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This study investigated the genetic diversity of noroviruses identified from a previous surveillance study conducted at the National
Pediatric Hospital in Phnom Penh, Cambodia, from 2004 to 2006. In the previous study, 926 stool samples were collected from
children aged 3–60 months with acute diarrhea (cases) and without diarrhea (controls) with reported 6.7% of cases and 3.2% of
controls being positive for norovirus. The initial norovirus diagnostic assay was performed with real-time reverse transcription-
polymerase chain reaction (real-time RT PCR) which also distinguished between genogroups I and II (GI and GII). Norovirus
infection was most commonly detected in children aged 12–23 months in both cases and controls. Norovirus Genotyping Tool
and phylogenetic analysis of partial sequences of the 3󸀠 end of the RNA-dependent RNA Polymerase (RdRp) and the capsid
domain region were employed to assign genotypes of the norovirus strains. GII.4 was the most predominant capsid genotype
detected at 39.5% followed by GII.6 at 14.9%.The GII.4 Hunter 2004 variant was the predominant strain detected. Six RdRP/capsid
recombinants including GII.P7/GII.6, GII.P7/GII.14, GII.P7/GII.20, GII.P12/GII.13, GII.P17/GII.16, and GII.P21/GII.3 were also
identified. This study of norovirus infection in young children in Cambodia suggests genetic diversity of norovirus as reported
worldwide.

1. Introduction

Norovirus, a member of the family Caliciviridae, is an
important human pathogen and is the leading cause of
nonbacterial acute gastroenteritis outbreaks. Norovirus has
been increasingly associated with sporadic episodes of acute
gastroenteritis in children worldwide. It has been estimated
that norovirus infections cause 1 million hospitalizations
and 200,000 deaths in children under 5 years of age in the
developing world [1].

The norovirus genome is organized into three open read-
ing frames (ORF). ORF1 encodes six nonstructural proteins
including the RNA-dependent RNA polymerase (RdRp);
ORF2 encodes the capsid; and ORF3 encodes a small, minor

structural protein [2]. Noroviruses are classified into at least
6 genogroups (GI-GVI) with a tentative genogroupVII based
on the sequence diversity of the RdRP and capsid regions of
the genome [3]. Genogroups I, II, and IV are known to infect
humans. Genogroups are further subdivided into genotypes
and there are 9 GI and 22 GII recognized genotypes based
on the capsid sequence [3, 4]. Despite an enormous genetic
diversity, the majority of outbreaks and sporadic norovirus
cases worldwide are associated with a single genotype from
genogroup II, GII.4. Genotype GII.4 was responsible for 62%
of reported norovirus outbreaks (4988) in 5 continents from
January 2001 to March 2007 [5].

GII.4 variants have been reported as the major cause
of norovirus gastroenteritis worldwide starting in 1995 with
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GII.4 variant Asia 2003 as the most widely circulated variant
in Asia during 2003–2006 [6, 7]. In a Peruvian birth cohort
study, 97% of characterized repeat norovirus infections were
associated with a different genotype or a different GII.4 vari-
ant suggesting that genotype-specific immunity may develop
with limited cross-protection within the genogroup which
highlights the importance of identification and monitoring
of GII.4 variants [8].

A potential mechanism that norovirus utilizes to evade
host immunity is genetic recombination at the overlap-
ping regions between the RdRp of ORF1 and the capsid
protein encoding gene (ORF2), ORF1/ORF2 junction [9].
Multiple recombinants at this region have been reported
such as GII.P4/GII.12 and GII.Pb/GII.3 in Japan [10] and
GII.P9/GII.4 and GII.P9/GI.7 in Greece [11]. The variability
of genetic recombination in norovirus suggests the need for
a surveillance system to track the evolution of norovirus.
An effective surveillance system would allow a better under-
standing of the burden of disease caused by norovirus and
molecular epidemiology would also facilitate evolutionary
analysis of norovirus.

There have been few reports on norovirus variants cir-
culating in Southeast Asia [12–14] and how these norovirus
variants compare to variants circulating elsewhere in the
world. In the previous study of diarrhea etiology in young
children in Phnom Penh, Cambodia, norovirus was the
second most common virus detected following rotavirus
[12]. In this study, norovirus positive samples from the
previous study were further characterized and norovirus
molecular epidemiology is reported including GII.4 variants
and norovirus recombinants.

2. Materials and Methods

2.1. Study Design. A detailed description of the study design
has been reported previously [12]. Briefly, children aged 3
months to 5 years were enrolled at the National Pediatric
Hospital (NPH) in Phnom Penh between November 2004
and October 2006. Cases were enrolled among inpatient and
outpatient children with acute diarrhea of no more than 72
hours’ duration. Controls were children who visited the same
hospital for other reasons and had not had diarrhea in the
previous two weeks. Informed consent was obtained from
one parent or a guardian for each participant. The study was
approved by institutional review boards in both Cambodia
and the United States.

2.2. Stool Collection and Nucleic Acid Extraction. Approx-
imately 3–5 g of stool was collected from subjects. Stool
samples were stored at −70∘C until processed.A 10% (wt/vol)
stool suspension was prepared with distilled sterile water and
total nucleic acids were extracted with NucliSens� Magnetic
Extraction Kit (BioMerieux Inc., Durham, NC, USA) follow-
ing the instructions of the manufacturer.

2.3. Real-Time Reverse Transcription (RT) PCR Screening
and Genogrouping for Norovirus. The extracted nucleic acids
were screened to identify the genogroup (GI and GII) by
real-time RT PCR reactions as described previously [15]. The

reactions were set up using the TaqMan� EZ RT PCR Core
Reagent kit (Applied Biosystems, Foster City, CA, USA). All
reactions were carried out in ABI PRISM 7900 Sequence
Detector System and the results were analyzed with Sequence
Detection Software version 2.1 (Applied Biosystems, Foster
City, CA, USA).

2.4. Reverse Transcription (RT) PCR for the Cloning of
ORF1/ORF2 Junction Regions. The extracted nucleic acids of
norovirus positive samples were treated with DNase (Invit-
rogen, Carlsbad, CA, USA) to remove DNA prior to reverse
transcription reaction. Five 𝜇L of RNA was reverse tran-
scribed with primer G1SKR for GI and G2SKR for GII [16]
to generate cDNA of the ORF1/ORF2 junction region using
Multiscribe� Reverse Transcriptase (Invitrogen, Carlsbad,
CA, USA).

The ORF1/ORF2 junction was amplified using AmpliTaq
Gold� polymerase (Applied Biosystems, Foster City, CA,
USA) containing a mixture of three forward primers (G1FF
(A, B, and C) for GI or G2FB (A, B, and C) for GII) and
reverse primer (G1SKR for GI or G2SKR for GII) [16, 17].
The thermocycling profile used was heat activation at 95∘C
for 10min, 40 cycles of denaturation at 95∘C for 30 sec,
annealing at 48∘C for 30 sec, extension at 72∘C for 1min, and
postincubation at 72∘C for 7min.

PCR products (GI 597 bp and GII 468 bp) were cloned
into a TA-Cloning vector (pCR 4.0-TOPO, Invitrogen, Carls-
bad, CA, USA). One to three positive clones were sequenced
from both forward and reverse directions using a com-
mercial sequencing service (Macrogen, Seoul, Korea). DNA
sequencing data were verified for consensus sequence using
Sequencher software version 4.1.2 (Gene Codes Corporation,
Ann Arbor, MI, USA).

2.5. Phylogenetic Analysis. The identification of norovirus
genotype was performed by submitting sequences of the
junction between RdRP and capsid genes to the online
Norovirus Genotyping Tool (Version 1.0) [4]. Phylogenetic
trees were also constructed based on sequences of RdRP and
capsid genes. Nucleotide sequences of GI (448 bp correspond
to nucleotides 4929 to 5376 of U07611 strain) and GII
(436 bp corresponds to nucleotides 4929 to 5366 of U07611
strain) were aligned with representative reference strains
(GI.Pa/GI.3-GQ856473, GI.Pc/GI.5-AB039774, GI.Pd/GI.3-
GQ856470, GI.P8/GI.8-GU299761, GII.P2/GII.2-X81879,
GII.P3/GII.3-AB112332, JN176920, GII.P6/GII.6-JX989075,
GII.P7/GII.7-AF414409,GII.P7/GII.6-AB504694,KM198549,
GII.P7/GII.14-EF670650, GII.P7/GII.20-AB542917, GII.P12/
GII.12-AB525813, GII.P12/GII.13-AB354294, GII.P13/GII.13-
EU921354, GII.14-AY130761, GII.P16/GII.16-GQ856476,
GII.P16/GII.17-AY502009, GII.P17/GII.17-KC597139,
GII.P20/GII.20-EU275779, GII.P21/GII.21-EU019230,
GII.P21/GII.3-KM198586, andGIII.1-EU360814 (out group)).
For GII.4 variants determination, the nucleotide sequences
from GenBank were used: GII.4 Yerseke 2006a-AB447433,
GII.P12/GII.4 Asia 2003-AB220922, and GII.4 Hunter
2004-HM802542. Sequences of norovirus partial RdRp and
capsids genes were submitted to GenBank.
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Table 1: Norovirus infection classified by genogroups in stool sam-
ples from children (3 months to 5 years) with acute diarrhea (cases)
and nondiarrheal controls who attended the National Pediatric
Hospital in Phnom Penh, Cambodia, between November 2004 and
October 2006.

Cases (𝑁 = 580) Controls (𝑁 = 346)
Norovirus 39 (6.7%)∗# 11 (3.2%)∗#

GI 4 (0.7%) 3 (0.9%)
GII 35 (6.0%)∗ 8 (2.3%)∗
∗𝑝 < 0.05, chi-square test.
#Meng et al., 2011.

All sequences were aligned with ClustalW [18] in
MEGA Version 6 [19]. Phylogenetic tree was constructed in
MEGA Version 6 using neighbor-joining with Kimura two-
parameter model with 1,000 bootstrap replicates.

2.6. Recombination Analysis. Simplot version 3.5.1 was used
to identify putative recombination breakpoints by compar-
ing query sequence to nonrecombinant and recombinant
parental strains [20]. Analysis parameters were as follows:
Window: 200 bp, Step: 20 bp, GapStrip: On, Kimura (2-
parameter), and T/t: 2.0.

2.7. Statistical Analysis. The differences among proportions
were analyzed by chi-square test and the difference between
means was analyzed by t-test in IBM� SPSS� Statistics
Version 22 (IBM Corp., Armonk, NY, USA).

3. Results

3.1. Norovirus Detection. A total of 926 stool samples (580
cases and 346 controls) were previously tested for the pres-
ence of norovirus and other enteric pathogens [12]. The
prevalence of GI in cases and controls was 0.7% and 0.9%
and the prevalence of GII was 6.0% and 2.3%, respectively
(Table 1) [12]. Children in the age group of 12–23 months had
the highest prevalence in both cases and controls at 10.3% and
9.5%, respectively (Figure 1). There is a significant difference
in the mean ages of cases and controls with a mean age and
standard deviation of 12.4 ± 5.3 months and 20.3 ± 10.58
months, respectively (Figure 1).

3.2. Sequence and Phylogenetic Analysis. Amplification of the
ORF1/ORF2 junction region was successfully performed on
39 (7 cases and 32 controls) out of the 50 real-time PCR
norovirus positive samples (2 GI and 37 GII). Repeated at-
tempts to amplify the remaining 11 positive samples were
unsuccessful. Identification of norovirus genotypes was
achieved by cloning PCR products and performing sequence
analysis on positive clones. The cloned PCR product corre-
sponded to a 597 (GI) and a 468 (GII) bp fragment that maps
to the overlapping region of ORF1 and ORF2.

A total of 43 nucleotide sequences were obtained. Four
additional sequences were of mixed norovirus infection
from the same sample. GenBank accession numbers of all
sequences are KX685457–KX685499. These sequences were
then submitted to the online Norovirus Genotyping Tool to
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Figure 1: Prevalence of norovirus GI and GII infection in children
with acute diarrhea (cases) and nondiarrheal controls by age.
Samples were collected from children aged 3 months to 5 years
who attended theNational Pediatric Hospital in PhnomPenh, Cam-
bodia, between November 2004 and October 2006. A significant
difference (𝑝 < 0.05, t-test) in the mean of age of infection was
observed between cases and controls averaging at 12.4 months and
20.3 months, respectively.

identify their genotypes based on partial RdRP and capsid
genes. GII.4 was the most predominant capsid genotypes
assigned at 39.5% followed by GII.6 at 14.9% (Table 2). GII.4
capsid variants that were identified included GII.4 Asia 2003,
GII.4Hunter 2004, andGII.4 Yerseke 2006a; however, 3 GII.4
sequences were not assigned any variant by the Norovirus
Genotyping Tool. RdRP genotypes were assigned to 51.2%
(22/43) of nucleotide sequences. Phylogenetic analysis of
RdRP sequences clustered unassigned sequences into GII.P3
(1), GII.P4 (12), GII.P7 (5), GII.P12 (2), and GII.P21 (1)
(Figures 2(a) and 2(b) and Table 2).

Two ormore consensus genotype sequences were derived
from 4 samples suggesting a mixed infection in these
samples (Figures 2(a) and 2(b)). Mixed infections in this
study are both inter- and intragenotype which included
GII.P12/GII.12 with GII.P4/GII.4 Hunter 2004, GII.P6/GII.6
with GII.P4/GII.4 Yerseke 2006a, GII.P4/GII.4 Asia 2003
with GII.P7/GII.14, and GII.P4/GI.4 Hunter 2004 with
GII.P4/GII.4 Asia 2003.

3.3. Recombination Analysis. Both of the Norovirus Genoty-
ping Tool and phylogenetic analysis revealed 7 different
recombinant genotypes from 16 sequences. GII.P7/GII.6
was the predominant recombinant with 6 sequences fol-
lowed by GII.P7/GII.14 and GII.P7/GII.20 at 3 sequences
each. Other recombinants were GI.Pc/GI.5, GII.P12/GII.13,
GII.P16/GII.17, andGII.P21/GII.3 at 1 sequence each (Table 2).
GII.P7 was the predominant RdRP that recombine with other
capsid genotypes (GII.6, GII.14, and GII.20); however, there
is no statistical significance between GII.P7 recombinants
in case versus control samples in comparison to other
recombinants identified in the study.
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Table 2: Summary of nonrecombinant (a) and recombinant (b) norovirus genotypes detected in case and control samples based on the
Norovirus Genotyping Tool and phylogenetic analysis and Simplot for recombination analysis.

(a)

Genotypes Number of samples
ORF1 ORF2 Case Control
GI.P8 GI.8 1 0
GII.P2 GII.2 1 0
GII.P3 GII.3 2 0
GII.P4 GII.4 Asia 2003 2 1
GII.P12 GII.4 Asia 2003 3 1
GII.P4 GII.4 Hunter 2004 5 2
GII.P4 GII.4 Yerseke 2006a 3 0
GII.P6 GII.6 1 0
GII.P12 GII.12 2 0
GII.P16 GII.16 1 3

(b)

Recombinants
Genotypes Number of samples Recombination position Lordsdale nucleotide position First report

ORF1 ORF2 Case Control
GI.Pc GI.5 1 0 — — Japan 1997–2001 [21]
GII.P7 GII.6 5 1 101–128 5022–5049 Burkina Faso 2011 [22]
GII.P7 GII.14 3 0 — — China [23]#

GII.P7 GII.20 3 0 97–109∗ 5022-5034 Brazil 2008 [24]
GII.P12 GII.13 1 0 144–152 5065–5073 South Korea 2004–2007 [25]
GII.P16 GII.17 1 0 191–201 5112–5122 South Africa 2010–2012 [26]

GII.P21 GII.3 1 0 147–156 5067–5076 Europe, Australia, Japan, 2002-2003
[10, 27, 28]

Recombination breakpoint positions of each genotype and corresponding positions in the reference strain Lordsdale are reported.
∗Numbering based on NP-492 2.
#The original publication described the recombinant as GII.P6/GII.14 (GenBank accession number EF670650) but the Norovirus Genotyping Tool and
phylogenetic analysis showed that it was closely related to GII.P7/GII.14.

All of the 16 recombinant sequences were subjected to
Simplot analysis to determine recombination breakpoints.
Table 2 shows a range of nucleotide breakpoint of each
recombinant in comparison to the reference strain Lords-
dale, accession number X86557, which falls into ORF1/ORF
junction. Representatives of Simplot of each recombinant are
shown in Figure 3.

4. Discussion

The presence of norovirus in cases of pediatric diarrhea
in Cambodia was described previously but little is known
about the genetic diversity of the circulating norovirus
strains [12, 29]. In this study, the percentage of norovirus
positive cases among children with diarrhea seen at the
hospital (6.7%) is relatively low compared to studies from
neighboring Southeast Asian countries [13, 14, 30]. This
does not necessarily reflect the true burden of norovirus
gastroenteritis in Cambodia for several reasons. One of the
possible limiting factors was that it was a passive surveillance
where sample collection was performed at a single hospital
where possible sample bias can be introduced. Additionally,
the low percentage is perhaps from underreported norovirus

diarrhea cases to the tertiary care hospital as norovirus
associated diarrhea may not be severe or it is an uncommon
practice to seek healthcare for diarrheal disease in Cambodia.
The finding from a community-based surveillance study
in Cambodia reported that, even among severe cases of
diarrhea, less than 30% sought treatment from a healthcare
facility [31]. Additionally, it may be possible that norovirus
is overshadowed by the presence of other pathogens in
low-income settings where sanitary measures are limited as
evidenced by higher percentages of bacteria and rotavirus
detected in the previous report [12, 32]. Norovirus prevalence
has becomemore prominent in higher-income settingswhere
other pathogens are controlled through improvement of
public health control measures for water and sanitation [32].
Additional systematic surveillance will be required to fully
understand the burden of norovirus infection in Cambodia.

Age distribution of norovirus infection in this study
was similar to what has been reported elsewhere [33–35].
Children in the 3–5-month age group were not commonly
infected with norovirus, possibly due to maternal immu-
nity and the protective benefit of breast-feeding [36]. The
prevalence was highest in both cases and controls in the
12–23-month age range and declined after 24 months of
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Figure 2: Phylogenic analysis of partial RNA-dependent RNA polymerase (RdRP) (a) and capsid genes (b) of norovirus from Cambodia
pediatric samples during 2004–2006. Sample names are indicated as NP ###-# for case and NPC ###-# for control. -# after the sample name
indicates colony number of clone for that sample. Recombination strains are indicated by ∗ at the end of sample name. Mixed infections from
same sample are indicated with similar symbol (◼ for NP-328, e for NPC-405, 󳵳 for NP-544, and Q for NP-593).

age. Information on age distribution of norovirus infection
is important for targeting population for norovirus vaccine
implementation.

Studies of sequence and genotypic analysis of norovirus
positive samples described GII.4 as the most common

genotype detected in both outbreaks and sporadic cases
of acute gastroenteritis worldwide [5]. The 16 isolates of
GII.4 identified in this study were classified into 3 variants:
Hunter 2004, Yerseke 2006a, andAsia 2003, corresponding to
reported norovirus genotypes circulating during 2004–2006
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Figure 3: Representative plots of Simplot analysis of each norovirus recombinant. The 𝑦-axis indicates a degree of similarity between
query recombinant and recombinant and two nonrecombinant parental norovirus strains. Sample name and recombination genotype are
located on top of each plot. Samples names are indicated as NP ###-# for case and NPC ###-# for control. # after the sample name
indicates colony number of clone for that sample. Nonrecombinant parental strains used are GII.P3/GII.3-AB112332, GII.P6/GII.6-AB039779,
GII.P7/GII.7-AF414409, GII.P12/GII.12-AB525813, GII.P13/GII.13-EU921354, GII.14-AY130761, GII.P16/GII.16-GQ856476, GII.P17/GII,17-
AB983218, GII.P20/GII.20-EU275779, and GII.P21/GII.21-EU019230. Recombinant parental strains used are GII.P7/GII.6-AB504694,
GII.P7/GII.14 EF670650, GII.P7/GII.P20-AB542917, GII.P12/GII.13-AB354294, GII.P16/GII.17-AY502009, and GII.P21/GII.3-KM198586.
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worldwide [7, 37, 38]. Mixed norovirus infections were also
detected in 4 cases which might serve as a potential source of
inter- and intragenotype norovirus recombination.

Recombination between the RNA-dependent RNA poly-
merase and the capsid genes has been reported world-
wide in recent years [39]. The Norovirus Genotyping Tool
and phylogenetic tree analysis of the Cambodian norovirus
sequences led to the identification of 7 recombinants with
more than 95% sequence identity to published sequences
of recombinant variants (Figure 3 and Table 2). Simplot
programwas used to confirm 5 recombination genotypes and
identified recombination breakpoints at the ORF1/2 junction
which correspond to previously reported breakpoints (4981–
5117 nucleotides of Lordsdale virus genome) [27, 40]. Recom-
bination breakpoint could not be confirmed for GI.Pc/GI.5
andGII.P7/GII.14 as nonrecombinant parental strains are not
available [3].

All of the recombinants identified in this study have
been reported previously fromvarious geographical locations
from samples that were collected prior to, after, or at the
same time period as this study. GI.Pc/GI.5 and GII.P21/GII.3
were reported earlier than the rest of recombinants in this
study with GII.P21/GII.3 being the most widely detected
recombinant [9, 21, 41]. The rest of recombinants identified
in this study match recombinants reported in 2008 or later
suggesting that recombinants identified in this study existed
before. However, due to geographical distances, it is likely
that norovirus recombinants identified in this study occurred
as a separate event and may not be directly related to
reported recombinants. Approximately 37% of norovirus
isolates (16/43) in this studywere recombinantswhich suggest
that viral recombination has an important role in norovirus
success in an evasion of host immune responses as supported
by an increase in reports of novel recombinant strains [9, 39].

Despite advances in understanding norovirus biology, no
norovirus virulence determinants have been identified and
there is currently no efficient way to predict which strains
will become dominant. Sequence and biochemical studies
suggest that norovirus employs at least two mechanisms to
persist in the population: antigenic drift and recombination
[7, 42]. Understanding how norovirus evolves and adapts to
immunological pressure is critical for the development of an
effective vaccine and antiviral therapy.

5. Conclusions

This study reports on molecular epidemiology of norovirus
circulating in young children in Phnom Penh, Cambodia,
form 2004 to 2006. The existence of several GII.4 variants
and recombinant strains in Cambodia suggests the need
for a continued surveillance system that includes molecular
aspects to provide a better epidemiological understanding for
the development of vaccines against norovirus.
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