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Abstract

Alzheimer’s disease (AD) is characterized by neuronal degeneration and cell loss. Ab42, in contrast to Ab40, is thought to be
the pathogenic form triggering the pathological cascade in AD. In order to unravel overall gene regulation we monitored
the transcriptomic responses to increased or decreased Ab40 and Ab42 levels, generated and derived from its precursor C99
(C-terminal fragment of APP comprising 99 amino acids) in human neuroblastoma cells. We identified fourteen differentially
expressed transcripts by hierarchical clustering and discussed their involvement in AD. These fourteen transcripts were
grouped into two main clusters each showing distinct differential expression patterns depending on Ab40 and Ab42 levels.
Among these transcripts we discovered an unexpected inverse and strong differential expression of neurogenin 2
(NEUROG2) and KIAA0125 in all examined cell clones. C99-overexpression had a similar effect on NEUROG2 and KIAA0125
expression as a decreased Ab42/Ab40 ratio. Importantly however, an increased Ab42/Ab40 ratio, which is typical of AD, had an
inverse expression pattern of NEUROG2 and KIAA0125: An increased Ab42/Ab40 ratio up-regulated NEUROG2, but down-
regulated KIAA0125, whereas the opposite regulation pattern was observed for a decreased Ab42/Ab40 ratio. We discuss the
possibilities that the so far uncharacterized KIAA0125 might be a counter player of NEUROG2 and that KIAA0125 could be
involved in neurogenesis, due to the involvement of NEUROG2 in developmental neural processes.
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Introduction

Amyloid beta precursor protein (APP), presenilin 1 (PS1), presenilin

2 (PS2) and apolipoprotein E (APOE) have been associated with AD

[1] and further susceptibility genes are expected to exist. The amyloid

cascade hypothesis suggests that Ab42 accumulation is the primary

event in the pathogenesis of AD. Ab42, two amino acids (isoleucine

and alanine) longer than Ab40, is more prone to aggregate and

expected to trigger the pathological cascade in AD [2,3]. APP is

cleaved by b-secretase resulting in the generation of the C-terminal

fragment C99, which is further cleaved by the c-secretase complex

generating different Ab species. By overexpressing C99 wildtype and

C99 mutations, known to generate different Ab42/Ab40 levels [4,5] in

human neuroblastoma cells, we obtained information about the

genome-wide gene regulation by using whole genome microarrays.

We unexpectedly identified NEUROG2 and KIAA0125 as

inversely regulated by an altered Ab42/Ab40 ratio. Remarkably,

an increased Ab42/Ab40 ratio that is typical of AD inverted the

expression pattern of NEUROG2 and KIAA0125 that was observed

for a decreased ratio. Importantly, for a decreased Ab42/Ab40

ratio NEUROG2 and KIAA0125 were the most differentially

expressed transcripts out of approximately 40,000 tested.

Neurogenesis in AD is a controversial topic. In hippocampi of

patients with AD [6], where it may produce cells to replace

neurons lost in the disease [7], neurogenesis has been reported to

be enhanced [8]. This could be reproduced in a transgenic mouse

model [9] in which APP mutations led to increased incorporation

of bromodeoxyuridine (BrdU) and enhanced expression of

immature neuronal markers in two neuroproliferative regions:

The subventricular zone and the dentate gyrus. In contrast to this,

neurogenesis has been reported to be decreased in mouse models

for AD [10,11]. NEUROG2 plays an essential role in the

development of the dentate gyrus of the hippocampus [12], which

is the central structure for learning and memory processes. The

impairment of neurogenesis in a mouse model exhibiting

progressive amyloid deposition was reflected by a reduction in

the number of neural stem cells, progenitor cells and neuroblasts in

the dentate gyrus [13]. Our work provides a possible mechanism

of how neurogenesis might be influenced, namely by the

previously undiscovered inverse regulation of NEUROG2 and

KIAA0125 caused by Ab.

Results

We investigated the transcriptomic response to a changed

Ab42/Ab40 ratio in human neuroblastoma cells. Constructs

encoding the C-terminal part of APP (C99) were used to transfect

human neuroblastoma cells in order to overexpress C99 [4,5].
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Subsequently, overexpressed C99 was processed by c-secretase

releasing several proportions of Ab42 and Ab40. To modify the

Ab42/Ab40 ratio we made use of two well established constructs

[4,5]. The single point mutation I45F in C99 results in a strong

overproduction of Ab42 and a concomitant loss in Ab40. The C99

point mutation V50F results in almost exclusive Ab40 production.

Total Ab production from these constructs was similar in all clones

and the clones used were expression level matched.

SH-SY5Y cells overproduced different Ab42 and Ab40

levels
The human neuroblastoma cell line SH-SY5Y was stably

transfected with constructs coding for the APP C-terminal

fragment C99WT, moreover with constructs bearing the point

mutations C99I45F and C99V50F and the vector control (mock-

transfected, negative control). The point mutations were utilized to

shift the Ab42/Ab40 ratio in either direction. As was described in

detail [4,5] C99V50F and C99I45F had an opposite effect on the

Ab peptides generated: As compared to the C99WT-transfected

cells, the C99V50F-transfected cells expressed more Ab40 and less

Ab42, whereas the C99I45F-transfected cells expressed more Ab42

and less Ab40 (Fig. 1).

Single independent cell clones (C99WT, C99V50F, C99I45F,

mock-transfected negative control, n = 3 per group) were selected and

used for whole genome microarray analysis. HG-U133 A and B

microarrays (Affymetrix) were used (unprocessed and processed

microarray data can be accessed via the ArrayExpress database,

accession number E-MEXP-1913). Replicates from different indepen-

dent clones were prepared and hybridized to the microarrays on

different days. This procedure increased data variation between

replicates, but more importantly, is expected to have increased

accuracy (Fig. 2).

Hierarchical clustering of Alzheimer Amyloid b
Responsive Genes

In order to investigate the overall gene regulation and to

discover novel expression patterns, all tested cell clones were

used for cluster analysis. Hierarchical clustering is used to group

genes according to common properties, for instance their

expression levels. With this information one can gain insight

into relationships between genes or their proteins. Certain

expression patterns represent common regulatory processes,

which can be a sign of putative functional relationships. To

obtain insight into the gene regulation in all cell clones, gene

expression values of three independent replicates of C99WT,

C99I45F, C99V50F and mock-transfected cells were clustered

(Fig. 3).

The cluster analysis revealed a previously unknown inverse

regulation of NEUROG2 and KIAA0125 in consequence of an

inverse Ab42/Ab40 ratio. Interestingly, both genes were the most

differentially expressed ones and importantly, they were inversely

regulated in all measured cell clones.

To focus specifically on Ab effects, it was essential to compare

suitable cell clones. While comparisons of C99WT, C99I45F and

C99V50F with mock-transfected cells provided information about

C99-overexpression effects, comparisons of C99I45F and

C99V50F with C99WT provided information about Ab effects

(Table 1). Our goal was to obtain information about Ab42/Ab40

effects, therefore we first concentrated on C99V50F, generating a

decreased Ab42/Ab40 ratio, and compared it to C99WT

generating medium Ab42/Ab40 levels. Whole genome expression

profiling of these cell clones resulted in a gene list in which the

genes were sorted according to their differential expression levels

(Table 2). The first most up-regulated and first most down-

regulated genes were then further investigated: We examined how

Figure 1. ELISA of Ab40 and Ab42 peptides from conditioned media of SH-SY5Y cells overexpressing C99. Ab40 and Ab42 were measured
by ELISA. C99 was intracellularly cleaved, generating different amounts of Ab42 and Ab40 in C99WT, C99I45F and C99V50F. As was expected [4,5],
C99I45F transfected cells generated large amounts of Ab42 and low levels of Ab40 resulting in a large Ab42/Ab40 ratio, whereas the opposite regulation
pattern was detected for C99V50F transfected cells. Mock-transfected cells only produced very low (endogenous) levels of Ab42 and Ab40, hence, their
Ab levels were not detectable, because they were close to the detection limit of the ELISA.
doi:10.1371/journal.pone.0006779.g001

Neurogenin 2 and KIAA0125
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these two genes were expressed when the Ab42/Ab40 ratio was

increased. Since an increased Ab42/Ab40 ratio, as this is the case

with C99I45F-transfected cells, is characteristic of AD, this

approach was expected to provide essential information about

the pathomechanism of AD.

Neurogenin 2 was strongly down-regulated, whereas
KIAA0125 was strongly up-regulated in consequence of a
decreased Ab42/Ab40 ratio

The cells expressing a decreased Ab42/Ab40 ratio (C99V50F)

were compared to the cells transfected with the wildtype construct

(C99WT). C99V50F expresses a smaller Ab42/Ab40 ratio

compared to the Ab42/Ab40 ratio in C99WT (Fig. 1). Fourteen

significantly dysregulated transcripts (seven up-regulated and seven

down-regulated ones) were identified with NEUROG2 and

KIAA0125 being the most prominent (Fig. 4). The corresponding

probe set identification numbers (Probe set IDs), p-values, fold

changes, gene symbols, gene titles and chromosomal locations are

listed in Table 2.

Real-time PCR validated the inverse expression of
NEUROG2 and KIAA0125 and revealed a correlation to
relative Ab42 levels

NEUROG2 and KIAA0125 transcription levels were measured by

quantitative real-time PCR and compared to relative Ab42 levels

(Fig. 5A, 5B).

NEUROG2 gene expression correlates positively with
relative Ab42 levels as demonstrated by real-time PCR

Relative Ab42 levels were ranked from high to low and plotted

against the differential NEUROG2 expression (Fig. 5A). Here, we

demonstrated that NEUROG2 expression increased together with

increasing relative Ab42 levels. NEUROG2 showed the strongest

up-regulation (9.0 fold, S.E.M. = 2.3) for mutant C99I45F versus

C99V50F, for which high relative Ab42 levels were generated.

NEUROG2 showed up-regulation (2.3 fold, S.E.M. = 0.6) for the

comparison C99I45F versus C99WT; for this comparison medium

relative Ab42 levels were generated. NEUROG2 was down-

regulated 4.0 fold (S.E.M. = 3.7) in mutant C99V50F compared

Figure 2. Experimental set up. Independent cell clones of the human neuroblastoma cell line SH-SY5Y, generating different amounts of Ab42

and Ab40, were used for whole genome transcription analysis. Total-RNA was extracted from the cells, converted into cDNA, followed by conversion
into cRNA (in the scheme simplified presented as m-RNA). The cRNA was hybridized onto the Chips, washed, scanned and the scanned images were
used for data analysis. The means of triplicates (n = 3 per group) were calculated and the groups were compared in order to obtain information
about the effects of Ab42/Ab40. C99WT, producing medium Ab42/Ab40 levels, was compared with C99I45F (high Ab42, low Ab40 levels) and with
C99V50F (low Ab42, high Ab40 levels). These comparisons resulted in Ab-specific information. Comparisons between C99WT, C99I45F, C99V50F and
mock-transfected cells resulted in information about effects caused by C99-overexpression combined with Ab42/Ab40 effects, since C99 as well as
Ab42/Ab40 were overproduced compared to the mock-control in which only very low (endogenous) amounts of C99 and Ab42/Ab40 were present
(Table 1).
doi:10.1371/journal.pone.0006779.g002

Neurogenin 2 and KIAA0125
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to C99WT; for this comparison low relative Ab42 levels were

generated.

KIAA0125 gene expression correlates negatively with
relative Ab42 levels as demonstrated by real-time PCR

Relative Ab42 levels were ranked from high to low and plotted

against the differential KIAA0125 expression (Fig. 5B). KIAA0125

showed an inverse expression pattern to that of NEUROG2 in

response to increased relative Ab levels. KIAA0125 showed the

strongest down-regulation (9.8 fold, S.E.M. = 2.6) for the compar-

ison of mutant C99I45F versus C99V50F, for which the highest

relative Ab42 levels were generated. KIAA0125 was down-

regulated 1.8 fold (S.E.M. = 0.5) for the comparison C99I45F

versus C99WT (medium relative Ab42 levels) and it was up-

regulated 5.4 fold (S.E.M. = 0.9) in mutant C99V50F compared to

C99WT, for which the lowest relative Ab42 levels were generated.

NEUROG2 and KIAA0125 are inversely regulated in all
tested cell clones

Comparing the gene expression of NEUROG2 and KIAA0125,

measured by real-time PCR, confirmed the results revealed by

microarray analysis: The stronger the NEUROG2 up-regulation in

certain cell clones (Fig. 5A), the stronger is the KIAA0125 down-

regulation in the same cell clones (Fig. 5B) and vice versa. C99-

overexpression had a similar effect on NEUROG2 and KIAA0125

expression as a decreased Ab42/Ab40 ratio. Importantly however,

an increased Ab42/Ab40 ratio, which is typical of AD, had an

inverse expression pattern of NEUROG2 and KIAA0125: A

Figure 3. Hierarchical clustering of transcripts according to their expression values. Gene expression values of three independent
replicates of C99WT, C99I45F, C99V50F and mock-transfected cells were clustered in order to obtain information about expression patterns. Two
main clusters were identified. An inverse Ab42/Ab40 ratio resulted in an inverse NEUROG2/KIAA0125 regulation. Genes were clustered with the
Manhattan metric as distance between the centered expression profiles and complete linkage as distance between the clusters. GC-RMA normalized
m-RNA levels were used. This procedure revealed a so far unknown correlation between NEUROG2 and the previously uncharacterized KIAA0125:
NEUROG2 and KIAA0125 were inversely regulated. Here, no baseline experiment was defined. Instead, for each probe set the mean over all chips was
calculated and was subtracted from every single value (centering of data). The fold change refers to the mean of all expression values: NEUROG2
(marked as 1A in Fig. 3) is upregulated approximately 8 fold (dark red colour) compared to the average expression of all chips appearing in Fig. 3. The
average expression of all chips is regarded as a suitable baseline in order to see overall gene regulation in all cell clones. The yellow frames indicate
the inverse regulation of NEUROG2 and KIAA0125 in the cells expressing inverse Ab42/Ab40 ratios: C99I45F (Ab42/Ab40q) up-regulated NEUROG2, but
down-regulated KIAA0125, whereas C99V50F (Ab42/Ab40Q) down-regulated NEUROG2, but up-regulated KIAA0125 in all triplicates. Triplicates were
derived from independent single clones so that clonal effects were highly unlikely. Interestingly, the replicate in which the strongest up-regulation
was observed (1A) also showed the strongest down-regulation for KIAA0125 (1B) and vice versa (2A and 2B).
doi:10.1371/journal.pone.0006779.g003

Neurogenin 2 and KIAA0125
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decreased Ab42/Ab40 ratio down-regulated NEUROG2, but up-

regulated KIAA0125, whereas an increased Ab42/Ab40 ratio up-

regulated NEUROG2, but down-regulated KIAA0125.

Discussion

Neurog 2 (synonym: Math4A) and the so far uncharacterized

KIAA0125 were the most extremely and inversely regulated genes

in consequence of a decreased Ab42/Ab40 ratio: While KIAA0125

was the most up-regulated gene, NEUROG2 was the most down-

regulated one. However, for an increased Ab42/Ab40 ratio, which

is typical of AD, the expression pattern was inverted: NEUROG2

was the second most up-regulated gene, whereas KIAA0125 was

strongly down-regulated. Bearing in mind that 40.000 transcripts

were analyzed here, finding such a regulation pattern merely by

chance is rather unlikely and argues for a specific effect mediated by

the Ab42/Ab40 ratio.

Analyzing large data sets can increase the error in significance

testing (problem of multiplicity). To keep that error small we

decided for a cut-off of p , 0.005. We calculated adjusted p values

to control the false discovery rate (FDR) by the method of

Benjamini & Hochberg (shown in the Supplementary Information,

Table S1). For several of the comparisons investigated, we got

FDR-adj usted p values less than e.g. 0.05 (C99I45F vs. mock,

C99V50F vs. mock, C99WT vs. mock). This doesn’t hold true for

C99V50F vs. C99WT. Hence, we chose a cut off for the

unadjusted p values being aware of the limitations of the resulting

gene list. To exclude the possibility of false positives, data can be

validated with another method. This was done by real-time PCR

for the genes KIAA0125 and NEUROG2, which verified the results

of the microarray analysis.

For analyzing the effects of Ab42 and Ab40, the direct

comparison between C99I45F or C99V50F and C99WT is more

suitable than the comparison between C99I45F or C99V50F and

the mock-control. However, the comparison between the Ab-

overproducing mutants C99I45F or C99V50F and the mock-

control also deliver interesting information, namely information

about Ab effects combined with C99 effects (Table 1). Hence, we put

these data into the Supplementary Information (Table S1).

Intriguingly, KIAA0125 (on chromosome 14q32.33) is localized

close to the presenilin 1 (PS1) locus (chr14q24.3). The KIAA0125

gene localizes to the immunoglobulin heavy chain locus (IGH@)

on chromosome 14. KIAA0125 has been suggested to be a gene

with putative protein-coding properties (hypothetical protein:

LOC9834). The function of this putative protein has not been

determined yet. Interestingly, a sequence of 76–78 nucleotides was

found repeated 6 times in the untranslated region of KIAA0125

[14] possibly arguing for a regulatory function. The calculated

molecular weight is expected to be 8.1 kDa (according to the

Table 2. Most up and down-regulated transcripts derived from the comparison C99V50F/C99WT1 (Ab42/Ab40Q).

Position Probe set ID p-value

Fold change
C99V50F/C99WT1
Ab42/Ab40Q Gene symbol Gene title

Chromo-somal
location

1 206478_at 0.00142 5.3 KIAA0125 KIAA0125 chr14q32.33

2 208603_s_at 0.00191 2.5 MAPK8IP2 mitogen-activated protein kinase 8
interacting protein 2

chr22q13.33

3 200974_at 0.00115 2.2 ACTA2 actin, alpha 2, smooth muscle, aorta chr10q23.3

4 216963_s_at 0.00449 2.2 GAP43 growth associated protein 43 chr3q13.1-q13.2

5 201860_s_at 0.00477 2.1 PLAT plasminogen activator, tissue chr8p12

6 206397_x_at 0.00269 2.1 GDF1 growth differentiation factor 1 chr19p12

7 204471_at 0.00190 2.1 GAP43 growth associated protein 43 chr3q13.1-q13.2

7 220287_at 0.00110 22.0 ADAMTS9 a disintegrin-like and metalloprotease
(reprolysin type) with thrombospondin type 1
motif, 9

chr3p14.3-p14.2

6 209220_at 0.00089 22.5 GPC3 glypican 3 chrxq26.1

5 212148_at 0.00288 22.8 PBX1 pre-B-cell leukemia transcription factor 1 chr1q23

4 209757_s_at 0.00416 23.0 MYCN v-myc myelocytomatosis viral related
oncogene, neuroblastoma derived (avian)

chr2p24.1

3 202283_at 0.00362 23.1 SERPINF1 serine proteinase inhibitor,clade F (alpha-2
antiplasmin, pigmentepithelium derived factor),
member 1

chr17p13.1

2 209238_at 0.00268 23.7 STX3A syntaxin 3A chr11q12.1

1 215632_at 0.00166 212.5 NEUROG2 neurogenin 2 chr4q25

Table 2 Most up and down-regulated transcripts derived from the comparison C99V50F/C99WT1 (Ab42/Ab40Q; n = 3 per group; p , 0.005, unadjusted p-values; C99WT1
was the baseline experiment). The unspliced GAP43 and its spliced isoform were detected by two different probe sets (204471_at and 216963_s_at).
doi:10.1371/journal.pone.0006779.t002

Table 1. Comparisons between cell clones and information
obtained about C99 and Ab-effects.

Comparisons Effects

C99WT/mock C99 overexpression

C99I45F/mock C99 overexpression+Ab42

overproduction

C99V50F/mock C99 overexpression+Ab40

overproduction

C99I45F/C99WT Ab42 overproduction

C99V50F/C99WT Ab40 overproduction

doi:10.1371/journal.pone.0006779.t001

Neurogenin 2 and KIAA0125
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human protein reference database) or 7.7 kDa (according to the

UniProt/Swiss-Prot databases). Provided the mRNA is actually

translated, the complete coding sequence is expected to be a

peptide with 76 amino acids (according to the Uniprot database,

based on the nucleotide sequence).

NEUROG2 is a member of the neurogenin subfamily of basic

helix-loop-helix (bHLH) transcription factors that play an

important role in neurogenesis. During mouse neurogenesis,

NEUROG2 and NEUROG1 are expressed in distinct progenitor

populations in the central and peripheral nervous systems [15].

Yan et al. observed that in the developing chick retina, NEUROG2

was expressed in a subpopulation of proliferating progenitor cells

[16]. Scardigli et al. hypothesized that NEUROG2 is both

responsive to, and a regulator, of genetic pathways that specify

neuronal fates in the ventral spinal cord [17]. It has been shown

that the development of mesencephalic dopamine neurons is

severely compromised in NEUROG2-null mutant mice. NEUROG2

is required for the differentiation of ventricular zone progenitors

into postmitotic dopaminergic neuron precursors in the interme-

diate zone. It was concluded that NEUROG2 is required for the

development of midbrain dopaminergic neurons [18]. NEUROG2

was immuno-histochemically detected in a certain cycling

population during G1 phase and was further restricted during

G2-M phases to the subventricular zone-directed population.

NEUROG2 may further be involved in the asymmetric cell

divisions of progenitor cells [19]. Moreover, it has been reported

that inhibition of proneural bHLH factors, like NEUROG2, in

cortical progenitors promotes the formation of astrocytes [20].

A changed Ab42/Ab40 ratio is typically found in familial

Alzheimer’s disease (FAD) and we used the same terminology

here. It should be noted however, that the basic increases or

decreases of the individual Ab species levels might have biological

effects, which can be independent of the Ab ratio [21,22]. Indeed,

based on absolute Ab species levels (Supplementary Information,

Table S2), the unbiased cluster analysis (Fig. 3) would be in

agreement with an Ab42 effect. This is reflected by the grouping of

mock and C99V50F in one main cluster and C99WT and

C99I45F in another one, which is in agreement with the extent of

absolute Ab42 levels.

We propose the following property/function to KIAA0125:

Firstly, it can be speculated that KIAA0125 may act as an

antagonist of NEUROG2, secondly, that inverting the Ab42/Ab40

ratio also inverts the expression of NEUROG2/KIAA0125, thirdly,

it can further be speculated that KIAA0125 might play a role in

neurogenesis, maybe in preventing the generation of dopaminergic

neurons or it could also be involved in inducing astrocytosis.

It had not escaped our notice that also other genes are clustered

in similar ways like KIAA0125 (for instance GAP43, see Fig. 3).

However, these genes do not reach such extreme differential

expression values like KIAA0125. Though, for such genes an

important relationship to NEUROG2 may also exist. Moreover, it

has to be taken into consideration that further genes exist, which

do not pass our cut-off criteria for significance (p , 0.005); for

some of these genes a relationship similar to that of KIAA0125

cannot be excluded.

Our work has not only been restricted to NEUROG2 and

KIAA0125, but provides further information about the regulation

of several transcripts involved in Ab induced gene expression.

While differential expression for NEUROG2 and KIAA0125 was

validated by real-time PCR, any remaining genes listed in Table 2

were not validated by another method. However, using a rather

stringent cut-off for significance (p , 0.005; unadjusted p-values)

provided more confidence in these data than using the frequently

used threshold of p , 0.05.

Interestingly, the KIAA0125 regulation was found to be similar

to the one of growth associated protein 43 (GAP43) and

plasminogen activator, tissue (PLAT). GAP43 has been termed a

‘growth’ or ‘plasticity’ protein because it is expressed at high levels

in neuronal growth cones during development and axonal

regeneration. It is considered to be a crucial component of an

effective regenerative response in the nervous system. Phosphor-

ylation of this protein by protein kinase C is specifically correlated

with certain forms of synaptic plasticity. The fact that GAP43 was

up-regulated in consequence of a decreased Ab42/Ab40 ratio, but

not in response to an increased one, is in line with the aberrant

GAP43 gene expression that has been observed in AD [23].

Furthermore, it has been demonstrated that treatment of neuronal

cultures with Ab40 for four days dose-dependently increased

GAP43 levels and it has been suggested that Ab40 may promote

neurite formation in primary neuronal cultures [24].

Plasminogen activator, tissue (PLAT) is regarded as one of the

top candidate genes in AD according to the Alzforum database

(www.alzforum.org). It is one of the most prominent activators of

fibrinolysis. Its up-regulation in consequence of a decreased Ab42/

Ab40 ratio (whereas an increased ratio did not up-regulate PLAT)

may contribute to enhanced fibrinolysis. This may offer an

explanation for the increased tendency of having strokes in AD

patients because for an increased Ab42/Ab40 ratio, typical of AD,

this putative protective up-regulation of PLAT might be missing.

Most interestingly, PLAT was found to be down-regulated 3.3 fold

(p = 0.0037) in the brains of Down’s syndrome patients (see

supplemental information published in [25]), who also have a

greater prevalence of strokes [26] and in which Ab42 levels are

increased due to a gene dosage effect caused by triplication of the

APP gene localized on chromosome 21 (trisomy 21). These

observations argue for a negative correlation between PLAT

expression and the Ab42/Ab40 ratio in vitro and in vivo.

Fibrin, the end product of blood coagulation, can be converted

into soluble fragments (fibrinolysis). Plasmin, a protease, converts

Figure 4. Volcano plot of up and down-regulated transcripts
derived from the comparison C99V50F/C99WT1 (Ab42/Ab40Q,
n = 3 per group, p , 0.005, C99WT1 was the baseline
experiment). A fold change of gene expression$2.0 (|log2 ratio|$1)
was regarded as biologically meaningful. 14 significantly differentially
expressed transcripts were identified (seven up-regulated and seven
down-regulated ones, see grey boxes).
doi:10.1371/journal.pone.0006779.g004

Neurogenin 2 and KIAA0125
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Figure 5. Relative gene expression of NEUROG2 and KIAA0125 measured by real-time PCR and compared to relative Ab42 levels.
Fig. 5A and 5B show an almost linear relationship of NEUROG2/KIAA0125 expression and relative Ab42 levels. It is noteworthy that these relationships
are in opposite directions: While NEUROG2 expression increases with increasing relative Ab42 levels, KIAA0125 expression decreases with increasing
relative Ab42 levels. Importantly, the same regulation pattern was confirmed by real-time PCR as previously observed by microarray analysis: The
stronger the NEUROG2 up-regulation in certain cell clones (Fig. 5A), the stronger was the KIAA0125 down-regulation in the same cell clones (Fig. 5B)
and vice versa. Total-RNA was originated from the same clones as the ones used for the microarrays. This total-RNA was converted into cDNA and
used for real-time PCR. Cyclophilin A expression was used for normalisation. Error bars represent the standard error of the mean (S.E.M.) of three
independent cell clones.
doi:10.1371/journal.pone.0006779.g005
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fibrin into soluble fragments by cleavage. The serine proteinase

inhibitor, clade F, member 1 (SerpinF1, a-2 anti-plasmin) is an anti-

plasmin and it was down-regulated 3.1 fold (p = 0.00362) for a

decreased Ab42/Ab40 ratio, whereas it was not differentially

expressed when the Ab42/Ab40 was increased. It can be speculated

that more plasmin may be available, which in turn could

accelerate fibrinolysis (for a decreased Ab42/Ab40 ratio).

Actin, alpha 2, smooth muscle, aorta (ACTA2) is one of six

different actin isoforms. Actins are highly conserved proteins that

are involved in cell motility and cell structure. They are ubiquitous

proteins involved in the formation of filaments that are major

component of the cytoskeleton. Interaction with myosin provides

the basis of muscular contraction and many aspects of cell motility.

ACTA2 was the third most strongly up-regulated gene for Ab42/

Ab40Q, but it was not differentially expressed for Ab42/Ab40q. It

was co-regulated with GAP43, PLAT, GDF1 and MAPK8IP2.

ACTA2 has been described as being involved in vascularisation

and vascular branching [27,28]. Furthermore, impaired vascular

contractility and blood pressure homeostasis in smooth muscle a-

actin null mice have been observed [29]. The major function of

vascular smooth muscle cells is contraction to regulate blood

pressure and flow [30]. It can be speculated that upregulation of

ACTA2 in consequence of a decreased Ab42/Ab40 ratio is a

mechanism that might also occur in smooth muscle cells, which in

turn could lead to improved vascularisation and could regulate

blood pressure. This positive effect on vascularisation and blood

pressure might be missing for the AD-typical increased Ab42/Ab40

ratio where no differential ACTA2 expression was observed. This

could help to understand why high systolic blood pressure is a risk

factor for AD.

Due to its involvement in neurotransmitter release, Syntaxin 3A

dysregulation was of special interest. Syntaxin 3A was found to be

inversely regulated: It was weakly up-regulated in consequence of

an increased Ab42/Ab40 ratio (p = 0.159, fold change 1.4), whereas

it was down-regulated in consequence of a decreased one

(p = 0.00268, fold change = 23.7). Syntaxins interact with synap-

totagmins and are responsible for membrane fusions of transmitter

containing vesicles. Synaptotagmin XIII was up-regulated in

consequence of an increased Ab42/Ab40 ratio (data not shown)

and could possibly be an interaction partner for syntaxin 3A. It

can be speculated that neurotransmitter release is influenced by

dysregulation of syntaxin 3A.

ADAMTS9 (a disintegrin-like and metalloprotease, reprolysin

type, with thrombospondin type 1 motif, 9) belongs to the

ADAMTS family. Members of the ADAMTS family have been

implicated in the cleavage of proteoglycans, the control of organ

shape during development and the inhibition of angiogenesis.

ADAMTS9 is a secreted, cell-surface-binding metalloprotease that

cleaves the proteoglycans versican and aggrecan and binds Zn2+

ions [31]. Unlike most precursor proteins, the ADAMTS9

zymogen (pro-ADAMTS9) is resistant to intracellular processing.

Instead, pro-ADAMTS9 is processed by furin at the cell surface. It

is suggested that, unlike other metalloproteases, furin processing of

the ADAMTS9 propeptide reduces its catalytic activity [32].

Observations suggest that the propeptide is a key functional

domain of ADAMTS9, mediating an unusual regulatory mech-

anism that may have evolved to ensure maximal activity of this

protease at the cell surface. ADAMTS proteins are structurally

homologous to ADAM proteins, but they also contain at least 1 C-

terminal thrombospondin type 1 (TSP1) repeat and are secreted

rather than membrane bound. ADAMTS9 was found to be up-

regulated in consequence of an increased Ab42/Ab40 ratio and

down-regulated as a result of a decreased one. This inverse

regulation argues for a specific effect mediated by the Ab42/Ab40

ratio itself, because an inverse Ab42/Ab40 ratio led to an inverse

regulation of this gene and may not be mediated by unspecific

effects occasionally observed in microarray studies.

Taken together, we demonstrated that the expression levels of

KIAA0125 and NEUROG2 were inversely regulated by an altered

Ab42/Ab40 ratio: An increased Ab42/Ab40 ratio, which is typical

of AD, up-regulated NEUROG2 but down-regulated KIAA0125,

whereas the opposite regulation pattern was observed for a

decreased ratio. This might indicate a biological function for the

so far uncharacterized KIAA0125: It may be speculated that

KIAA0125 could be involved in neurogenesis possibly by an action

antagonistic to that of NEUROG2, due to the observed strict

inverse regulation of both genes and the already established

involvement of NEUROG2 in developmental neural processes.

Finally, our dataset provides information about the regulation of

further Ab dependent genes, which could turn out to be important

in AD.

Materials and Methods

Cell line, cell culture and transfections
The human neuroblastoma cell line SH-SY5Y [33,34] was

cultured in 50% Minimum Essential Medium (MEM, Sigma) and

50% Nutrient Mixture F-12, HAM (Sigma), supplemented with

10% FBS (PAN), 1% L-Glutamin (Sigma) and 1% nonessential

amino acid solution (Sigma) in a humidified atmosphere with 5%

CO2. 70% confluent SH-SY5Y cells were transfected with the

constructs mentioned below.

Plasmids
Sequences coding for C99WT, C99I45F and C99V50F were

cloned into a pCEP4 vector (Invitrogen). These plasmid constructs

have been previously described [4,5]. The empty vector pCEP4

(mock) was used as a negative control.

Enzyme-linked immunosorbent assay (ELISA) of Ab42 and
Ab40

Subconfluent cells were grown in 5 ml culture medium and

conditioned for 48 h. Conditioned medium was collected, then

Ab42 and Ab40 concentrations were measured by an enzyme-

linked immunosorbent assay, following the manufacturer’s recom-

mendations. Measurements were carried out using a 96-Well

MULTI-SPOT Human (6E10) Abeta Triplex Assay (MSD,

Haass).

Transcriptomics and data analysis
Microarray analysis was performed according to the Expression

Analysis Technical Manual (Affymetrix) with minor modifications:

Briefly, total RNA was extracted using the Qiashredder-Kit,

RNase-free DNase set (Qiagen) and RNeasy Midi-columns

(Qiagen). 20 mg of total RNA was reverse transcribed into cDNA

by using the SuperscriptTM Double-Stranded cDNA Synthesis Kit

(Invitrogen) and oligo(dT) primers (Proligo). 3.3 ml of purified

cDNA was converted into cRNA using the BioArrayTM High

YieldTM RNA Labeling Kit (Enzo Life Sciences). Subsequently,

15 mg of purified cRNA was fragmented using the GeneChipH
Eukaryotic Hybridization Control Kit (Affymetrix). 15 mg of

fragmented cRNA was hybridized to whole genome HG-U133

A and HG-U133 B Chips. Chips were washed, stained, scanned

and the quality of the created dat-file images was evaluated by

using Gene Operating Software GCOS 1.2 and MAS 5.0 Software

(Affymetrix). The sample quality was checked by using a

Bioanalyzer 2100 (Agilent). The statistical analysis was carried

out using the software package R, version 1.9.1 (R Development
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Core Team (2004) R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna,

Austria), together with libraries gcrma and limma of the Biocon-

ductor Project, version 1.4 [35]. The data preprocessing steps,

background-adjustment, normalization and computation of GC-

RMA gene expression measures were performed according to Wu

et al. (Wu Z; Irizarry RA; Gentleman R; Martinez-Murillo F;

Spencer F (2004): A Model-Based Background Adjustment for

Oligonucleotide Expression Arrays, Johns Hopkins University,

Dept. of Biostatistics Working Papers, Working Paper 1). For the

statistical analysis, empirical Bayes inference for linear models with

the transfected neuroblastoma cell line SH-SY5Y (C99WT1,

C99I45F, C99V50F, mock - with 3 replicates per group) was used

[36]. Moderated t-statistics and corresponding p-values were

calculated for the comparisons C99V50F vs. C99WT1. We used a

threshold of 0.005 for the p-values and selected only those probe

sets which showed a |log2 ratio|$1. A hierarchical clustering

(Manhattan metric+complete linkage) for the centered expression

profiles over all experimental groups was performed for the

presentation of probe sets selected.

Quantitative real-time PCR and selection of an
endogenous control for normalisation

Total-RNA was reverse transcribed into cDNA using random

hexamer primers included in the High-Capacity cDNA Archive

Kit (Applied Biosystems). This cDNA was amplified and measured

by using TaqManH Gene expression assays (Applied Biosystems).

Cycling conditions were: 50uC for 2 min, 95uC for 10 min,

followed by 40 cycles of 95uC for 15 s and 60uC for 1 min.

Relative quantification was performed with the 22DDCT method.

For normalisation, an endogenous control was selected out of 10

candidate controls using the TaqManH Human Endogenous

Control Plate (Applied Biosystems).

Quality control of cells, target-RNA and arrays
Cells were checked for mycoplasma contamination. The

260 nm/280 nm ratio for total-RNA was between 1.9 and 2.1

for microarray experiments. Total-RNA and unfragmented cRNA

was checked with a Bioanalyzer 2100 (Agilent). For total-RNA,

two distinct bands (28 s and 18 s ribosomal RNA) were detected;

the 28 s band was approximately twice as strong as the 18 s band.

For unfragmented cRNA an accumulation of bands in the center

of each lane, representing the different m-RNAs, was detected. For

fragmented cRNA, bands, corresponding to a size of 35–200

bases, were detected. After scanning, array images were assessed

by eye to confirm the absence of bubbles or scratches. The means

of all chips are shown; the highest and lowest value is indicated in

brackets. Target intensities of 100 (HG-U133 A Chip) and 20

(HG-U133 B Chip) were used. Only chips with equal target

intensities were compared among each other. Scaling factors for

A-chips were within acceptable limits 0.91 (0.8–1.4), as were

background 75.1 (60.7–97.7), noise (rawQ) 2.7 (2.4–3.3) and

number of present transcripts 51% (47.4–52.9%). 39/59 ratios for

GAPDH and b-actin were confirmed to be within acceptable limits

(GAPDH: 0.92 (0.79–1.81), b-actin: 1.26 (1.03–2.29), and BioB

spike controls were found to be present on 100% of all the chips,

with BioC, BioD and CreX also present in increasing intensity.

Scaling factors for all B-chips were within acceptable limits 1.24

(0.9–1.6), as were background 63.87 (43.9–112), noise (raw Q) 2.6

(2.0–3.6) and number of present transcripts 30% (14.3–38,4%).

39/59 ratios for GAPDH and b-actin were confirmed to be within

acceptable limits (GAPDH: 1.1 (0.88–2.03), b-actin: 1.3 (0.92–

2.95), and BioB spike controls were found to be present on 95% of

all the chips, with BioC, BioD and CreX also present in increasing

intensity.

Accession Number
Unprocessed and processed microarray data were deposited in

the ArrayExpress database (http://www.ebi.ac.uk/microarray-as/

ae/) under the accession number E-MEXP-1913.

Supporting Information

Table S1 Supplementary Information, C99I45F vs mock,

C99V50F vs mock, C99WT vs mock

Found at: doi:10.1371/journal.pone.0006779.s001 (0.15 MB

XLS)

Table S2 Supplementary Information, ELISA

Found at: doi:10.1371/journal.pone.0006779.s002 (0.02 MB

XLS)
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