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Abstract

CRISPR/Cas9 gene editing technology has enabled lineage tracing for thousands of cells
in vivo. However, most of the analysis of CRISPR/Cas9 lineage tracing data has so far been
limited to the reconstruction of single-cell tree topologies, which depict lineage relationships
between cells, but not the amount of time that has passed between ancestral cell states
and the present. Time-resolved trees, known as chronograms, would allow one to study the
evolutionary dynamics of cell populations at an unprecedented level of resolution. Indeed,
time-resolved trees would reveal the timing of events on the tree, the relative fitness of
subclones, and the dynamics underlying phenotypic changes in the cell population – among
other important applications. In this work, we introduce the first scalable and accurate
method to refine any given single-cell tree topology into a single-cell chronogram by estimating
its branch lengths. To do this, we leverage a statistical model of CRISPR/Cas9 cutting with
missing data, paired with a conservative version of maximum parsimony that reconstructs
only the ancestral states that we are confident about. As part of our method, we propose a
novel approach to represent and handle missing data – specifically, double-resection events
– which greatly simplifies and speeds up branch length estimation without compromising
quality. All this leads to a convex maximum likelihood estimation (MLE) problem that
can be readily solved in seconds with off-the-shelf convex optimization solvers. To stabilize
estimates in low-information regimes, we propose a simple penalized version of MLE using a
minimum branch length and pseudocounts. We benchmark our method using simulations
and show that it performs well on several tasks, outperforming more naive baselines. Our
method, which we name ‘ConvexML’, is available through the cassiopeia open source
Python package.

1 Introduction

Many important biological processes such as development, cancer progression and adaptive
immunity unfold through time, originating from a small progenitor cell population and progressing
through repeated cell division. A realization of these processes can be described by a single-cell
chronogram: a rooted tree that represents the history of a clone, where each edge represents
the lifetime of a cell, and internal nodes represent cell division events, as depicted in Figure 1A.
Single-cell chronograms thus capture the entire developmental history of the cell population,
allowing us to understand when and how cells commit to their fates. Because of this, single-cell
chronograms have been of interest for decades.

Almost 40 years ago, the first single-cell chronogram for the development of C. elegans was
determined through visual observation over the timespan from zygote to hatched larva [3, 4]. Since

∗To whom correspondence should be addressed: niryosef@berkeley.edu, yss@berkeley.edu

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2023. ; https://doi.org/10.1101/2023.12.03.569785doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569785
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: (A) A single-cell chronogram over 10 cells A-J. (B) The single-cell chronogram induced
by leaves A, D, G, J. (C) CRISPR/Cas9 binds and cuts a target site, introducing an indel at
that site. (D) The CRISPR/Cas9 lineage tracing system recording the lineage history of a cell
population. We represent the uncut state with ‘0’, distinct indels with positive integers, and
missing data with ‘−1’. Note specifically our choice of representation of double-resection events.
(E) Our approach to estimating single-cell chronograms from CRISPR/Cas9 lineage tracing data:
A single-cell topology is first estimated using any of many available methods, such as those
provided by the cassiopeia package [1] or otherwise [2]. Next, our novel branch length estimator
is applied to estimate branch lengths for that topology. (F-H) Single-cell chronograms reveal the
timing of events on the tree, single-cell fitness scores, and phenotypic transition rates, among
other important applications.
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then, the advent of CRISPR/Cas9 genome editing and high-throughput single-cell sequencing
technologies has enabled lineage tracing for thousands of cells in vivo [5, 6, 7, 8, 9, 10]. However,
unlike microscopy-based techniques, these approaches record lineage history indirectly through
irreversible heritable Cas9 mutations – called indels – at engineered DNA target sites, as depicted
in Figure 1C. These target sites (or simply sites) are arranged into lineage tracing barcodes
(or character arrays) that act as fake genes which mutate stochastically and are transcribed
and measured through the transcriptome. Figure 1D depicts the evolution and inheritance of
CRISPR/Cas9 lineage tracing barcodes on a single-cell chronogram. Inferring a lineage tree from
this CRISPR/Cas9 lineage tracing data is challenging, and has led to the development of many
computational methods [2].

Single-cell chronograms provide a detailed account of the cell population’s history, revealing
the timing of events on the tree, the relative fitness of subclones, and the dynamics underlying
phenotypic changes in the cell population – among others, as depicted in Figure 1F-H. This is
in contrast to single-cell tree topologies, which are like single-cell chronograms except that they
do not have branch lengths. Although single-cell tree topologies reveal the lineage relationships
between cells, the lack of time resolution precludes them from tackling the aforementioned tasks.

Unfortunately, the task of estimating single-cell chronograms from CRISPR/Cas9 lineage
tracing data is daunting, and methods developed so far have abandoned the hope of estimating
single-cell chronograms to their full resolution. For one, only extant cells are sequenced, so it is
not possible to pinpoint cell death events. Also, only a fraction of the cells in the population are
sampled and sequenced, so one can only expect to estimate the single-cell chronogram induced by
the sampled cells. Formally, the induced chronogram is defined as the subtree whose leaves are the
sampled cells. For example, Figure 1B illustrates the induced chronogram obtained by sampling
cells A, D, G, J in the chronogram from Figure 1A. Note that edges in the induced chronogram
no longer map one-to-one to the lifetime of a cell; instead, they map one (edge)-to-many (cell
lifetimes). Sampling cells greatly affects the distribution of branch lengths in the tree, as shown
in Supplementary Figure S1. Most methods developed so far have not attempted to estimate
branch lengths, opting instead to estimate just topologies [2], limiting their value.

The task of estimating single-cell chronograms is complicated by the fact that lineage tracing
data are especially prone to go missing. There are three primary reasons for this. The first
one is sequencing dropouts, whereby the limited capture efficiency of single-cell RNA-sequencing
technologies leads to some barcodes not being sequenced. The second reason is heritable epigenetic
silencing events. When this occurs, chromatin state is modified in such a way that a lineage
tracing barcode is no longer transcribed and thus cannot be read out through the transcriptome.
The third reason is double-resection events, wherein concurrent CRISPR/Cas9 cuts at proximal
barcoding sites cause the flanked sites to get lost. Missing data from epigenetic silencing and
double-resection events is inherited upon cell division. Double-resection events are particularly
challenging to represent because they create an indel that spans multiple barcoding sites and
introduce complex correlations between barcoding sites which complicate branch length estimation
[11]. These three sources of missing data are illustrated in Figure 1D; note specifically our choice
of representation of double-resection events, which will turn out to be crucial for branch length
estimation.

The estimation of time-resolved trees from molecular data has a rich history outside of single-cell
lineage tracing. The field of Statistical Phylogenetics has studied the problem extensively, with
the goal of estimating gene trees and species trees from multiple sequence alignments of DNA and
amino-acid sequences. Popular software for reconstructing phylogenetic trees includes FastTree
[12], PhyML [13], IQ-Tree [14] RAxML [15], and BEAST2 [16]. Unfortunately, these methods
are not suitable for CRISPR/Cas9 lineage tracing data because (1) they were designed for small,
finite state spaces such as the 20 amino acid alphabet, (2) they require a known substitution
model which is usually assumed to be reversible, or (3) they have an elevated computational
cost characteristic of Monte-Carlo Bayesian methods, forbidding them from scaling beyond a few
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hundred sequences. CRISPR/Cas9 lineage tracing datasets contain hundreds of unique states,
an unknown substitution model which is irreversible, and hundreds to thousands of cells.

Although attempts have been made to adapt Statistical Phylogenetics models to CRISPR/Cas9
lineage tracing data, they still suffer from elevated computational costs. The recent work TiDeTree
[17] implemented withing the BEAST2 platform [16] takes several hours to infer a chronogram
for a tree with just 700 leaves. This comes from the need to run MCMC chains for inference.
Similarly, the GAPML method [18] which was designed specifically for the GESTALT technology
takes up to 2 hours on a tree with just 200 leaves. This comes from modeling the correlations
between sites caused by double-resection events, and the cost of marginalizing out the character
states of the ancestral (unobserved) cells - which we shall call the ancestral states for short.
This calls for new methods that can improve the trade-off between computational efficiency and
statistical efficiency.

In this work, we introduce the first scalable and accurate method to estimate single-cell
chronograms from CRISPR/Cas9 lineage tracing data. Our approach is modular: we propose first
estimating a single-cell topology using any of many available methods [1, 2], and then refining
it into a single-cell chronogram by estimating its branch lengths, as depicted in Figure 1E. To
estimate branch lengths, we leverage a statistical model for the CRISPR/Cas9 mutation process
with missing data, and use a conservative version of maximum parsimony to reconstruct most –
but not all – of the ancestral states, while still producing essentially unbiased estimates. We pay
particular attention to double-resection events, and propose a novel representation and treatment
that is well-suited to our model. Taken together, all this leads to a convex maximum likelihood
estimation (MLE) problem that can be readily solved with off-the-shelf convex optimization
solvers. Because lineage tracing data can be of varying quality, we propose the use of a penalized
version of MLE using a minimum branch length and pseudocounts. Our method typically takes
only a few seconds to estimate branch lengths for a tree topology with 400 leaves using a single
CPU core.

We develop a benchmarking suite with three tasks to asses the performance of single-cell
chronogram estimation methods: (1) estimation of the times of the internal nodes in the tree, (2)
estimation of the number of ancestral lineages halfway (time-wise) through the experiment, and
(3) fitness estimation. We show that our method performs well on these tasks, outperforming
more naive baselines. We also compare our method’s performance against that of an ‘oracle’
model that has access to the ground truth ancestral states and show that it has comparable
performance. In contrast, naively employing maximum parsimony leads to biased branch length
estimates. This validates the suitability of conservative maximum parsimony for CRISPR/Cas9
lineage tracing data, a key methodological innovation of our work which underlies our scalability.
Similarly, we show the suitability of our novel representation of missing data, specifically that
concerning double-resection events. To finish, we discuss some of the many extensions of our
method that are made possible by its simplicity. We name our method ‘ConvexML’ and make it
available through the cassiopeia open source Python package.

2 Methods

2.1 A Statistical Model for CRISPR/Cas9 Lineage Tracing Data

We start by describing how the CRISPR/Cas9 lineage tracing data are represented (or encoded).
Let n be the number of cells assayed and let k be the number of lineage tracing sites or characters.
The observed lineage tracing data – called the character matrix – is represented as a matrix X
of size n× k with integer entries. The i-th row of X represents the observed character states of
the i-th cell. The character states are grouped consecutively into barcodes of a known fixed size.
Each non-missing entry of the character matrix represents an indel - an insertion or deletion
of nucleotides at the given site. Indels are represented with distinct positive integers, and 0 is
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used to represent the uncut state. The integer −1 is used to represent missing data. Figure 1D
illustrates the use of this notation. Of particular interest is our representation of double-resection
events, which we shall discuss shortly. Our statistical model defines a probability distribution
over X, and we shall subsequently use maximum likelihood estimation (MLE) to estimate branch
lengths.

Data generation process: To define our statistical model for the data X, we will define the
data generating process in two steps. In the first step, lineage tracing data is generated without
any missingness, which we call Z. In other words, we pretend that there are no sequencing
dropouts, epigenetic silencing, nor double-resection events. In the second step, we retrospectively
analyze the data Z and determine what entries R should have gone missing, thus obtaining
X. We will formalize this two-step process below, but it is an important conceptual leap
because by decoupling the missing data mechanism from the CRISPR/Cas9 mutation process,
the distribution of Z is easier to analyze since independence between sites holds, whereas this
is not true for X. Indeed, sequencing dropouts, epigenetic silencing and double-resections all
create correlations between different sites of X, since if there is a −1 in some site of a barcode, a
−1 is more likely to also be present in an adjacent site of the barcode, as seen in Figure 1D.

To provide intuition for how this two-step process works, it is instructive to consider a simpler
statistical model: one in which we roll n dice, and each die roll has a probability φ of being made
to go missing. There are two equivalent ways to model this: in the first way, before rolling a die,
we decide whether it will go missing. If so, we do not roll the die. In the second way, we first roll
all the dice, obtaining die rolls Z, and afterward determine which die rolls to hide (by replacing
their values with −1) to obtain the observed data X. Both models are equivalent in that they
induce the same probability distribution for the observed data X. However, the second approach
is richer because it provides us with extra random variables in Z – essentially, counterfactuals for
the values of the missing entries. This way of thinking is convenient for analyzing CRISPR/Cas9
lineage tracing data, as it simplifies the mathematical derivation of the MLE.

Statistical model: Let us thus formally define the statistical model for CRISPR/Cas9 lineage
tracing data X. We start by defining a model for Z – the process without missing data. Let T
be the given single-cell tree topology over the n cells – that is to say, a leaf-labeled, rooted tree
whose leaves correspond to the n cells. The model is parameterized by branch lengths l ∈ Rm≥0
for T ; here m is the number of edges of T . Let Tl be the single-cell chronogram obtained by
assigning the branch lengths l to T . The generative model for Z is as follows:

1. The k sites are independent and identically distributed.

2. Each site evolves down the tree Tl following a continuous-time Markov chain defined as
follows:

(a) Each site starts uncut at the root (in state 0).

(b) CRISPR/Cas9 cuts each site with a rate of c, where c is a nuisance parameter.

(c) When a site is cut, it takes on state s ∈ N = {1, 2, 3, . . .} with probability qs ≥ 0,
where q is nuisance probability distribution over N.

(d) Once a state is cut, it can no longer be cut again.

We denote by θ = (l, c, q) the full set of model parameters including the nuisance parameters.
By the end of the process we obtain Z, the states for all the leaves in the tree. More generally, the
process described so far defines a statistical model P = {pθ} for lineage tracing data representing
the character states for all the nodes in the tree T ; we denote these data by Z̃, which is a random
matrix of size ñ× k where ñ is the number of nodes in T (including internal nodes).

Missing data: The final step is to model the missing data mechanism occurring over the
tree, which explains how to obtain X from Z. For this, following [19], let R̃ be the binary
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Random Variables Sizes Meaning
Z̃, Z ñ× k, n× k Lineage tracing states without missing data
R̃, R ñ× k, n× k Binary response (1)/missingness (0) mask
X̃,X ñ× k, n× k Lineage tracing states with missing data

Table 1: Random variables used throughout. Upper case letters with tilde denote random
matrices of size ñ× k with one row per node in the tree while capital letter without tilde denote
the submatrix of size n× k corresponding to the leaf nodes.

response/missingness mask matrix of size ñ× k indicating which entries of Z̃ ought to (not) go
missing (with R̃ = 0 for missingness and R̃ = 1 for response). Given R̃ and Z̃, the actual data
generated by the process at all nodes of the tree, which we denote as X̃, is:

X̃i,j =

{
Z̃i,j , if R̃i,j = 1,

−1, if R̃i,j = 0.

The subset of X̃ corresponding to the leaf nodes is then X – what we observe and were looking
to model. We need to specify how R̃ is jointly distributed with Z̃. We will take a very general
approach of Mealli and Rubin [20], and assume that missing data is missing always completely at
random (MACAR), meaning the missing data mask R̃ is independent from the lineage tracing
data Z̃. Formally, we assume a joint factorization pmis

θ,φ (Z̃ = z̃, R̃ = r̃) = pθ(Z̃ = z̃)gφ(R̃ = r̃),
where φ are the parameters of the missing data mechanism (such as the sequencing dropout
probability, epigenetic silencing rate, or temporal proximity of cuts required to induce a double-
resection). However, we assume nothing else about the distribution gφ(R̃ = r̃), meaning that we
take a non-parametric approach to missing data. In particular, the entries of the missing data
mask R̃ may be correlated, as in sequencing dropouts, epigenetic silencing and double-resection
events. Lastly, we will assume that φ and θ are distinct, meaning that the value of θ puts no
constrains on the value of φ and vice versa; formally (θ, φ) ∈ Θ × Φ for some sets Θ and Φ.
The MACAR and distinctness assumptions are together called ignorability of the missing data
mechanism, and are crucial for justifying maximum likelihood estimation with missing data [20],
as we will do shortly.

Modeling double-resections: An important use of ignorable missing data is to model double-
resection events. Biologically, in a double-resection event, two sites i and j in the same barcode
are cut close in time, resulting in the whole segment of sites between i and j to disappear, and
a shared indel to be created spanning all sites i through j. Double-resection events are quite
common and can be identified from the sequencing reads. Just like epigenetic silencing events,
double-resection events are heritable. Prior work has chosen to represent double-resection events
using complex indel states called ‘indel tracts’ [18]. Unfortunately, this substantially complicates
branch length estimation since complex correlations between barcoding sites need to be modeled.
Instead, we propose a novel representation of double-resections which is computationally tractable
and does not compromise the quality of branch length estimates. Mathematically, we choose to
model double-resection events via an ignorable missing data mechanism, as follows: if concurrent
cuts at sites i and j cause a double-resection, then sites i+ 1 through j − 1 inclusive become
ignorable missing data, as illustrated in Figure 1D. Note that sites i + 1 through j − 1 could
have had mutations after the double-resection event in a reality with no missing data; these are
precisely the counterfactuals modeled by Z̃. We choose not to model the fact that the indel
created at sites i and j is shared; instead, we just retain the indels created by the model without
missing data, i.e. two independent indels drawn from q as if double-resections did not exist in
the first place. As we will show later in a targeted experiment, this representation and treatment
of double-resection events leads to accurate branch length estimates.
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We have now defined a statistical model P(mis) = {pmis
θ,φ } for the lineage tracing data X with

missingness. The full list of random variables defined is outlined in Table 1. We now proceed
to discuss how this statistical model for X aligns with the biology behind the CRISPR/Cas9
lineage tracing assay, and how it is misspecified.

Discussion of model assumptions: First, let us discuss the assumption that the sites in
Z̃ are independent. Since we choose to model sequencing dropouts, epigenetic silencing and
double-resection events as missing data mechanisms, the missing data they introduce do not
violate the independence of sites in Z̃ (instead, it is the sites in X̃ that are correlated). Secondly,
CRISPR/Cas9 uses a different guide RNA sequence for each target site in a given barcode, so
target sites within the same barcode evolve independently. Thirdly, barcodes are integrated
randomly into the genome, so that they are far enough apart to interact with CRISPR/Cas9
independently. The only source of non-trivial model misspecification comes from our assumption
that double-resections create two independent alleles at the two cut sites, when in fact the
resulting indel should be shared and thus correlated, as seen in Figure 1D. This independent
treatment of correlated indels may seem inappropriate, but it can be viewed as a form of
composite-likelihood, which in general is known to retain consistency for parameter estimation
under weak assumptions [21, 22]. As we show later, when paired with conservative maximum
parsimony, our method can produce highly accurate estimates of branch length even with large
double-resection events. Thus, overall, independence of sites in Z̃ turns out to be a reasonable
assumption for branch length estimation.

Now let us discuss the assumption that sites in Z̃ are identically distributed. Due to the local
state of chromatin, some lineage tracing barcodes might be more prone to CRISPR/Cas9 cutting
than others, leading to different cut rates across sites. Site rate variation has received attention
in the field of statistical phylogenetics, where it has led to the development of more sophisticated
methods, such as [11, 23, 24]. However, models that assume equal rates across sites still perform
well and have been used extensively, such as the seminal work of Whelan and Goldman [25].
Modeling site rate variation also leads to slower runtimes. Therefore, in this work we will assume
that all sites are cut at the same (unknown) rate, leaving analysis of more sophisticated models
for future work.

The Markov assumption governing site evolution is standard for analyzing molecular data, and
is the workforce of Statistical Phylogenetics, enabling complex yet tractable statistical models.
Hence, we adopt it in our work.

Regarding the ignorability of the missing data mechanism, we must consider the three different
sources of missing data: sequencing dropouts, epigenetic silencing, and double-resections. Ignor-
ability is true for sequencing dropouts, since all barcodes are equally likely to be dropped out
during RNA-sequencing, regardless of their indel state, and the dropout probability is distinct
from θ. Ignorability can also hold for epigenetic silencing. For example, suppose that barcodes
get silenced at each node v of the tree T with some probability φv. In this case, the parameter
of the missing data mechanism would be the vector of probabilities φ of dimension ñ. It is
distinct from θ, and R̃ is independent of Z̃ for any θ, φ, so that ignorability holds. On the
other hand, suppose that the probability of epigenetic silencing at node v of Tl depends on the
branch lengths, for example φv = 1− exp(−tη) where t is the distance from the parent of v to
v, and η is a rate parameter. In this case, the epigenetic silencing mechanism is not ignorable
because φ is not distinct from θ. For similar reasons, missing data created by double-resection
events is generally not ignorable. However, because it hinders scalability and avoids imposing
potentially-misspecified parametric assumptions on the epigenetic silencing mechanism and on
double-resection events, we also assume they are ignorable. Any other missing data mechanisms,
should they exist, are also treated as ignorable. As we show later, this ignorable model of missing
data yields accurate branch lengths despite misspecification, showing its suitability.
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2.2 Maximum Likelihood Estimation of Branch Lengths

Having defined a statistical model for lineage tracing data X and discussed the suitability of the
modeling assumptions made, we proceed to show how to perform maximum likelihood estimation
of branch lengths under this model. Crucially, we show how to deal with unobserved ancestral
states, missing data, and the nuisance parameters c and q.

We first deal with unobserved ancestral states. Let x be the observed value of X. The
maximum likelihood estimator of branch lengths is given by:

l̂MLE ∈ arg max
l: Tl ultrametric

max
c,q,φ

log pmis
θ,φ (X = x). (1)

Here, ultrametric means that all leaves in the tree have the same distance from the root. This
condition is imposed because all cells are sampled at the same time, but it is possible to relax
this condition to account for temporal sampling of cells.

Unobserved ancestral states: To deal with unobserved ancestral states, we reconstruct
most – but not all – of the ancestral states with a conservative version of maximum parsimony.
Concretely, we only reconstruct ancestral states that are unambiguous under all maximum
parsimony reconstructions consistent with the evolutionary process, as described in detail in
Appendix B. In other words, we only reconstruct ancestral states which we are confident about.
Ambiguous states are not reconstructed – represented with the new symbol NONE (not to be
confused with the missing data state −1) – and marginalized over by considering all possibilities,
just like in an ignorable missing data mechanism. Intuitively, one can think about conservative
maximum parsimony in terms of mutation mapping : we are trying to map each entry s > 0
in the character matrix to exactly one edge in the tree (the edge on which said mutation was
introduced); however, it is possible that an entry can be optimally mapped to more than one
edge of the tree. In this case, the set of possible optimal edges will form a path. Since we do not
know on which of those edges of the path the mutation happened, we do not reconstruct the
state along the internal nodes of the whole path, using the symbol NONE instead. The state in
nodes above the path is reconstructed as 0, and in nodes below the path as s. Concrete examples
are shown in Figure S16 and Figure S17.

Essentially, what we have is a missing data mechanism (with missing data state NONE) on top
of the original missing data mechanism (with missing data state −1). This is mathematically
equivalent to a single ignorable missing data mechanism. Therefore, in what follows, we drop the
NONE symbol and replace it with the missing data state −1, which thus now stands for sequencing
dropouts, heritable missing data, double-resection missing data, and ambiguous ancestral states.
All this missing data are treated as ignorable and hence marginalized out during MLE.

As we show in Theorem 5, conservative maximum parsimony has the key property that missing
data states −1 can be marginalized out trivially. Importantly, the likelihood is essentially as
easy to compute as if there were no missing data. Letting x̃ be the conservative maximum
parsimony reconstruction of ancestral states (with NONE replaced by −1 as discussed, since it is
mathematically equivalent), the MLE amounts to:

l̂MLE ∈ arg max
l: Tl ultrametric

max
c,q,φ

log pmis
θ,φ (X̃ = x̃). (2)

We assume that the solution to the optimization problem Eq. (1) is close to that of Eq. (2).
This is a good assumption if the ancestral states in x̃ are correctly reconstructed, but otherwise
risks biasing the MLE. As we demonstrate later through simulation in Fig. 3, conservative
maximum parsimony introduces essentially no bias, unlike naive maximum parsimony, and hence
the reconstructions in x̃ are reliable.

Missing data: We next deal with missing data. The theory for dealing with ignorable missing
data is well established [26, 20, 19], but we reproduce the necessary derivations here for a
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self-contained exposition; the key result is that under ignorability, we can treat the non-missing
entries of X̃ as having been sampled from their marginal distribution.

We start by defining r̃(x̃) ∈ {0, 1}ñ×k to be the missing data mask corresponding to x̃. We
will use the following notation:

Definition 1. Let a and b be matrices of the same dimensions, with b being binary. We denote
by a[b] the vector obtained by concatenating the entries of a for which the corresponding entries
in b equal 1. A[b] is similarly defined for a random matrix A of the same dimensions as b. We
still index a[b] and A[b] as matrices for convenience, but it is important to note that they are
just a subset of the matrix entries.

The following result establishes that we can ‘ignore’ missing data, as done in [26, 19]:

Proposition 1. For all θ, φ, x̃ it holds that:

pmis
θ,φ (X̃ = x̃) = gφ(R̃ = r̃(x̃)) pθ(Z̃[r̃(x̃)]] = x̃[r̃(x̃)]).

Importantly, since φ is distinct from θ, then φ and θ can be optimized independently in Eq. (2).
Therefore, the MLE reduces to:

l̂MLE ∈ arg max
l: Tl ultrametric

max
c,q

log pθ(Z̃[r̃(x̃)] = x̃[r̃(x̃)]). (3)

Proof. We have

pmis
θ,φ (X̃ = x̃)

(R̃ is a function of X̃) =⇒ = pmis
θ,φ (X̃ = x̃, R̃ = r̃(x̃))

(definition of X̃) =⇒ = pmis
θ,φ (Z̃[r̃(x̃)] = x̃[r̃(x̃)], R̃ = r̃(x̃))

(marginalize out missing data) =⇒ =
∑
y

pmis
θ,φ (Z̃[r̃(x̃)] = x̃[r̃(x̃)], Z̃[1− r̃(x̃)] = y, R̃ = r̃(x̃))

(MACAR factorization) =⇒ = gφ(R̃ = r̃(x̃))
∑
y

pθ(Z̃[r̃(x̃)] = x̃[r̃(x̃)], Z̃[1− r̃(x̃)] = y)

(marginalize out missing data) =⇒ = gφ(R̃ = r̃(x̃))pθ(Z̃[r̃(x̃)] = x̃[r̃(x̃)]),

where 1 in lines 4 and 5 denotes an all-ones matrix of the same dimensions as r̃(x̃).

Nuisance parameters: Finally, it remains to deal with the nuisance parameters c and q. To
do this, we first unclutter notation by using the standard notation Z̃(1) = Z̃[r̃(x̃)], x̃(1) = x̃[r̃(x̃)],
and so on [20] (note that the dependence on x̃ is now implicit), using the superscript ‘1’ to subset
the non-missing entries of the object. Let V be the vertex set of T , and E the edge set of T .
Since T is rooted, we give edges their natural orientation pointing away from the root. For a
node v and site i, we denote by gpai(v) the first ancestor of v which has a non-missing state at
site i (read as ‘grandparent’). The log-probability in the MLE objective in Eq. (3) is then given
by

log pθ(Z̃
(1) = x̃(1)) =

k∑
i=1

log pθ(Z̃
(1)
:,i = x̃

(1)
:,i )

=

k∑
i=1

∑
v∈V,u=gpai(v):x̃v,i 6=−1

log pθ(Z̃v,i = x̃v,i|Z̃u,i = x̃u,i), (4)
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where the first equality follows from the independence of sites. The second equality requires
using combinatorial properties of the conservative maximum parsimony reconstruction, and is
proved in Theorem 5 in Appendix B. Finally, letting luv be the length of the path from u to v in
the tree, we can compute the probability of an observed transition between nodes u→ v where
u = gpai(v) as follows:

pθ(Z̃v,i = x̃v,i|Z̃u,i = x̃u,i) =


1, if x̃v,i = x̃u,i > 0,

exp(−cluv), if x̃v,i = x̃u,i = 0,

(1− exp(−cluv))qx̃v,i , if x̃u,i = 0 and x̃v,i > 0.

0 otherwise.

(5)

Plugging this into Eq. (4), we arrive at

log pθ(Z̃
(1) = x̃(1)) =

k∑
i=1

[ ∑
v∈V,u=gpai(v):x̃v,i=x̃u,i=0

−cluv

+
∑

v∈V,u=gpai(v):x̃u,i=0 and x̃v,i>0

log(1− exp(−cluv)) + log qx̃v,i

]
. (6)

Note that in Eq. (6), the term log qx̃v,i does not depend on l, so we can drop it from the
objective function and hence, crucially, the MLE does not depend on q. To finish, let us denote
by uncuts(u→ v) and cuts(u→ v) the number of characters that go uncut and cut, respectively,
on the path from (u, v). In other words,

uncuts(u→ v) = #{i ∈ {1, . . . , k} : u = gpai(v), x̃v,i = x̃u,i = 0},

cuts(u→ v) = #{i ∈ {1, . . . , k} : u = gpai(v), x̃u,i = 0 and x̃v,i > 0}.

The MLE problem hence simplifies to

l̂MLE ∈ arg max
l: Tl ultrametric

max
c

∑
u,v∈V

[
− uncuts(u→ v)cluv (7)

+ cuts(u→ v) log(1− exp(−cluv))
]
.

Although the MLE no longer depends on q, it still depends on the nuisance parameter c. It is a
well known fact that branch lengths l and cut rate parameter c are unidentifiable without further
assumptions, since they can be scaled up and down by the same constant without changing the
likelihood. To resolve this ambiguity, without loss of generality, we assume that the chronogram
has depth exactly equal to 1, which is equivalent to assuming that without loss of generality the
duration of the experiment is normalized to 1. In other words, we solve for:

l̂MLE ∈ arg max
l: Tl ultrametric,
Tl has depth 1

max
c

∑
u,v∈V

[
− uncuts(u→ v)cluv (8)

+ cuts(u→ v) log(1− exp(−cluv))
]
.

This is equivalent to solving the MLE problem in Eq. (7) using a cut rate of c = 1, and afterwards
scaling the chronogram to unit depth. Since the MLE problem in Eq. (7) with c = 1 is an
exponential cone program in the variables {luv : (u, v) ∈ E}, it can be readily solved with
off-the-shelf convex optimization solvers. When we implement the method, we exclude any terms
in the objective where uncuts(u → v) = 0 or cuts(u → v) = 0 since they do not contribute,
leading to a computation graph which has size essentially O(n) rather than O(n2) and thus leads
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to significantly faster runtime. This concludes optimization under the proposed model. In our
implementation, for trees with 400 leaves and as many as 150 characters, the optimizer takes just
a few seconds. In contrast, a method like TiDeTree takes several hours on a tree with 700 leaves
[17]. We leverage the cvxpy Python library [27, 28] and the ECOS [29] and SCS [30] solvers as
the backend. We find that ECOS is faster but can sometimes fail, in which case we fallback to
the slower but more robust SCS solver.

2.3 Regularizing the MLE

Due to limited lineage tracing capacity, it is not unusual for some cells in the population to
have the exact same lineage tracing character states. When this happens, the single-cell tree
topology will contain subtrees whose leaves all have the same character states. We call these
homogeneous subtrees. As we show next, the MLE will estimate branch lengths of 0 for these
subtrees. Moreover, the result is very general: it does not depend on whether ancestral states
have been reconstructed with maximum parsimony or marginalized out, and it does not depend
on the continuous-time Markov chain model. Concretely, we prove the following result:

Theorem 1 (Homogeneous Proper Subtree Collapse). Consider any continuous-time Markov
chain model (for example, the Jukes-Cantor model of DNA evolution, the WAG model of amino
acid evolution [25], or the CRISPR/Cas9 lineage tracing model in this paper with fixed c, q).
Let pl be the associated probability measure when running this Markov chain on Tl. Let S be a
proper subtree of T (meaning that it is distinct from T ). Let z be states for the leaves of the
tree such that all leaves of S have the same state, and let z̃ be a reconstruction of the ancestral
states of z where all nodes of S have the same state (as in a maximum parsimony reconstruction).
Let l be any ultrametric branch lengths for T . Then there exist other ultrametric branch lengths
l′ for T that satisfy:

(a) All the branch lengths of S are zero under l′.

(b) pl(Z̃ = z̃) ≤ pl′(Z̃ = z̃).

(c) pl(Z = z) ≤ pl′(Z = z).

Proof. See Appendix A for a proof. The proof relies on a simple probabilistic coupling argument.

As a consequence, the MLE can always collapse homogeneous proper subtrees. We coin this
phenomenon subtree collapse. More generally, we observed empirically that the MLE defined in
Eq. (8) tends to estimate many branch lengths as 0, a phenomenon which we coin edge collapse.

Subtree collapse, and more generally edge collapse, are undesirable because it suggests that
some cells have divided arbitrarily fast. To address this issue, and more generally to make
the MLE robust in low-information regimes where there is little information to support branch
lengths, we propose to combine two simple regularizers. The first is to impose a minimum branch
length ε. This can be easily accomplished by adding the minimum branch length constraint
to the MLE optimization problem of Eq. (8). The second is to add pseudocounts to the data,
in the form of λ cuts and λ uncuts per branch. This is like pretending that we have observed
λ characters getting cut on each edge, as well as λ characters remaining uncut on that edge.
Intuitively, this regularizes the branch lengths towards trees that look more neutrally evolving.
This also has the benefit of making the optimization problem strongly convex, ensuring there is
a unique solution. With this, our method falls into the category of penalized likelihood methods
[31] like GAPML [18], where the MLE is stabilized with a regularizer to aid in low-information
regimes. Other alternatives include Bayesian methods such as TiDeTree [17], but suffer from
higher computational costs.
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Incorporating our two regularizers to the optimization problem, we obtain:

l̂ ε,λMLE ∈ arg max
l: Tl ultrametric,
Tl has depth 1,
luv≥ε ∀ (u,v)∈E

max
c

∑
u,v∈V

[
− (uncuts(u→ v) + λ)cluv (9)

+ (cuts(u→ v) + λ) log(1− exp(−cluv))
]
.

This is equivalent to solving the MLE problem Eq. (7) while adding λ pseudocounts and
imposing the constraints c = 1 and luv ≥ εd ∀ (u, v) ∈ E where d is the depth of Tl, and then
finally normalizing the tree to have a depth of 1. This is still a convex optimization problem
in the {luv : (u, v) ∈ E} variables and can thus still be solved easily with off-the-shelf convex
optimization solvers.

The value of ε is interpretable and can thus be selected based on prior biological knowledge.
Concretely, if the shortest amount of time that can pass between two consecutive cell division
events is known to be approximately t, and if the length of the experiment is T , then ε can be
set to t/T . Imposing a minimum branch length avoids edge collapse completely.

Pseudocounts are a popular regularization technique with the advantage that the regularization
strength λ is interpretable in terms of a data perturbation. We explore using values of λ equal to
0 (no said regularization), 0.1 (small regularization) and 0.5 (large regularization). Note that
pseudocounts do not guarantee that a minimum branch length is satisfied, which is why we use
both forms of regularization.

Other regularization strategies are possible, such as the one used by GAPML [18] where large
differences in branch lengths are discouraged via an `2 penalty in log-space. However, we use a
minimum branch length and pseudocounts because their regularization strengths ε and λ are
interpretable and thus easier to select without needing to perform an extensive grid search with
cross-validation.

3 Results

3.1 Benchmarked Models

We benchmark several models, including ablations, oracles, and baselines. First, we benchmark
our MLE using ground truth ancestral states, conservative maximum parsimony, or naive
maximum parsimony, which we denote as l̂ ε,λGT + MLE, l̂

ε,λ
CMP + MLE, l̂

ε,λ
MP + MLE, respectively. We

set ε to a small value of ε = 0.01 and vary λ ∈ {0, 0.1, 0.5}. The value of ε = 0.01 was chosen
to mimic biological knowledge of minimum cell division times (and may vary depending on the
application); Supplementary Figure S2 shows that indeed ε = 0.01 is a reasonable lower bound
on cell division times in our simulated trees.

Second, we also benchmark a baseline model l̂Mutations which sets each branch length to the
number of mutations on the branch. This baseline shows what happens if we ignore the mutation
model. To avoid assigning a length of zero to edges without mutations, we set their edge length
to 0.5 instead. To make the tree ultrametric, we extend all tips to match the depth of the deepest
leaf. Finally, we scale the tree to have a depth of 1. Analogously to the MLE, we benchmark
three versions of this model: l̂GT+Mutations, l̂CMP+Mutations and l̂MP+Mutations respectively. When
using conservative maximum parsimony, mutations that are mapped to m edges are made to
contribute 1/m mutations to each of those edges.

3.2 Simulated Data Benchmark

Simulation steps: We evaluate the performance of the models on simulated data. Our
simulations involve three steps: (1) simulating a ground truth single-cell chronogram, (2)
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simulating lineage tracing data on the chronogram, and (3) sampling leaves. Briefly, our ground
truth single-cell chronograms are simulated under a birth-death process where the birth and
death rates are allowed to change with certain probability at each cell division, allowing us to
model changes in the fitness of subclones. The simulation ends when a specified population size
is reached; if the whole population of cells dies, we retry. Our simulated lineage tracing assay
controls the number of barcodes, the number of sites per barcode, the indel distribution, the
CRISPR/Cas9 site-specific mutation rates, and the rates of epigenetic silencing and sequencing
dropouts. Sampling leaves is done by specifying the number of sampled leaves.

Evaluation tasks: Using our simulation framework, we set out to evaluate the performance of
the different methods on several tasks, and across varying qualities of lineage tracing data. We
considered the following three evaluation tasks and associated metrics:

1. “Internal node time” task: Mean absolute error at estimating the time of the internal
nodes in the induced chronogram.

2. “Ancestral lineages” task: Relative error at estimating the number of ancestral lineages
halfway (time-wise) through the induced chronogram.

3. “Fitness estimation” task: Spearman correlation at estimating the fitness of each
sampled cell. The ground truth fitness of a cell is defined in our simulations as the
difference between its birth and death rates. We use the Neher et al.’s LBI estimator
[32] as implemented in the jungle package1 to derive fitness estimates from our single-cell
chronograms, as in the work of [33].

Using reconstructed tree topology: Furthermore, since in real applications we do not have
access to the ground truth single-cell tree topology, we also benchmark the performance of the
branch length estimation methods when the tree topology must first be estimated. To do this,
we first estimate the single-cell topology using the Maxcut solver based on Snir and Rao [34]
from the cassiopeia package [1] – which is a supertree method based on triplets – and then
apply the branch length estimator. We chose the Maxcut solver since it is a top performer at the
triplets correct and Robinson-Foulds metric commonly used to evaluate topology reconstruction
quality (Supplementary Figure S3) and runs much faster than the ILP algorithm. We resolve
multifurcations into binary splits using a Huffman-tree algorithm wherein subtrees with the least
size are merged first. Since the ground truth topology and the reconstructed topology differ,
the internal node time task becomes harder to evaluate. To resolve this discrepancy, we create
estimates for the time of each internal node v in the ground truth tree by taking the mean time
of the MRCA (most recent common ancestor) in the reconstructed tree of all pairs of leaves
whose MRCA in the ground truth tree is v.

Questions of interest: With our simulated data benchmark we seek to answer the following
questions: (i) Does our method significantly outperform the naive baseline which estimates branch
lengths as the number of mutations? (ii) How much does accuracy drop when the single-cell
topology must be estimated first – as in real applications – as compared to when the ground
truth topology is known? (iii) Does regularization stabilize branch length estimates, particularly
in low-information regimes? (iv) Does conservative maximum parsimony provide accurate branch
length estimates, as compared to naive maximum parsimony and to the oracle method which has
access to ground truth ancestral states? (v) Similarly, does our treatment of double-resection
event enable unbiased branch length estimates?

Simulating chronograms: To answer the above questions, we perform the following simulations.
We simulate 50 chronograms with 40,000 extant cells each, scaled to have a depth of exactly 1.
We then sample exactly 400 leaves from each tree, thus achieving a sampling probability of 1%.

1Publicly available at https://github.com/felixhorns/jungle
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The simulation is performed using a birth-death process with rate variation to emulate fitness
changes, and is described in detail in Appendix C. The resulting trees display nuanced fitness
variation, as can be seen in Supplementary Figure S4, which shows 9 of our 50 ground truth
induced chronograms.

The default parameter regime: For each chronogram, we simulate a lineage tracing experi-
ment with 13 barcodes and 3 target sites per barcode, for a total of 39 target sites; we choose 3
target sites per barcode based on the technology used in [10, 35, 33]. The per-site CRISPR/Cas9
mutation rates are splined from real data to achieve an expected 50% of mutated entries in
the character matrix, and are shown in Supplementary Figure S5. We consider 100 possible
indel states with a non-uniform probability distribution q, as in real data, such that some states
are much more common than others. Concretely, the qs are taken to be the quantiles of an
exponential distribution with scale parameter 10−5. This non-uniform probability distribution
is shown in Supplementary Figure S6. The indels are encoded as integers between 1 and 100
inclusive. We introduce sequencing dropouts and epigenetic silencing missing data mechanisms
such that on average 20% of the character matrix is missing, with 10% arising from sequencing
dropouts and 10% from epigenetic silencing. The missing data they introduce is represented with
the integer −1. Epigenetic silencing occurs similarly to CRISPR/Cas9 mutations, happening
with a fixed rate during the whole length of the experiment (which as discussed before, is in
fact not an ignorable missing data mechanism). Double-resections are also simulated; they
occur whenever two sites in the same barcode are cut before a cell divides, as illustrated in
Figure 1D. When a double-resection event occurs at positions i and j, we create an identical indel
at positions i and j with integer encoding 108 + 2i + 2j such that we can identify the endpoints
of the double-resection as in real data; positions i+ 1 through j − 1 go missing and are thus set
to −1. If more than two sites in a barcode are cut before the cell divides, i and j are taken to
be the leftmost and rightmost of these sites in the barcode. We call the collection of all these
lineage tracing parameters the ‘default’ lineage tracing parameter regime. The branch length
estimation methods are then evaluated on the three benchmarking tasks described above using
the 50 simulated trees.

Varying parameters: We then proceed to repeat the benchmark, this time varying each of the
lineage tracing parameters in turn. This allows us to explore lineage tracing datasets with varying
levels of quality, as in real life. We vary the number of barcodes in the set {3, 6, 13, 20, 30, 50}, the
expected proportion of mutated character matrix entries in the set {10%, 30%, 50%, 70%, 90%},
the number of possible indels in the set {5, 10, 25, 50, 100, 500, 1000}, and the expected missing
data fraction in the set {10%, 20%, 30%, 40%, 50%, 60%}, always keeping the expected sequencing
missing data fraction at 10%, and adjusting the expected heritable epigenetic missing data
fraction accordingly.

Assessing ancestral state reconstruction: To specifically analyze the bias of conservative
maximum parsimony, we perform a second targeted experiment where we simulate a very large
number of lineage tracing characters – 100,002 characters consisting of 33,334 barcodes of size
3 – on one of the previously described trees and then apply the MLE using either (i) ground
truth ancestral states, (ii) conservative maximum parsimony, or (iii) naive (standard) maximum
parsimony. It is the scalability of our method that allows us to perform such a large-scale
experiment to analyze its bias. Since the state space size is crucial for parsimony methods, we
vary the number of indel states in the set {1, 2, . . . , 9} ∪ {10, 20, . . . , 100}, so that in particular
we explore a binary tracer with a unique indel state. Since missing data makes ancestral state
reconstruction challenging, we use 60% expected missing data, with half coming from epigenetic
silencing and the other half from sequencing dropouts. Since double-resection events indirectly
increase the state space size (as they encode the indices of the outer sites), we initially exclude
them from the experiment. Finally, unlike the default parameter regime, to ensure that the
main source of model misspecification comes from the reconstruction of unobserved ancestral
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states, we use the same cut rate for all sites, thus excluding site rate variation from this specific
experiment; the cut rate is chosen such that an observed entry of the character matrix has 50%
change of being mutated.

Assessing the effect of double-resections: To specifically explore the effect of double-
resections, we repeat the previous experiment which has 100,002 characters but turning on
double-resection events, which introduces more missing data but also indirectly increases the
state space size. Moreover, to exacerbate the effect of double-resections, we perform a third
version of the experiment where we not only simulate double-resections, but also increase the
cassette size from 3 to 10 (while keeping the total number of characters controlled and equal to
100,000 by using 10,000 barcodes).

3.3 Performance Comparison

MLE outperforms the baseline estimator: The performance of each model on the default
parameter regime, with and without access to the ground truth topology, is shown in Figure 2.
We can see that all variants of our MLE method outperform the baseline estimator. This pattern
holds across all lineage tracing parameter regimes, shown in Supplementary Figures S7, S8, and
S9.

The effects of using reconstructed tree topologies: We find that using reconstructed single-
cell tree topologies – as opposed to ground truth topologies – consistently degrades performance
on the internal node time and fitness prediction tasks, as expected. On the ‘ancestral lineages’
task, however, this is not always the case. For example, on the default regime (Figure 2) using
a value of λ = 0.5 in our MLE leads to better performance with the reconstructed topology.
We attribute this to the MLE being over-regularized and the bias introduced by regularization
cancelling off with the bias of the topology reconstruction algorithm. The interaction between
topology, branch length estimation procedure, and downstream metric is thus nuanced, and
errors in the topology and branch length estimation steps can compound, or more interestingly,
cancel each other.

The effects of regularization: Using regularization improves performance most noticeably
in low-information regimes such as when the amount of missing data increases, the expected
proportion mutated decreases, or the number of lineage tracing barcodes decreases, as seen in
Supplementary Figures S7, S8, and S9. This is expected since the purpose of regularization
is precisely to stabilize branch length estimates in low-information regimes. Other than low-
information regimes, the regularization strength λ makes the most difference on the ancestral
lineages task, where a small amount of regularization λ = 0.1 provides the best results. Generally,
using some level of regularization as opposed to none appears to be beneficial across the board.

Conservative maximum parsimony vs. naive maximum parsimony: Conservative max-
imum parsimony tends to outperform naive maximum parsimony, the gap being most noticeable
in high-information regimes such as when the number of lineage tracing barcodes is 50. This
makes sense, as only at high sample sizes the risk of the estimator becomes dominated by the
bias rather than by the variance. For the ‘internal node time’ task as we increase the number of
barcodes, the performance of conservative maximum parsimony remains close to the performance
of the oracle model with access to ground truth ancestral states. In contrast, the performance of
naive maximum parsimony improves more slowly. For example, the performance of naive maxi-
mum parsimony with 50 barcodes is comparable to the performance of conservative maximum
parsimony with just 30 barcodes.

In our second experiment, we dissected the bias of our conservative maximum parsimony
approach by simulating a very large number of characters (100,002, as described in Section 3.2)
on one of our trees and evaluating the performance of the MLE when using either (i) ground truth
ancestral states, (ii) conservative maximum parsimony, or (iii) naive maximum parsimony. In the
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Figure 2: Performance of branch length estimation methods under the default pa-
rameter regime. For each branch length estimation method, we show the performance both
with and without access to the ground truth topology (in black and blue respectively). When the
topology is not provided, it is reconstructed with the Maxcut solver from the Cassiopeia package
[1]. Branch length estimators are evaluated on three tasks: (A) Estimation of the times of the
internal nodes in the tree, (B) Estimation of the number of ancestral lineages midway through
the experiment, (C) Estimation of the relative fitness of the cells in the population.
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first version of the experiment, we excluded double-resection events since they indirectly increase
the state space size. The results are shown in Figure 3. As the number of indel states increases,
the bias of conservative maximum parsimony seems to converge to nearly 0 in a geometric fashion.
The mean absolute error achieved is negligible when compared to the error for the default lineage
tracing regime as seen in Figure 2, which is at least 0.05. Naive maximum parsimony, on the
other hand, shows large bias with a MAE of 0.06, which is comparable to the MAEs seen in
Figure 2. Since CRISPR/Cas9 lineage tracing systems are characterized by their large state
space, this targeted experiment shows the suitability of conservative maximum parsimony for
branch length estimation.

The effect of double-resections: We finished by turning on double-resection events in our
previous simulation with 100,002 characters. The results are shown in Supplementary Figure S10A.
The indirectly increased state space size due to double-resections improves performance of our
branch length estimator for a low number of states, while the misspecified treatment of double-
resections minimally degrades performance for larger state space sizes. Increasing the barcode
size from 3 to 10 while keeping the number of characters roughly the same magnifies these
trends, as shown in Supplementary Figure S10B. Even with these barcodes of length 10, the
error of conservative maximum parsimony remains close to 0 for large state space sizes. These
results show that paired with conservative maximum parsimony, independent modelling of sites
is accurate even in the presence of double-resection events – which is the key to the scalability of
our method as compared to previous methods such as GAPML [18].

One may wonder what happens if one uses a different representation of double-resection events,
e.g., if one encodes them by assigning the indel state to all sites i through j, instead of only to
sites i and j; in Figure 1D, this would mean assigning state 5 to sites 1, 2, and 3, instead of
assigning state 5 to sites 1 and 3 and −1 to site 2. This is the current preprocessing behaviour of
the Cassiopeia package [1]. The results are shown in Supplementary Figure S11. As we can see,
performance deteriorates dramatically, even for the model with ground truth ancestral states.
Intuitively, our novel representation of ancestral states is effective because it entails exactly two
cutting events, which is the correct number.

Recommendation: Based on these results, our recommendation to practitioners is to use
conservative maximum parsimony with the regularized MLE l̂ ε,λMLE-Reg setting ε to the best known
lower bound on the minimum time between cell division events, and explore values of λ of 0.0,
0.1 and 0.5 as we did. For example, if cells are expected to take at least 1 day to divide and the
experiment last 60 days, our recommendation would be to set the minimum branch length to
ε = 1/60 ≈ 0.016. Character-level cross-validation is a promising avenue to automate the choice
of λ (and even ε) and we leave it to future work. Double-resections should be encoded using our
novel representation, with −1 (i.e., missing data) at the internal sites of the double-resection,
and the indel state duplicated at the flanking sites, as seen in Figure 1D. To ensure that the
indel state created by a double-resection event is distinct from any indel created by a standard
single-site cut, we recommend using a modified encoding such as 108s+ 2i + 2j , where s is the
original encoding of the indel and i, j are the sites of the double-resection. (In particular, note
that in our simulations from Section 3.2, we are considering a worse-case scenario where only one
indel state is possible during a double-resection.)

4 Discussion

In this work, we introduced the first scalable and accurate method to estimate branch lengths for
single-cell tree topologies, refining them into single-cell chronograms. Specifically, we proposed
using a regularized maximum likelihood estimator tailored to the CRISPR/Cas9 mutation pro-
cess. Key to our approach is our treatment of missing data – particularly our representation of
double-resection events – paired with our use of a conservative version of maximum parsimony to
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Figure 3: Conservative maximum parsimony enables negligible bias. By simulating a
massive number of lineage tracing characters on a tree and performing MLE, we explored the
bias of our conservative maximum parsimony approach as a function of the number of indel
states. We can see that as the number of indel states increases, the bias quickly goes away, unlike
for naive maximum parsimony. Because CRISPR/Cas9 lineage tracing systems are characterized
by their large state space, this makes conservative maximum parsimony a powerful tool in this
setting.

reconstruct only ancestral states which we are confident about. This simplifies the optimization
problem considerably and without introducing the typical bias of maximum parsimony. Specifi-
cally, this leads to a convex optimization problem that can be solved in seconds with off-the-shelf
convex optimization solvers. We proposed a simple regularization scheme based on a minimum
branch length and pseudocounts to stabilize estimates in low-information regimes. We designed
a synthetic benchmark with three task and showed that our method performs well on them,
outperforming more naive baselines. We specifically showed the ability of our method to estimate
branch lengths in an unbiased way even with large amounts of missing data and in the presence of
large double-resection events. Finally, we commented on extensions of our method that are made
easily available thanks to the convexity of our MLE. Our branch length estimator, which we title
‘ConvexML’, is implemented in the cassiopeia Python package which is publicly available, and
the methods and simulation frameworks presented in this paper are also readily available.

The simplicity and scalability of our method enable numerous extensions, some of which
we are currently pursuing. For instance, we are working on accounting for site rate variation
(i.e., the fact that different target sites evolve at different rates) by allowing a different cut rate
for each site; we expect that as lineage tracing technologies get better, site rate variation may
become more and more relevant. The resulting optimization problem is essentially identical to
the original one if the site-specific rates are known. If the site-specific rates are not known, they
can be estimated using a simple coordinate ascent procedure wherein the branch lengths and
site rates are optimized in turn. Another important extension is to estimate branch lengths for
trees that are not ultrametric. This arises in applications where cells are sampled at different
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moments in time.
We also plan to explore the use of character-level cross-validation to automatically perform

hyperparameter selection; although we aimed to make our hyperparameters as interpretable as
possible, a cross-validation scheme would nonetheless decrease the burden on the user. Lastly,
we look forward to leveraging our branch length estimator to infer the transcriptional dynamics
of cell populations, a problem that is akin to learning amino acid substitution rate matrices and
which has its own rich history in the field of statistical phylogenetics. By doing so, we seek to
shed light into the transcriptional dynamics of cancer development; in this application, branch
lengths are crucial to obtain good quantitative estimates.
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Supplementary Figures

Figure S1: The effect of sampling leaves on branch lengths. Sampling leaves causes short
edges at the bottom of the tree to get pruned away first and replaced with longer edges. This
dramatically changes the branch length distribution. Note how the top of the tree (highlighted
in red) is perfectly preserved even when sampling as few as 0.1% of the leaves in the original
tree, while the bottom of the tree is significantly remodelled. The effect of sampling must thus
be carefully considered when interpreting single-cell chronograms, developing new methods, and
designing regularization schemes.
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Figure S2: Distribution of branch lengths of the simulated ground truth trees. A value
of ε = 0.01 is a reasonable lower bound on branch lengths in our simulated trees.
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Figure S3: Selection of topology estimation method. We evaluated a collection of topology
estimation algorithms (called ‘solvers’) from the Cassiopeia package [1] to determine which one to
use in our analysis of branch length estimators. We used the Triplets Correct and Robinson-Foulds
metrics to select the algorithm. Note that these metrics do not require branch lengths, only
topologies. We find that for both metrics, the Maxcut solver is among the best performers while
also being much faster than the ILP solver, so we use it in the remainder of this work.
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Figure S4: Sample ground truth trees. Ground truth trees corresponding to the first 9
random seeds. Our simulated trees are diverse and showcase subclones with different proliferative
capacity.
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Figure S5: (Mutation rates) For our simulations, we use different mutation rates for different
sites. These site-specific mutation rates were splined from real data estimates and exhibit a
broad range of values.

Figure S6: (Indel Probabilities) For our simulations, upon CRISPR/Cas9 cutting we introduce
indels with different probabilities. Some indels are introduced with higher probability than others.
This is an important feature of real data which leads to high degrees of homoplasy, wherein
common indels are introduced independently in different cell lineages, complicating topology
reconstruction and branch length estimation.
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Figure S7: Performance of branch length estimation methods under different param-
eter regimes for the “internal node time” task. On the left we show performance when the
ground truth topology is known, and on the right we show the performance when the topology is
not know and must be reconstructed – as is the case in all real-life applications. In this latter
case, the Maxcut algorithm from the Cassiopeia package is used. Each number displayed is the
average over the 50 simulated trees for the given parameter regime.
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Figure S8: Performance of branch length estimation methods under different param-
eter regimes for the “ancestral lineages” task. On the left we show performance when the
ground truth topology is known, and on the right we show the performance when the topology is
not know and must be reconstructed – as is the case in all real-life applications. In this latter
case, the Maxcut algorithm from the Cassiopeia package is used. Each number displayed is the
average over the 50 simulated trees for the given parameter regime.
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Figure S9: Performance of branch length estimation methods under different param-
eter regimes for the “fitness inference” task. On the left we show performance when the
ground truth topology is known, and on the right we show the performance when the topology is
not know and must be reconstructed – as is the case in all real-life applications. In this latter
case, the Maxcut algorithm from the Cassiopeia package is used. Each number displayed is the
average over the 50 simulated trees for the given parameter regime.
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Figure S10: Conservative maximum parsimony enables negligible bias even in the
presence of double resections. (A) We repeated the experiment from Figure 3 but included
double-resection events. This introduces minimal bias for large state spaces, and improves results
on small state spaces due to the indirectly increased number of states. (B) We repeated the
same experiment as part A but with a large barcode size of 10 while keeping the number of sites
fixed at 100,000. Conservative maximum parsimony still shows little bias for large state spaces,
showing the effectiveness of our method even in the light of double-resection misspecification.
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Figure S11: Naive representation of double-resection events introduces bias. (A) We
repeated the experiment from Figure S10A but naively encoded double-resection events. This
introduces noticeable bias even when the ground truth states are known. (B) We repeated the
experiment from Figure S10B but naively encoded double-resection events. This introduces
massive bias even when the ground truth states are known. This shows the importance of our
choice of double-resection encoding.
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Appendix

A Proof of Subtree Collapse Theorem

We prove a slightly more general version of Theorem 1, which (essentially) implies that subtree
collapse happens also when there is missing data and the missing data mechanism is ignorable.
In phrasing this Theorem we use notation similar to Rubin’s missing data notation [26], but we
make no reference to missing data mechanisms in order to make the result more self-contained.
In what follows, let L(T ) denote the leaf set of tree T and V (T ) denote the node set of T .

Theorem 2 (Homogeneous Proper Subtree Collapse, Generalized). Consider any continuous-
time Markov chain model with state space Z≥0 (for example, the Jukes-Cantor model of DNA
evolution, the WAG model of amino acid evolution [25], or the CRISPR/Cas9 lineage tracing
model in this paper with fixed c, q). Given a tree topology T and branch lengths l for T , let
Z̃ : V (T )→ Z≥0 be the stochastic process obtained by running this CTMC down the tree Tl, and
let pl be the associated probability measure for Z̃. Let Z : L(T )→ Z≥0 be the restriction of Z̃
to the leaves of T . Let v ∈ V (T ) be different from the root, and let S be the subtree of T rooted
at v. Let L′ ⊆ L(T ) be a subset of the leaves of T . Let z(1) : L′ → Z≥0 be a state assignment
for this subset L′ of the leaves of T such that all leaves of S in L′ have the same state – meaning
that z(1)(l1) = z(1)(l2) for all l1, l2 ∈ L′ ∩ L(S) – and at least one leaf of S is assigned a state
by z(1) – meaning that L′ ∩ L(S) is non-empty. Let V ′ ⊆ V (T ) be such that V ′ ∩ L(T ) ⊇ L′.
Let z̃(1) : V ′ → Z≥0 be an extension of z(1) – meaning that z̃(1)(l) = z(1)(l) for all l ∈ L′ –
and such that all nodes in S are assigned the same state – meaning that z̃(1)(v1) = z̃(1)(v2) for
all v1, v2 ∈ V ′ ∩ V (S). Suppose that l are ultrametric branch lengths for T . Let Z̃(1) be the
restriction of Z̃ to V ′ and let Z(1) be the restriction of Z to L′. Then there exist other ultrametric
branch lengths l′ for T that satisfy:

(a) All the branch lengths of S are zero under l′.

(b) pl(Z̃(1) = z̃(1)) ≤ pl′(Z̃(1) = z̃(1))

(c) pl(Z(1) = z(1)) ≤ pl′(Z(1) = z(1))

Note. It turns out that it is important that z̃(1) assigns a state to at least one leaf of S (part
(a) of the Theorem is false otherwise), but it actually does not matter whether z(1) assigns a
state to some leaf of S (part (b) is trivially true in this case).

Proof of Theorem 2. Let w be the parent of v (which exists since by hypothesis v is not the
root of T ). Let u be a leaf of S assigned a state by z(1) (i.e. u ∈ L′ ∩ L(S)), which exists by
hypothesis. Consider the following operation on Tl, which we call the subtree collapse operation:
we take the nodes in S and set their depths to the depth of the tree, thereby ‘collapsing’ S down
onto the leaf u. We denote by l′ the new branch lengths after this operation, and thus the new
chronogram as Tl′ . The operation is illustrated in Figure S12.
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Figure S12: Subtree Collapse Operation

We claim that l′ satisfies the sought properties. It is clear that l′ are ultrametric branch
lengths. To show that the likelihood of z(1) as well as of z̃(1) can only increase after the subtree
collapse operation, we create a coupling between pl and pl′ , as follows:

1. Let the Markov chain run as usual down Tl.

2. For the part of Tl that was not perturbed by the subtree collapse operation – meaning any
point on the tree T which does not descend from v, nor is on the edge (w, v) – copy all of
its Markov chain transitions onto Tl′ , as in Figure S13.

Figure S13: Copy of transitions from unperturbed part of Tl onto Tl̃.

3. Copy the transitions on the path from w to u in Tl onto the same path in Tl′ , as in
Figure S14.

Figure S14: Copy of transitions from w → u path of Tl onto Tl′ .

The result of the two copy operations above results in transition operations getting created on
all branches of Tl′ , and is depicted in Figure S15.
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Figure S15: Copy of transitions from Tl onto Tl′ .

The key (trivial) observation is that the process induced over Tl′ follows exactly pl′ . As such,
let p be the coupling thus created over pl(Z̃(1)) and pl′(Z̃(1)), and let Z̃(1)

l , Z̃
(1)
l′ be the random

variables corresponding to Z̃(1) under pl and pl′ respectively. In other words, p(Z̃(1)
l , Z̃

(1)
l′ ) is a

probability density which satisfies

p(Z̃
(1)
l ) = pl(Z̃

(1)) and p(Z̃(1)
l′ ) = pl′(Z̃

(1)).

We now claim that
Z

(1)
l = z(1) ⇒ Z

(1)
l′ = z(1),

and, similarly,
Z̃

(1)
l = z̃(1) ⇒ Z̃

(1)
l′ = z̃(1).

Indeed, if Z(1)
l = z(1) then this means that all the leaves of S which are assigned a state by z(1)

have the same state as u, which is exactly the situation in Z(1)
l′ by construction, thus Z(1)

l′ = z(1).
Similarly, if Z̃(1)

l = z̃(1) then it means that all the nodes of S which are assigned a state by z̃(1)

have the same state as u, which is exactly the situation in Z̃(1)
l by construction, hence Z̃(1)

l′ = z̃;
this is the step where it is important that at least one leaf of S be assigned a state by z̃(1). This
completes the proof, for we obtain

pl(Z
(1) = z(1)) = p(Z

(1)
l = z(1)) ≤ p(Z(1)

l′ = z(1)) = pl′(Z
(1) = z(1)) (10)

and analogously

pl(Z̃
(1) = z̃(1)) = p(Z̃

(1)
l = z̃(1)) ≤ p(Z̃(1)

l′ = z̃(1)) = pl′(Z̃
(1) = z̃(1)), (11)

as claimed.

B Conservative Maximum Parsimony

In what follows, we let T be a rooted tree topology with n leaves and a total of ñ nodes. We
allow multifurcations (nodes with more than 2 children) and require that each internal node
other than the root have at least 2 children (such that unifurcations are not allowed, except for
the root node, as in a single-cell phylogeny). Let V and E be the vertex set and edge set of T
respectively, and let L be the set of leaves. We use x : L→ Z to denote the states of one specific
character over the leaves of T – including the missing data state −1 – and we use x̃ : V → Z to
denote the states of that specific character over all the nodes of T . We call the root of T simply
‘root’ when indexing.

We first define what it means for a state assignment x̃ to be valid under the irreversible
CRISPR/Cas9 mutation process:

35

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2023. ; https://doi.org/10.1101/2023.12.03.569785doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569785
http://creativecommons.org/licenses/by-nc-nd/4.0/


Definition 2 (Valid x̃). We say that a state assignment x̃ is valid if it satisfies the following
three properties:

• The root is uncut: x̃root = 0.

• Heritability of missing data: ∀(p, c) ∈ E, (x̃p = −1⇒ x̃c = −1).

• Irreversibility of the mutation process (not to be confused with the notion of irreversibility
of a Markov Chain): ∀(p, c) ∈ E, (x̃p > 0⇒ x̃c ∈ {x̃p,−1}).

An important quantity associated with a state assignment x̃ is its parsimony score:

Definition 3 (Parsimony score). We define the parsimony score Par(x̃) of a state assignment x̃
as:

Par(x̃) =
∑

(p,c)∈E

1{x̃p 6= x̃c}, (12)

where 1{·} denotes the indicator function.
Note: With this definition, we are penalizing transitions involving the missing state −1. One
could choose not to do this. With this alternative definition, the results that follow essentially
remain unchanged. Importantly, to the best of our knowledge, algorithms 1 and 2 remain correct,
with only very minor changes to the proofs. Therefore, we stick with this definition.

Unfortunately, we usually only know the state assignment x for the leaves L of the tree T .
Because of this, it is common to reconstruct the ancestral states x̃ from x in some fashion. Since
the mutation process is constrained, not every imputation of ancestral states is valid. We thus
define what it means for x̃ to be a valid reconstruction of x:

Definition 4 (Reconstruction x̃ of x). We say that x̃ is a reconstruction of x if ∀v ∈ L, x̃v = xv.

Definition 5 (Valid reconstruction x̃ of x). We say that x̃ is a valid reconstruction of x if x̃ is
valid, and if x̃ is a reconstruction of x.

Note that there always exists a valid reconstruction x̃ of x, by just setting all internal node
states to 0. However, we usually seek for the ‘best’ valid reconstruction, in some suitable sense.
This notion of ‘best’ is commonly chosen to be the most parsimonious solution, which is the one
that minimizes the parsimony score Par(x̃):

Definition 6 (Valid maximum parsimony reconstruction). We say that x̃ is a valid maximum
parsimony reconstruction of x, abbreviated VMPR, if x̃ is a valid reconstruction of x and x̃
achieves the lowest parsimony score (ties allowed) amongst all valid reconstructions of x; there
may be multiple VMPRs for a given x.

We now give an algorithm to compute a VMPR from x. For this, we will need some definitions:

Definition 7 (Set of leaf descendants). Given v ∈ V , we define L(v) ⊆ L as the set of leaves
descending from v.

Definition 8 (Subset of leaf states). Given a subset of leaves L′ ⊆ L, we define xL′ = {xu : u ∈
L′}. In particular, xL(v) is the set of states at the leaves descending from v.

We are ready to state our algorithm:
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Algorithm 1 A Valid Maximum Parsimony Reconstruction
1: procedure VMPR(T , x)
2: for v in postorder traversal of T do
3: if v is a leaf then
4: x̃v ← xv
5: else if v is the root of T then
6: x̃v ← 0
7: else
8: Let u1, . . . , uc be the children of v.
9: Let S = {x̃u1 , x̃u2 , . . . , x̃uc}.

10: if S = {s} for some s ∈ Z then
11: x̃v ← s
12: else
13: if −1 ∈ S then
14: if S\{−1} = {s} for some s ≥ 0 then
15: x̃v ← s
16: else
17: x̃v ← 0

18: else
19: x̃v ← 0

20: return x̃

We now show that Algorithm 1 indeed computes a VMPR, which we call x̃VMPR:

Theorem 3. Algorithm 1 computes a VMPR x̃ of x.

Proof. Suppose otherwise. Consider the first step of the algorithm where the current state
assignment (prior to executing the step) cannot be completed to any VMPR. We call this the
‘failing’ step. In the previous step, let x̃ be a VMPR compatible with the state assignment so far.
We analyze several cases, depending on which line of the algorithm we fail on:

• We cannot fail in lines 4 nor 6 because x̃ is a valid reconstruction (Definition 5).

• If we failed on line 11 then changing x̃v to s in x̃ would remain a valid reconstruction and
improve the parsimony score by at least 1, contradiction.

• If we failed in line 15, then first note that x̃v 6= −1 (or else by heritability of missing data
S = {−1}, contradicting line 14). The only other option is x̃v = 0. But then if we change
x̃v = s in x̃ we still have a valid reconstruction and the transition 0 → 0 going into v
becomes 0→ s, but at least one transition 0→ s leaving v becomes s→ s, meaning that
the new state assignment must be VMPR and is consistent with the algorithm the step it
failed, contradiction.

• We cannot fail in line 17 or 19 because there are at least two different non-missing states
s1, s2 ≥ 0. If one of these is a 0, then x̃v = 0 by validity. Otherwise, these two are distinct
positive states, and again x̃v = 0 by validity.

This concludes the proof.

We next give a direct, non-algorithmic characterization of the VMPR x̃VMPR computed by
Algorithm 1:

Proposition 2 (Structure of x̃VMPR). Let x̃VMPR be the VMPR of x computed by Algorithm 1.
Then, for any internal node v ∈ V , the following properties hold:
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1. If v = root, then x̃VMPR
v = 0.

2. If (v 6= root) ∧ (0 ∈ xL(v)), then x̃VMPR
v = 0.

3. If (v 6= root) ∧ (0 /∈ xL(v)) ∧ (∃s1, s2 > 0 : s1 6= s2, {s1, s2} ⊆ xL(v)) then x̃VMPR
v = 0.

4. If (v 6= root) ∧ (xL(v) = {−1}), then x̃VMPR
v = −1.

5. If for some s > 0 we have (v 6= root) ∧ ({s} ⊆ xL(v) ⊆ {−1, s}), then x̃VMPR
v = s.

Moreover, the five cases above are disjoint and exhaustive, so they completely characterize
x̃VMPR.

Proof. We first observe that the five cases are disjoint and exhaustive: case (1) handles the root
node; case (2) handles an internal node with some leaf state of 0; case (3) handles an internal
node with no leaf state of 0 but two distinct non-zero leaf states; case (4) handles an internal
node with all missing leaf states. If none of these four first cases hold, then it means that it is an
internal node and there exists some s > 0 such that {s} ⊆ xL(v) ⊆ {−1, s}, which is handled by
case (5).

Now the proposition follows directly by induction on the nodes of T in postorder: The first
three implications are true simply because x̃VMPR is valid; the fourth implication is true because
all the −1 in the subtree at v will be propagated up the tree by the algorithm; and the fifth
implication is true because positive states take precedence over missing states in the algorithm,
specifically, in line 15, so as states −1 and s are propagated up the subtree at v, the state s will
make it to the top.

Unfortunately, maximum parsimony imputation tends to lead to biased branch lengths, as shown
in Figure 3. A key contribution of our work is the idea of a conservative maximum parsimony
reconstruction, which gets rid of the maximum parsimony bias, while being computationally
just as tractable as a typical maximum parsimony reconstruction. The idea of conservative
maximum parsimony is to just reconstruct ancestral states that all valid maximum parsimony
reconstructions agree on, and leave the remaining ones without any state value, for which we
shall use the new symbol NONE. Formally, we define:

Definition 9 (Conservative maximum parsimony reconstruction). We say that x̃ : V → Z ∪
{NONE} is the conservative maximum parsimony reconstruction of x, abbreviated CMPR, if for
all nodes v ∈ V it holds that:

• If there is some state s such that x̃′v = s for all VMPR x̃′ of x, then x̃v = s.

• If there is no state s such that x̃′v = s for all VMPR x̃′ of x, then x̃v = NONE.

Unlike the VMPR, the CMPR is unique by definition. We shall denote x̃CMPR the CMPR of x.
Figure S16 shows a minimal example of conservative maximum parsimony, while Figure S17

shows a larger example. Just as for the VMPR, we can give a non-algorithmic characterization of
the CMPR which will be convenient for analyzing its properties. Unlike the VMPR, the structure
of the CMPR is more involved, and determining the state of some nodes requires looking up
though its list of ancestors, which we define as follows:

Definition 10 (Ancestor). Given nodes g, v in a T , we say that g is an ancestor of v if there is
a path from g to v in T . A node is considered an ancestor of itself.

We can now prove:

Theorem 4 (Structure of the CMPR). Let x̃CMPR be the CMPR of x. Then, for any internal
node v ∈ V , the following properties hold:

38

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 3, 2023. ; https://doi.org/10.1101/2023.12.03.569785doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.03.569785
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S16: A minimal example of conservative maximum parsimony. There exist two valid most
parsimonious reconstructions (VMPRs) for the leaf states x on the left. Importantly, these two
VMPRs disagree on the state of the (non-root) internal node. In other words, the mutation
to state 1 observed in the first leaf cannot be unambiguously mapped to an edge in the tree.
Therefore, the conservative maximum parsimony reconstruction (CMPR) assigns this node the
ambiguous label NONE, so as not to make an arbitrary mapping decision. This ambiguous state
is thus marginalized out during MLE computations, avoiding the bias that would result from
having maximum parsimony choose an arbitrary mapping, as shown in Figure 3.

1. If v = root, then x̃CMPR
v = 0.

2. If (v 6= root) ∧ (0 ∈ xL(v)), then x̃CMPR
v = 0.

3. If (v 6= root) ∧ (0 /∈ xL(v)) ∧ (∃s1, s2 > 0 : s1 6= s2, {s1, s2} ⊆ xL(v)) then x̃CMPR
v = 0.

4. If (v 6= root) ∧ (xL(v) = {−1}), then x̃CMPR
v = −1.

5. If for some s > 0 we have (v 6= root)∧ ({s} ⊆ xL(v) ⊆ {−1, s}) ∧ (∃g ancestor of v different
from the root such that {s} ⊆ xL(g) ⊆ {−1, s} and ∃u1, u2 distinct children of g such that
{s} ⊆ xL(u1), xL(u2) ⊆ {−1, s}), then x̃CMPR

v = s.

6. If for some s > 0 we have (v 6= root)∧({s} ⊆ xL(v) ⊆ {−1, s}) ∧(6 ∃g ancestor of v different
from the root such that {s} ⊆ xL(g) ⊆ {−1, s} and ∃u1, u2 distinct children of g such that
{s} ⊆ xL(u1), xL(u2) ⊆ {−1, s}), then x̃CMPR

v = NONE.

The first four properties above are analogous to that of Proposition 2 satisfied by x̃VMPR
v .

Moreover, the six cases above are disjoint and exhaustive, so they completely characterize x̃CMPR.

Proof. We first observe that the six cases are disjoint and exhaustive: these are the same cases
as those of the VMPR structure Proposition 2, except that the last case was split into the two
cases (5) and (6) by pivoting on the truth value of a somewhat involved condition depending on
the non-root ancestors of v.

We now show each of the implications. The first 3 will be a simple consequence of VMPRs
being valid, and the fourth will be a simple consequence of VMPRs being most parsimonious.
The last two cases, however, require some work. The proof for each implication is as follows:

1. All VMPRs x̃ have x̃root = 0 since they are valid (Definition 2). Thus x̃CMPR
root = 0.

2. By irreversibility of the mutation process and heritability of missing data, in a valid x̃ if a
leaf has state 0, all its ancestors must have state 0, therefore x̃CMPR

v = 0.

3. By irreversibility of the mutation process and heritability of missing data, in a valid x̃ the
ancestors of a leaf with state s > 0 can only have state s or 0. Therefore, if v has two
descendent leaves with distinct positive states s1, s2, we must have x̃v = 0 for all valid
reconstructions x̃ of x. Therefore x̃CMPR

v = 0.
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4. The parsimony score of the subtree rooted at v when all states in the subtree are assigned
states of −1 is zero, and any other assignment has parsimony score of at least 2 (take a
state s 6= −1 in the subtree and go down two distinct daughter lineages - some change to
−1 will occur on both lineages). Therefore, in any VMPR x̃ of x if the subtree rooted at
v does not have all states equal to −1, we can change them all to −1 and this will still
yield a valid reconstruction, while lowering the parsimony score by at least 1, contradiction.
Thus all VMPRs x̃ of x have x̃v = −1 and so x̃CMPR

v = −1.

5. Consider the ancestor g which satisfies the clause. We claim that for all VMPRs x̃ of x we
have x̃g = s. If this is true, then x̃v cannot be −1 (since then by heritability of missing data
xL(v) = {−1}), and x̃v cannot be 0 nor some other state s′ 6= s (since the mutation process
is irreversible). As a consequence, we would have that x̃v = s in all VMPRs x̃ of x, and so
x̃CMPR
v = s, as we want to show. Therefore, let us prove that for all VMPRs x̃ of x we have
x̃g = s. Suppose otherwise to reach a contradiction. Let x̃ be a VMPR of x with x̃g 6= s.
Then, the only option is that x̃g = 0 (because the ancestors of a state s can only be 0 or s
by irreversibility of the mutation process and heritability of missing data). Now consider
the subtree rooted at g, and consider the maximal connected component of 0 states at and
below g. Change all these states to s, and let x̃′ be the new states. We claim that x̃′ is
still a valid reconstruction of x. Firstly, x̃′ is a reconstruction of x since none of the leaf
states have been perturbed, since 0 /∈ xL(g) by the assumption that {s} ⊆ xL(g) ⊆ {−1, s}.
Next, to check validity of x̃, note that by assumption g is not the root, so the state of the
root is still all zeros. As for transitions, we only need to check the transitions that were
affected by swapping 0 to s. Firstly, the edge going into g was originally 0→ 0 and now it
is 0→ s, which is still valid. Now, inspecting the transitions affected in the subtree rooted
at g, we have that any 0 → 0 transitions that became s → s are still valid. Transitions
0 → s become s → s which are valid, and similarly transitions 0 → −1 become s → −1
which are valid. This accounts for all affected transitions. Thus, x̃′ is a valid reconstruction
of x. Now let us analyze the parsimony score of x̃′. The transition at the root was 0→ 0
and now became 0 → s, so the parsimony score got worse by 1. Among the remaining
changes, only the transitions 0→ s which became s→ s change the parsimony score, and
they each improve it by exactly 1. We claim that there exist at least two such transitions.
Indeed, by hypothesis, there are at least two leaves l1, l2 descending from g on different
daughter lineages through u1 and u2 which have a state of s. Consider the two distinct
paths leading from g to l1 and l2. In x̃, each of these paths must at some point transition
from 0 to s (note that transitioning from 0 to −1 is impossible because by heritability of
missing data it would imply xli = −1 for that leaf, a contradiction). Hence we obtain at
least two new transitions s→ s - one on each path - which jointly improve the parsimony
score by at least 2. Hence Par(x̃′) ≤ Par(x̃)− 1. This contradicts the assumption that x̃
was VMPR, and so we are done.

6. It suffices to show that in this case there exist two different VMPRs x̃, x̃′ of x with x̃v = s
and x̃′v = 0. We construct these explicitly. For x̃ we choose x̃VMPR. By Proposition 2,
we have that x̃VMPR = s. To construct a VMPR x̃′ with x̃′v = 0, start from x̃VMPR.
Travel up the ancestors of v until we find the last ancestor g such that x̃VMPR

g = s. Let
v = a1, a2, . . . , aj = g be the sequence of ancestors visited. Note that g cannot be the root
node since x̃VMPR is valid. If p is the parent of g, then the only possibility is x̃VMPR

p = 0
(by irreversibility of the mutation process and heritability of missing data). For every ai,
the fact that x̃VMPR

g = s means that the states that descend from ai are either −1 or s.
However, by condition 6 only one of the daughter subtrees of ai can contain state s, so
that the other one must consist fully of −1. The characterization of x̃VMPR further implies
that all these subtrees that have missing states at all leaves, have all internal nodes with
state −1 too. This way, consider the following modification to x̃VMPR: change the state of
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Figure S17: A larger example of conservative maximum parsimony reconstruction (CMPR). Node
v is reconstructed with state 1 because it satisfies condition 5 of Theorem 4 via the node labeled
g. In contrast, node v′ is not reconstructed (represented with the symbol NONE) since it instead
satisfies condition 6 of Theorem 4. In particular, this means that CMPR is mapping the mutation
to state 1 present at node g to either the edge connecting g to v′, or the edge connecting v′ to its
parent – without making an arbitrary choice. Instead, naive maximum parsimony would have
committed the mutation to one of these two edges. For example, the VMPR algorithm 1 would
have assigned v′ the state 1, meaning it would have mapped the mutation to the edge connecting
v′ to its parent. In this example, the CMPR and the VMPR from algorithm 1 agree on all other
nodes.

all nodes u = a1, a2, . . . , aj = g from s to 0. This is still a valid reconstruction of x. The
transition into g from p changes from 0→ s to 0→ 0, so we win a parsimony score of 1.
All the transitions s→ −1 from node ai into the subtrees with missing states at the leaves
become 0 → −1, so the parsimony remains unchanged by these transition changes. All
that remains is the transition from v into its unique subtree which contains a leaf with
state s. This transition must originally have been s→ s (since otherwise missing data is
heritable), so that in x̃′ the transition is now 0→ s and so we lose a parsimony score of 1.
The net change in the parsimony score from x̃ to x̃′ is thus zero, and so Par(x̃′) = Par(x̃),
completing the proof.

Figure S17 shows a larger example of CMPR, highlighting the subtlety of conditions 5 and
6 of the Theorem. As a remark, when there is no missing data, condition 6 of Theorem 4 can
never hold, implying that the CMPR will reconstruct all ancestral states. In particular, this
means that the VMPR is unique when there is no missing data. Thus, conservative maximum
parsimony only makes a difference when there is missing data.

The characterization of the CMPR given by Theorem 4 allows us to implement it easily
in time O(n) where n is the number of nodes in the tree (i.e., the same time complexity as
Fitch-Hartigan): we can just take the imputations given by Algorithm 1 and after the fact set
to NONE all nodes that satisfy condition 6 of the CMPR Theorem 4. To determine which nodes
satisfy this condition, we can use a bottom-up tree traversal to determine which nodes v satisfy
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condition 5 with g = v, and then propagate this information down with a top-down tree traversal
to determine which nodes v satisfy condition 5 for any ancestor g. Any nodes that satisfy the
original condition 5 of the VMPR Proposition 2 but not condition 5 of the CMPR Theorem 4
are exactly those with ambiguous states that need to be set to NONE. We provide the algorithm
below in Algorithm 2:

Algorithm 2 Conservative Maximum Parsimony Reconstruction
1: procedure CMPR(T , x)
2: x̃← VMPR(T , x)
3: for v in preorder traversal of internal nodes of T do
4: if v is the root, or 0 ∈ xL(v), or xL(v) contains two distinct positive states, or
xL(v) = {−1} then

5: VMPR_cond_5[v]← False
6: CMPR_cond_5[v]← False
7: else
8: VMPR_cond_5[v]← True
9: Let s be the unique positive state in xL(v)

10: if |{u : u child of v, s ∈ xL(u)}| ≥ 2 then
11: CMPR_cond_5[v]← True
12: else
13: p← parent(v)
14: CMPR_cond_5[v]← CMPR_cond_5[p]

15: for v in the internal nodes of T do
16: if VMPR_cond_5[v] is True and CMPR_cond_5[v] is False then
17: x̃v ← NONE
18: return x̃

Armed with the characterization of the CMPR x̃CMPR of x provided by Theorem 4, we are
ready to show that the likelihood pθ(Z̃(1) = x̃(1)) where x̃ = x̃CMPR is tractable; in x̃CMPR, states
that are not reconstructed and thus marked as NONE are without loss of generality replaced by
−1 such that they are marginalized out as in an ignorable missing data mechanism:

Theorem 5 (x̃CMPR has no unobserved confounders). Let x̃ = x̃CMPR be the CMPR of the leaf
states x of one character, with NONE replaced by −1. For a node v, denote by gpa(v) it closest
reconstructed, non-missing ancestor in x̃ (not including v), that is to say its closest ancestor u
with x̃u 6= −1. Then:

pθ(Z̃
(1) = x̃(1)) =

∏
v∈V,u=gpa(v) : x̃v 6=−1

pθ(Z̃v = x̃v|Z̃u = x̃u). (13)

Proof. It suffices to show that there are no unobserved confounders, that is to say, that if a node
v has x̃v = −1, then all subtrees of v except possibly one are fully missing. Indeed, in such
case, we can repeatedly prune away all these missing subtrees and the missing node (replacing
two edges by one) without changing the likelihood, leaving us with a tree where all nodes are
observed. In this new tree, each remaining node v is connected to u = gpa(v). We would thus
obtain the factorization in Eq. 13. To prove that if a node v has x̃v = −1 then all subtrees
of v except possibly one are fully missing, we proceed by contradiction, supposing otherwise.
Then v (which is not the root) has at least two distinct subtrees with at least one observed
leaf. Let s1 and s2 be the states of two such leaves. If we have s1 6= s2, then implication 3 of
Theorem 4 implies that x̃v = 0, contradiction. Therefore, the only non-missing state in these
subtrees is a single state s, and now implication 5 of Theorem 4 implies that x̃v = s, again a
contradiction, so we are done, since each observed state is conditionally independent from its
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observed non-descendants given its closest observed ancestor, giving the decomposition of Eq.
(13).

Finally, we should note that the Sankoff algorithm can be used to compute the CMPR in O(nk2)
time where k is the number of states, and in fact in time O(nk) by leveraging irreversibility, and
moreover in time O(n) by first precomputing the valid set of states based on states below (which
can only be −1, 0, and one other state). We used this for testing our implementation, but note
that the combinatorial characterization of the CMPR is not elucidated by such algorithm, and
thus it does not explain why line 4 is true.

C Tree Simulation details

Trees were simulated using a subsampled birth-death process. In this simulation, each cell has a
birth rate and a death rate. The amount of time before a birth or a death event occurs follows an
exponential distribution with the given birth and death rates. Additionally, a cell cannot divide
before at least 0.01 units of time have passed, called the offset. Initial birth and death rates are
set such that birth rate is ten times higher than death rate and such that under a birth-death
process with these rates and offset, the expected population size after 1 unit of time is 40000.
This yields a birth rate of 15.75 and a death rate of 1.575. Whenever a cell divides, its fitness
changes with probability 6.4%. When such a change in fitness occurs, 90% of the time the birth
rate becomes lower by multiplying it by 0.93. The remaining 10% of the time the birth rate
becomes higher by multiplying it by 2.14. Once the cell population reaches 40000, we terminate
the simulation and sample 400 leaves uniformly at random, to match a sampling probability of
1%. The chronogram induced by these 400 cells is then the ground truth chronogram used in the
simulations. The fitness parameters described above were chosen to obtain trees that showcased
interesting fitness variation, as displayed in Figure S4.
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