected articles. Table 1 summarizes the main characteristics of the study population
and the scales applied in the assessment of movement quality.

Table 1. Population characteristics.

Author Downs and
Black (n = 27)

Population
(n) Protocol Clinical Scale

Gaillard et al.
[51] 22 20 Carry out four bimanual tasks during

three consecutive evaluations AHA and ABILHAND-Kids

Fitoussi et al.
[55] 25 27 Two daily tasks named “to drink” and “to

move an object” Ashworth Scale

Jaspers et al.
[56] 20 20 Three reach tasks (forward, upward, and

sideways) for two sessions MACS

Howcroft et al.
[57] 22 17 Play four games for 8 min with a 5 min

rest interval in between
Physical Activity Enjoyment Scale

(PACES)

Galli et al. [58] 23 16 3D video recording and gait analysis
along a 10 m walkway ROM

Sarcher et al.
[59] 22 15

Perform eight different tasks for four
cycles with a 2 min break between

each task

Modified MACS and Ashworth
Scale (MAS)
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Table 1. Cont.

Author Downs and
Black (n = 27)

Population
(n) Protocol Clinical Scale

Sevick et al. [60] 19 4 Playing four different games in an hour
three times a week over twelve weeks

GMFCS, MACS, and BOT-2
Bruininks–Oseretsy Motor

Behavior Test Scale

Anaya Campos
et al. [61] 19 16

Insert pieces into a board three times on
each side and then return them to their

original places
MAS, Tardieu, MACS, and BFMF

Mailleux et al.
[62] 24 50 Eight movement repetitions per task MACS, AHA, and Melbourne

Assessment 2

Kim et al. [63] 20 15 Perform a scoping task three times with a
10 s break between each assessment

Jebsen Taylor Hand Function Test
(JTHFT), QUEST, Box and Blocks
Test (BBT), and ABILHAND-Kids

Cacioppo et al.
[64] 23 20 Perform five bimanual tasks during a

complete cycle MACS

Daoud et al.
[65] 20 6 180 game-playing over 12 to 16 recording

periods
Motion-Pose Geometric Descriptor

(MPGD)

Shim et al. [66] 21 40 Motion capture in four phases (T1–T4)
during a reach and grasp task Melbourne Assessment 2

Povedano et al.
[67] 23 16 Eight activities per day with four

repetitions per task in a 90 min session GMFCS, MACS, and SHUEE

3. Current Techniques for Objective Measurements

Motion capture systems based on optoelectronic devices (Vicon systems) (Oxford
Metrics Group, UK) are considered to be the gold standard for a motion analysis. However,
the analysis requires sending patients to a clinical laboratory and is most commonly used
to assess kinematics and spatiotemporal variables during activities such as reaching and
grasping [55–57,59,62,64,66]. Wearable inertial sensors also directly measure kinematic
data of the human body and are an alternative able to be used both in the laboratory and in
an open environment [61,63,67]. Another less expensive alternative with more advantages
is the use of Kinect devices (Microsoft, Redmond, WA, USA) [60,65]. The frequency of
using quantitative evaluation methods for both the AROM and kinematics in primary
studies is presented in Figure 2.
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3.1. ROM Assessment

Table 2 shows the main characteristics of the quantitative evaluation systems included
in this study.
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Table 2. Characteristics of the quantitative measuring devices.

Author Type of
Devices

Manufacturer
Device Parameters Method N◦ 3D

Markers
N◦ of

Cameras
Frequency
Sampling

Kinematic
Model Algorithm ISB

Gaillard et al.
[51]

OptiTrack
optoelectronic

system

Motion
Analysis,

Corvallis, OR,
USA

AROM,
kinematic
analysis

Retroreflective
markers 26 12 100 Hz X

Euler angles *

Fitoussi et al.
[55]

Vicon
optoelectronic

system

Oxford
Metrics Group,

UK

AROM and
PROM,

kinematic
analysis

Retroreflective
markers 6 4 segments X

Jaspers et al.
[56]

Vicon
optoelectronic

system

Oxford
Metrics Group,

UK

Kinematic
analysis

Retroreflective
markers 17 12–15 100 Hz 5 segments

X
BodyMech

http://www.bodymech.nl
(accessed on 30 August 2021)

*

Howcroft et al.
[57]

Vicon
optoelectronic

system

Oxford
Metrics Group,

UK

Kinematic
analysis

Retroreflective
markers 16 7 60 Hz 10 segments X

Galli et al. [58]
ELITE2002

optoelectronic
system

BTS, Milan,
Italy

Kinematic
analysis

Retroreflective
markers 26 100 Hz X

Euler angles

Sarcher et al.
[59]

Vicon
optoelectronic

system

Oxford
Metrics Group,

UK

AROM,
kinematic
analysis

Retroreflective
markers 29 12 100 Hz X *

Sevick et al.
[60] Kinect v1

Microsoft,
Redmond,
WA, USA

AROM NUI 2 30 Hz

Flexible Action and Articulated
Skeleton Toolkit (FAAST)

software (Institute for Creative
Technologies, CA)

Anaya
Campos et al.

[61]

IMU
(Shimmer 3®)

Shimmer
Research,

Cambridge,
MA, USA

Kinematic
analysis,

smoothness of
movement

metrics

Direct via
inertial sensor

Spectral Arc Length Metric
(SALM),

Peaks Metric (PM),
Log Dimensionless Jerk Metric

(LDJM)

http://www.bodymech.nl
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Table 2. Cont.

Author Type of
Devices

Manufacturer
Device Parameters Method N◦ 3D

Markers
N◦ of

Cameras
Frequency
Sampling

Kinematic
Model Algorithm ISB

Mailleux et al.
[62]

Vicon
optoelectronic

system

Oxford
Metrics Group,

UK

Kinematic
analysis

Retroreflective
markers 17 12–15 100 Hz 5 segments

Upper Limb Evaluation in
Motion Analysis (ULEMA)

https://github.com/u0078867
/ulema-ul-analyzer (accessed on

30 August 2021)

*

Kim et al. [63] Accelerometer
(Fitmeter)

Fitmeter,
Fit.Life Inc.,

Suwon, Korea

Kinematic
analysis

Direct via
inertial sensor 128 Hz

Peak acceleration curve,
Fitmeter Manager 2 software
(Fit.Life Inc., Suwon, Korea)

Cacioppo et al.
[64]

Vicon
optoelectronic

system

Oxford
Metrics Group,

UK

AROM,
smoothness of

movement
metrics

Retroreflective
markers 26 10 100 Hz

X
Arm Profile Score,

Spectral arc length (SPARC),
Index of curvature

*

Daoud et al.
[65] Kinect v2

Microsoft,
Redmond,
WA, USA

AROM NUI 2 30 Hz
X

Extended Motion-Pose
Geometric Descriptor

Shim et al. [66]
Vicon

optoelectronic
system

Oxford
Metrics Group,

UK

Kinematic
analysis

Retroreflective
markers 100 Hz

X
NEXUS software (Oxford Metrics

Group, UK)

Povedano et al.
[67] Tech-IMU V4 Technaid,

Madrid, Spain
Kinematic
analysis

Direct via
inertial sensor 50 Hz Tech-MCS V3 System (Technaid,

Madrid, Spain)

ISB: International Society of Biomechanics. X: see reference. * Applied.

https://github.com/u0078867/ulema-ul-analyzer
https://github.com/u0078867/ulema-ul-analyzer


Sensors 2021, 21, 7884 8 of 17

As can be seen from Table 2, OptiTrack (Motion Analysis, Corvallis, OR, USA),
ELITE2002 (BTS, Milan, Italy), and Vicon Mx optoelectronic devices (Oxford Metrics
Group, UK) were used to record significant changes (p < 0.05) regarding the ROM of
abduction, external rotation, flexion, extension, supination, and other movements during
the respective evaluations according to the applied protocol [51,55–59,62,64].

Low-cost Kinect sensors (Microsoft, Redmond, WA, USA) were mainly used to acquire
angular data and quantify the ROM for the movements of flexion, extension, abduction,
internal rotation, and external rotation of the upper limbs [60,65]. Daoud et al. [65] indicated
that the variability of the values obtained for shoulder flexion, abduction, and adduction
movements in a group of six children depended on the degree of cerebral palsy involvement.
The accuracy ranged from 83% to 85%, the specificity from 83% to 86%, and the sensitivity
from 83% to 84%. In one study [60], one participant’s pre-intervention radial/ulnar wrist
movements ranged from 29◦ to 36◦. After treatment with the aid of a Kinect v1 and FAAST
software, this participant showed an improvement of 15◦ to 27◦ relative to that on the
unaffected side, which ranged from 10◦ to 15◦.

The Kinect v2 sensor (Microsoft, Redmond, WA, USA) is not only low-cost but also
effective compared with optoelectronic devices [51,55–59,62,64] as it has a color camera
with a resolution of 1920 × 1080 pixels at 30 fps and a depth camera with a resolution
of 512 × 424 at 30 fps, with a field of view of 70◦ horizontal and 60◦ vertical. It also
allows the determination of 25 joint points without the need for skin markers, unlike Vicon
Mx optoelectronic devices (Oxford Metrics Group, UK) or OptiTrack (Motion Analysis,
Corvallis, OR, USA) [65,68].

Optoelectronic devices, low-cost Kinect sensors, and inertial sensors have all been
used to quantify the upper extremity ROM in clinical cases of CP [67]. In [67], with the use
of an inertial sensor, the range of flexion movement with a dynamic elbow deformity was
determined to vary from 35.4◦ to −46.5◦.

3.2. Kinematic Analysis

Table 3 shows the main spatiotemporal parameters obtained with optoelectronic
devices and portable sensors that have allowed the determination of significant differences
between the affected and unaffected limbs of patients with CP.

As Table 3 shows, optoelectronic devices were also used to determine spatiotemporal
parameters such as velocity and acceleration during the activities of each assessment [57,62,66].
Meanwhile, several authors used inertial sensors to simultaneously obtain the angular
velocity and acceleration of their patients [61,63]. Other authors used Vicon devices
to determine the smoothness of the movements of the activities performed during the
evaluation [64] and one [61] used an inertial sensor to measure the smoothness of the
motion. The range of normality of the motion of each sub-movement performed in the
test was calculated using the spectral arc length metric (SALM), peak metric (PM), and log
dimensionless jerk metric (LDJM). One of the advantages of this device is that it performs
measurements without reference points and can also operate in open spaces. However, the
device still has to be placed on the body to obtain data on angular velocity, acceleration, or
smoothness of motion.
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Table 3. Spatiotemporal parameters of the upper limb.

Device Movement ROM (◦) Accuracy
Angular
Velocity

(◦/s)

Acceleration
(◦/s2)

Peak Accel-
eration
(m/s2)

PM
(%)

SALM
(%)

LDJM
(%) SPARC

Timing of
Maximal

Velocity %

Durations
(s) References

Vicon

Shoulder
flexion (+)
Extension

(−)

−0.22–
9.04 −0.39 4.37 [57]

IMU Hand and
wrist 43.74 64.76 33.33 [61]

Vicon Elbow flex-
ion/extension 54.6–69.3 0.47

+
−0.63

+ [62]

Accelerometer Elbow flex-
ion/extension 0.80 ± 0.13 [63]

Vicon Shoulder
rotation 52.43 1.67 ±

0.22 [64]

Vicon Elbow flex-
ion/extension −0.32 * −0.25 * [66]

SPARC: spectral arc length. *: Correlation between the Melbourne assessment (%). +: Correlation between the grip force.
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4. Discussion

Several reports have shown that there are currently different tools to clinically assess
the upper limb movement function in patients with CP [10,11]. However, these tech-
niques are evaluator dependent, which makes the quantification of the upper limb motor
function difficult.

4.1. Discussion of Assessment Methods

Several methods for a range of motion assessments are available; each is reliable
when comparing results with a universal goniometer [19,20,22,69]. A 3D analysis using
optoelectronic devices with reflective markers, video data capture, and an analysis us-
ing computational algorithms is currently the most accurate technique for assessing the
ROM [70]. Few studies have reported the application of a Kinect sensor (Microsoft, Red-
mond, WA, USA) as a tool for the AROM and kinematic assessment of children with CP.
However, after reviewing the scientific evidence available to date, a low-cost Kinect sensor
presents more advantages for use than a device employing optoelectronics through 3D
tracking markers as the skin markers may change position on the skin whilst assessing
motion, thus increasing inaccuracy when mapping joint angles [71] (Table 4). Unfortunately,
Kinect devices (Microsoft, Redmond, WA, USA) were discontinued in 2017 [68]. However,
they are still in circulation and are still in use today [72]; this reflects a disadvantage as
although they have a great potential in healthcare, it may not be possible to use this type of
technology in the future. The features of Azure Kinect (Microsoft, Redmond, WA, USA) can
overcome this drawback. The accuracy and reliability of this device were compared with
Xsens (Xsens, Enschede, The Netherlands) and OptiTrack optoelectronic systems (Motion
Analysis, Corvallis, OR, USA) in lower limb movements with minimal differences between
the three devices [32].

4.2. Discussion of Optoelectronic Devices

As mentioned in the literature review, the joint application of kinematic and spa-
tiotemporal parameters may allow for the identification of clinical movement patterns
observed in patients with CP and, consequently, enable the therapist to plan an optimal
upper limb treatment [56]. Howcroft et al. [57] noted that the variability of upper limb
kinematic patterns should be investigated individually. Gaillard et al. [51] concluded that
the assessment protocol they developed was a novel and practical tool to analyze abnormal
upper limb movement patterns efficiently.

Previous studies have demonstrated that quantitative measurement techniques for a
3D movement analysis of the upper extremity are mainly related to optoelectronic systems.
To date, Vicon systems (Oxford Metrics Group, UK) are still used more frequently [5].
However, this type of assessment system is not always accessible to all rehabilitation
centers, mainly because of cost. Furthermore, as shown in Table 4, these devices have an
accuracy of < 1 mm under optimal measurement conditions. This accuracy is principally
affected by illumination, electromagnetic interference, the correct installation of the cameras,
and procedures related to the placement of skin markers, which is why the motion analysis
is performed in specialized laboratories with highly trained personnel, as mentioned in [73].
Scano et al. [74] noted that the Kinect could replace the Vicon system when it is not possible
to use this technology or when the assessment is in an industrial setting. Their study
demonstrated similarities in the accuracy of both devices at various angles.
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Table 4. Reliability, advantages, and disadvantages of the different available instruments for ROM assessments.

References Instrument/
Device Manufacturer ROM Accuracy Reliability (ICC) Advantages Disadvantages

Universal instrument

[14] Goniometer Passive 5–10◦ Intra-rater ± 9.6◦

Inter-rater ± 8.4◦
Inexpensive,

transportable,
easy to use

Accuracy,
its correct use depends mainly on

the experience of the evaluator

Optoelectronic device

[20,21,56] Vicon Oxford Metrics Group,
UK Active <1 mm Intra-rater: 0.54–0.91

Inter-rater: 0.70–0.96

Accuracy in dynamic
and static

environments

Retroreflective body markers,
expensive

Wearable sensors

[24,26,27] IMU Opal, APDM, Inc.,
Portland, OR USA Active 6.8 ± 2.7◦ 0.930–0.979

Small,
portable,
wireless,

lightweight

Overestimates small joint angles
and underestimates large joint

angles

Low-cost sensors

[69] Kinect v1 Microsoft, Redmond,
WA, USA Active ±5◦ 0.76–0.98

NUI,
low-cost,

markerless

Inaccurate measurements in the
sagittal plane,

[29,30] Kinect v2 Microsoft, Redmond,
WA, USA Active ±5◦

0.85–0.99 flexion
0.86–0.98 shoulder

abduction

inaccurate measurements of ulnar
and radial deviations of the upper

limbs

Other devices

[23] Smartphone
applications

Plaincode Software
Solutions,

Gunzenhausen,
Germany

Passive ±3.6◦ 0.63–0.68
Small,

easy to use,
affordable

Its correct use depends mainly on
the experience of the evaluator
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4.3. Discussion of Wearable Sensors

Concerning the advantages of the wearable sensors shown in Table 4, it is relevant
to note that both IMU devices and smartphone applications are integrated with similar
components (accelerometer, gyroscope) and this is reflected in the accuracy of the de-
vice: 6.8 ± 2.7◦ with an ICC of 0.930–0.979 for IMUs and ± 3.6◦ with an ICC of 0.63–0.68
for smartphone apps. However, these devices have to be in direct contact with the pa-
tient. Currently, this would represent a risk in the face of the COVID-19 pandemic, as
stated by Moreira et al. [75]; these assessment devices would not be a favorable option in
this situation.

The results of Anaya et al. [61] indicated that the smoothness metric is an efficient
measure of the upper limb movement that can be used to determine the differences between
an affected and an unaffected limb. They are currently investigating the correlation of the
results obtained with clinical scales and are developing an objective scale for a functional
assessment based on SALM smoothness. Kim et al. [63] pointed out that dynamic motion
measurements can be performed under normal conditions; that is, outside the laboratory
in real-time using an accelerometer because of its portability.

Speed, efficacy, efficiency, accuracy, smoothness, control strategy (time to velocity
peak), and the ROM are kinematic metrics of quantitative evaluations related to upper limb
movements [13]. The results of this review have several relevant applications for future
practice because the application of quantitative measurement scales provides an objective
result of the upper limb performance.

4.4. Discussion of the Low-Cost Sensor, Kinect

As can be seen in Table 4, the Kinect sensor (Microsoft, Redmond, WA, USA) presented
errors in the measurement of the sagittal plane as well as in the ulnar and radial deviation
of the upper limbs. Similarly, Wasenmüller and Stricker [76] mention that factors such as
temperature, distance, scene color, random noise, and flying pixels can affect the accuracy
of the depth camera. They recommended that the Kinect should be pre-heated for 25 min to
compensate for temperature, bilateral filtering, and other recommendations. It is relevant
to consider and control all these variables when making measurements in the laboratory
or another environment to obtain reliable measurements. In this context, Sevick et al. [60]
argue that an intervention using a Kinect sensor could be successfully delivered in the
laboratory and at home. Daoud et al. [65] claimed that the computerized assessment
method provided kinematic measurement indicators to objectively measure movements
such as smoothness and range. These authors suggested the application of this method as
an additional technique for monitoring CP rehabilitation treatments.

When considering the fusion of a Kinect sensor with other sensors such as IMUs, they
are a viable way to compensate for the accuracy of both devices in upper limb movements,
as realized in [77]. Based on the above, the NUI of a Kinect sensor can be considered to be
a VR technique [33] that obtains the ROM and kinematics of the upper limbs in patients
with CP because it allows the evaluation of body movement, scene modeling, gesture
recognition, rehabilitation, and posture reconstruction using vector data [46].

These findings recommend, in general, the inclusion of high-quality experimental
multicenter studies and appropriate follow-up rehabilitation programs. An increase in the
motor function of the upper extremity and an improvement in the daily tasks of most of
the tasks reviewed were reported.

This review has several limitations such as limited access to other major bibliographic
databases, e.g., EMBASE, CINAHL, and Scopus. This limitation to access information may
cause a lack of relevant references in this review. Few authors had described in detail the
kinematic models and algorithms used to estimate their kinematic analysis. In addition,
few authors had followed the joint assessment recommendations proposed by the ISB. It is
suggested to make use of this recommendation as it is an approved standard for human
kinematic assessments.
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5. Conclusions

This review has shown that 3D analysis systems are used primarily for monitoring
and evaluating the spatiotemporal variables and kinematic parameters of upper limb
movements. The results indicated that optoelectronic devices are the most commonly
used systems. One clinical assessment tool with a unique advantage is the use of a Kinect
sensor as it has a markerless motion capture system. Nevertheless, few studies have
reported using a Kinect sensor as a tool for the AROM and kinematic assessment of the
upper extremity in this group study. In addition, the Kinect device has been discontinued,
reducing the likelihood of future use. However, a few online shops such as Amazon still
have this device in stock. There is now the Azure Kinect sensor with enhanced features
that can be used for this type of assessment.

In this review, the study population ranged from 4 to 50 patients, showing a higher
frequency above 15 patients; the activities differed according to the protocols established in
each study. However, the importance lies in each of these parameters measured with the
various instruments because they indicated an increase in each movement performed with
the affected upper limb. This variation of the sample, protocols, and evaluation devices
did not allow for a homogenized result. Nevertheless, this review has shown an overview
of optoelectronic devices, portable sensors, and mainly how low-cost Kinect sensors have
been used as complementary tools for clinical evaluation scales. Although each parameter
and device are different, for this reason, the specialist physician in this type of upper limb
movement analysis must choose the instrument that best suits the needs of the protocol
and rehabilitation of the patient whilst also considering the accessibility of these evaluation
devices and the guidelines established by the ISB.

Finally, the potential of wearable sensors and Kinect as complementary devices for
the quantitative evaluation of the upper extremity in this study population was evident.
Further studies with wearable sensors and Kinect v2 sensors (available) or Azure Kinect
sensors are strongly recommended. Larger samples in real-life settings should also be
considered but under optimal measurement conditions to avoid errors.
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Abbreviations

3D Three-dimensional
AROM Active range of motion
CP Cerebral palsy
ISB International Society of Biomechanics
VR Virtual reality
LDJM Log dimensionless jerk metric
MUUL Melbourne Assessment of Unilateral Upper Limb Function
NUI Natural user interface
PM Peak metric
PROM Passive range of motion
QUEST Quality of Upper Extremity Skills Test
ROM Range of motion
SALM Spectral arc length metric
SHUEE Shriners Hospital Upper Extremity Evaluation
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