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ABSTRACT

DNAzymes are easier to prepare and less sensitive
to chemical and enzymatic degradation than ribo-
zymes; however, a DNA enzyme expression system
has not yet been developed. In this study, we ex-
ploited the mechanism of HIV-1 reverse transcription
(RT) in a DNA enzyme expression system. We con-
structed HIV-1 RT-dependent lentiviral DNAzyme
expression vectors including the HIV-1 primer
binding site, the DNA enzyme, and either a native
tRNA (Lys-3), tRMDtR", or one of two truncated
tRNAs (Lys-3), tRMDAARMtR" or tRMD3'-endtR".
Lentiviral vector-mediated DNAzyme expression
showed high levels of inhibition of HIV-1 replication
in SupT1 cells. We also demonstrated the usefulness
of this approach in a long-term assay, in which we
found that the DNAzymes prevented escape from in-
hibition of HIV. These results suggest that HIV-1
RT-dependent lentiviral vector-derived DNAzymes
prevent the emergence of escape mutations.

INTRODUCTION

RNAIi has emerged as a powerful tool for probing the
function of genes of a known sequence both in vitro and
in vivo. Recent studies describe the ability of RNAIi to
decrease the replication of human immunodeficiency
virus type 1 (HIV-1) in lymphocytes using siRNAs target-
ing viral proteins (for example, tat, gag, rev, env and nef)
(1-9) as well as host proteins (for example, CCRS and
CD4) (10-12). Thus, this technique has the potential to
be used as a form of gene therapy for HIV-1 and

associated infections. More recently, several groups have
reported that the antiviral activity of short hairpin RNA
(shRNAs) targeting HIV-1 is abolished owing to the emer-
gence of viral quasi-species harboring a point mutation in
the shRNA target region (13-16). This finding is particu-
larly relevant for viruses that exhibit significant genetic
variation due to error-prone replication machinery, and
the risk is likely to be more severe for RNA viruses and
retroviruses than for DNA viruses.

Ribozyme technologies are major tools used to inacti-
vate genes in gene therapy (17-19). One model, termed the
deoxyribozyme (Dz) model, is especially useful because it
can bind and cleave any single-stranded RNA at purine/
pyrimidine junctions (20-22). The DNAzyme is similar to
hammerhead ribozymes in terms of its secondary struc-
ture, which contains two binding arms and a catalytic
loop that captures the indispensable catalytic metal ions
(23-25). Previously, we described a new system designed
for single-stranded DNA (ssDNA) expression using
HIV-1 reverse transcriptase (26). The expressed
DNAzymes were shown to possess in vitro site-specific
cleavage activity.

Here, we describe the inhibition of HIV-1 replication by
an HIV-1 reverse transcription (RT)-dependent lentiviral
vector-transduced DNAzyme. In addition, we describe the
construction of a lentiviral vector encoding the
DNAzyme, the HIV-1 primer binding site, a native
transfer RNA (tRNA)Y*, and the flanking arms comple-
mentary to the HIV-1 V3-loop of the env messenger RNA
(mRN%P (10,25-28) downstream of the Pol 111 promoters,
tRNAM" (29) or U6 (30). The HIV-1 RT-dependent
lentiviral vector-transduced DNAzyme inhibited HIV-1
replication and prevented the emergence of resistant
viruses in long-term assays.
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MATERIALS AND METHODS
Construction of lentiviral vectors

Plasmids pVAX-Dz-tRNA™ 3 ter, pVAX-Dz-
AARMRNAM 3 ter and pVAX-Dz-3'-endtRNAM3-
ter were constructed as described earlier (26) and
digested with Kpn I and EcoR I. DNA was then extracted
with phenol/chloroform, precipitated with ethanol, and
ligated into the Kpn I and EcoR I sites of pSV2neo (L6)
(31) with the tRNAM® promoter (29). DNAzyme
expression vectors  (pL6-tRNAM-Dz-tRNAM*3-ter,
pL6-tRNAMDz-AARMtRNA™3ter  and  pL6-
tRNAMDz-3-endtRNA™*>-ter) were digested with
EcoR T and then cloned into the same site in the lentiviral
transfer vector (CS-CDF-CG-PRE).

The shRNA sequences were chemically synthesized as
two complementary DNA oligonucleotides: 5-GACAAG
CACATTCTAACATTTCAAGAGAATGTTAGAATG
TGCTTGTCTTTTTGGGCCC-3" and ¥-TCGAGGGCC
CAAAAAGACAAGCACATTCTAACATTCTCTTGA
AATGTTAGAATGTGCTTGTCGTAC-3'. These oligo-
nucleotides were annealed and ligated into pU6-ter (Kpn 1
and Xho 1 cloning sites). pU6-shRNA-ter, pU6-Dz-
tRNA™*-ter, pU6-Dz-3-endtRNA™*-ter and the
controls, pU6-ter and pU6-Dz-I-3-endtRNAM**-ter
(DNAzyme with an inverted catalytic core sequence)
(32,33), were each digested with EcoR 1 and Nhe 1 and
then cloned into the same sites in the CS-CDF-CG-PRE
vector.

Cell culture

SupT1 and 293T cells were grown in RPMI 1640 medium
or Dulbecco’s modified Eagle’s medium (Sigma-Aldrich
Co., St Louis, MO, USA) supplemented with 10% (v/v)
heat-inactivated fetal bovine serum, penicillin (100 U/ml)
and streptomycin (100 pg/ml). All cultures were main-
tained at 37°C under a 5% CO, atmosphere.

RT-PCR analysis (RNA expression)

Total RNA from vector-transduced cells was extracted
using a GenElute mammalian total RNA kit
(Sigma-Aldrich). After isolation, RNA samples were
treated with DNase I (Takara Shuzo, Kyoto, Japan) ac-
cording to the manufacturer’s specifications. Reverse tran-
scription polymerase chain reaction (RT-PCR) was then
performed using an RNA PCR high-plus kit (Toyobo,
Osaka, Japan) with the following primers: forward
primers, 5-AGCAGAGTGGCGCAGCGGAAG-3' for
the tRNA;M®' promoter F1, 5-GTACCCAAGCACTCG
TT-3' for the U6 promoter F4 and 5-GTACCCAAGCAC
TTCCGATC-3 for the U6-D-I-3’-endtR" F5; and reverse
primers, 5-CACTCGTTACAAGGCTAGCTACAAC-3
for the tRNA;M* promoter R1 and 5-TGGCGCCGAA
CAGGGACTT-3 for the U6 promoter R3. RT-PCR
products were amplified using the following thermal
cycling program: 60°C for 30 min, 94°C for 2min, and
then 25 cycles at 94°C for 1min and 50°C for 90s,
followed by 51°C for 7min. As an internal control, the
mRNA of the human control gene glyceraldehyde-
3-phosphate  dehydrogenase  (G3PDH;  Accession

No. NM_002046.3) was amplified simultaneously using
G3PDH-F (nucleotides 628-647) and G3PDH-R (nucleo-
tides 1060-1079) primers.

Southern hybridization

SupT1 cells stably expressing the DNAzyme were infected
with HIV-1n14.3. After 8h, cytoplasmic extracts were
obtained using a nuclear extraction kit (Marligen
Bioscience, Ijamsville, MD, USA). Cytoplasmic extracts
were then digested with RNase (Promega, Madison, WI,
USA) according to the manufacturer’s specifications and
separated by 18% polyacrylamide-8 M urea sequencing
gel electrophoresis. Next, the DNA was transferred to
Zeta-Probe nylon membranes (Bio-Rad, Hercules, CA,
USA). The filters were prehybridized for 1h at 42°C in
ECL gold hybridization buffer (GE Healthcare,
Chalfont St Giles, UK) and then incubated for 16h in
hybridization  buffer  containing DNAzyme- or
DNAzyme inverse-specific probes labeled with 5'-biotin
(5-GTACCCAAGCACTCGTTGTAGCTAGCCTTGT

AAC-3 or 5Y-GTACCCAAGCACTTCCGATCGATGT
TGCTGTAAC-3'). The blots were immersed in a chemi-
luminescent nucleic acid detection module kit (Pierce,
Rockford, IL, USA) according to the manufacturer’s in-
structions and exposed to Kodak XAR-5 film.

RT-PCR analysis (mRNA cleavage)

Total RNA from vector-transduced cells was extracted
using a GenElute mammalian total RNA kit (Sigma-
Aldrich). RT-PCR was then performed using an RNA
PCR high-plus kit (Toyobo) with env upstream (NL4-3
7070-7099), env neutral (NL4-3 7241-7271) and
env downstream (NL4-3 7570-7600) forward primers
F2 (5-ACAGCTGAACACATCTGTAGAAATTAATT
G-3) and F3 (5-AAACAGATAGCTAGCAAATTAAG
AGAACAA-3') and with the reverse primer R2 (5-GTTG
TTATTACCACCATCTCTTGTTAATAG-3). RT-PCR
products were amplified using the following thermal
cycling program: 60°C for 30min, 94°C for 2min and
then 25 cycles of 94°C for 1min and 53°C for 90s,
followed by 51°C for 7min. As an internal control, the
mRNA of the human control gene G3PDH was amplified
simultaneously with G3PDH-F (nucleotides 628—647) and
downstream G3PDH-R (nucleotides 1060—1079) primers.

Lentiviral vector preparation

A vector construct (15ug) was co-transfected into
293T cells with helper constructs encoding gag/pol
(pMDLg/p.RRE; 15ug), the rev-expressing construct
pRSV-rev (5ug), and the VSV-G-expressing construct
pMD.G (5 pg), using the calcium phosphate precipitation
method. Supernatants were harvested 48 h
posttransfection, filtered through a 0.45-um filter disc,
and concentrated 100-fold by centrifugation at 6000g
overnight. The resultant viral pellet was resuspended in
serum-free and antibiotic-free RPMI medium and stored
at —80°C until use. To determine the viral titer, SupT1
cells were transduced with the prepared viral stock, and
the number of EGFP-positive cells was determined using



flow cytometric analysis (BD Biosciences, Pharmingen,
San Diego, CA, USA) after 72 h of culture.

Flow cytometry

Transduced SupTl cells were washed twice in
phosphate-buffered saline (PBS) and then fixed in PBS
containing 1% formaldehyde. Direct fluorescence of
EGFP was analyzed using a FACSCalibur system (BD
Biosciences). Data acquisition and analysis were per-
formed with CellQuest software (BD Biosciences). Gates
for EGFP detection were established using mock-
transduced cells as a background.

Fluorescence microscopy

We investigated the efficiency of EGFP expression as
an index for SupTl1 cells expressing the transgenes. For
the intracellular fluorescence studies, SupT1 cells were
fixed with 3.7% formaldehyde on alternating days.
Fluorescent cells were examined under a fluorescence
microscope (Biozero BZ-8000; KEYENCE, Osaka,
Japan) at an excitation wavelength of 488 nm using a
10x objective lens. Images were acquired at a resolution
of 512 x 512.

HIV-1 challenge and culture assay

After transduction with the lentiviral vectors,
EGFP-positive SupT1 cells were sorted using a
FACSVantage system (Becton Dickinson, Franklin

Lakes, NJ, USA) and infected with HIV-lyj43 or
mutant virus HIV-1n14-3-env-mut-a at @ multiplicity of in-
fection of 0.1. After the harvested culture was centrifuged,
the cell-free medium was used for an HIV-1 p24 chemilu-
minescent enzyme immunoassay (Fujirebio, Tokyo,
Japan) (34).

Genotypic sequence analysis of the vif siRNA target
region of HIV-1ny 4.3

Viral RNA from HIV-1yy4.3-challenged CS-env-shRNA
transduced cultures was analyzed for siRNA-mediated
mutations in the env-shRNA target region at 43 days
postinfection, as described earlier (35,36). Viral RNA
was isolated from the cell-free culture supernatant using
a QIAamp viral RNA kit (Qiagen, Hilden, Germany) ac-
cording to the manufacturer’s protocol. Viral RNA (5 pl)
was used in an RT-PCR reaction containing Powerscript
reverse transcriptase (Clontech, Mountain View, CA,
USA), 1uM each of the deoxynucleotide triphosphates,
1 x first-strand  buffer (Clontech), 200ng random
hexamers (Promega) and 10U RNasin (Promega).
Reverse transcription was performed at 42°C for 1h,
followed by heat inactivation of the reverse transcriptase
at 70°C for 15 min. cDNA (2 pl) was added to a 48-ul PCR
mixture containing 1 x Qiagen Taq PCR buffer, 1.5mM
MgCl,, 20 pmol each of the sense primer env F (5-ATG
GAA AAC AGA TGG CAG GTG AT-3') and the anti-
sense primer env R (5-CTA GTG TCC ATT CAT TGT
ATG GCT-3), I mM deoxynucleotide triphosphates and
2.5U Taq polymerase (Qiagen). PCR was performed in a
gradient PCR thermal cycler (Astec, Fukuoka, Japan)
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using the following thermal program: 95°C for 1min
and then 35 cycles at 95°C for 15s, 58°C for 30s and
72°C for 30s, followed by 72°C for 5Smin. The PCR
product was fractionated, analyzed in a 1% SeaKem gel,
and purified using a QIAEX II gel extraction kit (Qiagen).
Nucleotide sequencing was performed using dye-labeled
terminator chemistry.

Generation of viruses

After 43 days, the harvested supernatant containing the
env mutation virus, HIV-1ni43.env-mutas Was titered,
stored at —80°C, and later used as the HIV-1n14-3-env-mut
virus.

RESULTS
Construction of lentiviral vectors

The design and in vitro strategies used to generate the
DNAzyme are shown in Figure 1. First, we show the pre-
dicted secondary structure of the HIV-1 RT-dependent
DNAzyme expression vector (Figure 1A). As shown in
Figure 1A, the native tRNA™ or one of two truncated
tRNAs-(AARMtRNA™*? and 3-endtRNA™*?)-PBS
complexes served as the primer for HIV-1 RT. Next,
we constructed the ssDNA lentiviral expression vectors
tRM-D-tR",  (RM-D-AARM(R",  (RM-D-3"-endtR",
U6-D-tR" and  U6-D-3-endtR"  containing the
DNAzyme, the HIV-1 primer binding site (PBS), and
either a native tRNA™3 or one of two truncated
tRNAs [tRM-D-AARMtRY, which lacks the D-stem
loop, the anticodon-stem loop and the variable loop or
tRM-D-3"-endtRNA™*3 which lacks the D-stem-loop,
the anticodon-stem loop, the variable loop and the
50-end strand from the full-length tRNA (Lys-3)] that
are under the control of the tRNAM* or U6 promoter
(Figure 1B). We also constructed the control lentiviral
vectors tRM, U6, U6-D-I-tR* (DNAzyme with the
inverted catalytic core sequence) (32,33) and
U6-env-shRNA (NL4-3 env 7193-7213) (8) for compari-
son with the DNAzyme. Sequences encoding an active
fragment of the DNA enzyme that contained the 10-23
catalytic motif (24,37), the HIV-1 primer binding site and
three different tRNA lengths (Lys-3) were inserted
between the Kpn 1 and EcoR 1 restriction sites of the
RNA transcription vector, pVAXI1 (Figure 1B). The
DNA enzyme sequence was placed between two
oligonucleotide arms that were complementary and able
to specifically target the HIV-1 env mRNA (71967210,
according to GenBank accession number AF324493;
env-Dz of Figure 1C).

DNA expression in human T cells stably expressing the
DNAzyme

SupT1 cells were infected with ssDNA lentiviral expres-
sion vectors, and the corresponding template RNAs were
expressed from the tRNA;M* promoter (Figure 2A). Total
cellular RNA was isolated from SupTl cells stably ex-
pressing the DNAzyme and analyzed by RT-PCR. The
template RNA for the DNAzyme, the HIV-1 primer
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Figure 1. DNAzymes, lentiviral vectors and Dz structures. (A) The predicted secondary structure of the ssDNA-expressing lentivirus vector.
Sequence of the template RNA containing the DNA enzyme, HIV-1 primer binding site (PBS), and the native tRNA™3 AARM{RNAM3
(lacking the D-stem loop, the anticodon-stem loop and the variable loop) and 3'-endtRNAM** (lacking the D-stem loop, the anticodon-stem
loop and the variable loop, and the 50 end strand from the full-length tRNAM*3). (B) Lentiviral vector (CS-CDF-CG-PRE) containing the
packaging signal (/) comprising the 5'-untranslated region (UTR) and 5-sequences of the Rev-responsive element, the central polypurine tract
and the woodchuck hepatitis virus posttranscriptional regulatory element. The 3’-long-terminal repeat contains a large deletion in the U3 region
(DU3). CMV, human cytomegalovirus immediate early promoter; EGFP, enhanced green fluorescent protein; ptRNAM, transfer RNA-methionine
promoter (tRM); U6, U6 promoter; ter, terminator; D, DNAzyme; PBS, primer binding site; shRNA, short hairpin RNA; D-I, DNAzyme with
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bil’ldll’l%{ site and a native tRNA™? driven by the
tRNA;" promoter were expressed in SupT1 cells stably
expressing the DNAzyme (Figure 2A, lanes 2-4).
However, the direct expression of RNA from the
ssDNA lentiviral expression vector resulted in the expres-
sion of sense sequences to HIV-env mRNA target regions
and consequently did not inhibit HIV-1 replication. The
control lentiviral vector, CS-tRNA;M*-ter (tR™), did not
express the corresponding RNA (Figure 2A, lane 1).
Next, to confirm ssDNA expression in SupTl cells
stably expressing the DNAzyme, we infected them with
HIV-1np4.3.  Cytoplasmic  extracts obtained using
digitonin lysis buffer were digested with RNase A, and
ssDNA expression was demonstrated by Southern blot
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Figure 2. Detection of DNAzyme RNAs and ssDNAs in Sung cells stably expressing DNAzyme. (A) RT-PCR amplification products of RNAs

containing the DNAzyme, HIV 1 PBS and a native tRNA™*

driven by the tRNAM¢ promoter. Lane 1, control; lane 2, tRM-D-tRY; lane 3, tRM-

D-AARMtRY and lane 4, tRM-D-3'-endtR". (B) Detection of ssDNA expression by Southern blot analysis. Lane 1, synthetic ssDNA (102 bp); lane
2, tRM-D-tRY-without HIV-1np4.5; lane 3, tRM-D-tRY; lane 4, tRM-D-AARMtRY and lane 5, tRM-D-3-endtR". (C) RT-PCR amplification of
RNAs containing the DNAzyme, HIV-1 PBS and a native tRNAM3 driven by the U6 promoter. Lane M, DNA marker; lane 1, U6; lane 2,
U6-D-RY; lane 3, U6; lane 4, U6-D-3’-endtRL; lane 5, U6; lane 6, U6-D-1-3'-endtR". (D) Detection of ssDNA expression by Southern blot analysis.
Lane 1, synthetic ssDNA (34 bp); lane 2, U6-D-tR"; lane 3, U6-D-tR -without HIV-1y 43; lane 4, synthetic ssDNA (34 bp); lane 5, U6-D-3'-endtR";
lane 6, U6-D-3’-endtR" without HIV-1np4.3; lane 7, synthetic ssDNA (34 bp); lane 8, U6-D-I-3-endtR" and lane 9, U6-D-I-3-endtR" without

HIV-1 NL4-3-
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analysis (Figure 2B). The authentic sample, ssDNA con-
taining the tRNA;M®" promoter, and DNAzyme sequences
were synthesized using RT (Figure 2B, lane 1). All
ssDNAzymes (tRM-D-tR", tRM-D-AARMtR" and tR™-
D-3-endtR") were found to be expressed at readily detect-
able levels (Figure 2B, lanes 3-5). We also examined
ssDNA expression in HIV-I-uninfected SupT1 cells
stably expressing tRM-D-tR". Although we observed the
corresponding template RNA (Figure 2A), the corres-
ponding ssDNAzyme (tRM-D-tR") was not expressed
(Figure 2B, lane 2). These data suggest that ssDNA ex-
pression is achieved by HIV reverse transcriptase through
the template RNA after HIV-1 infection of SupTT1 cells
stably expressing the DNAzyme.

To compare the U6 and tRNA;M' promoters, we con-
structed the ssDNA lentiviral expression vectors
U6-D-tRY and U6-D-3-endtRY, which were under the
control of the U6 promoter (Figure 1B). The template
RNA containing the DNAzymes (U6-D-tR* and
U6-D-3"-endtR") was expressed by the lentiviral vectors
(U6-D-tR" and U6-D-3'-endtR") in infected SupT1 cells
(Figure 2C, lanes 2 and 4). After stable
DNAzyme-expressing SupTl cells (U6-D-tRY) were
challenged with HIV-1yp4.3, cytoplasmic extracts were
digested with RNase A, and ssDNA expression was
demonstrated by Southern blot analysis. The authentic
sample and ssDNA containing the DNAzyme sequences
(34 bases) were synthesized by RT (Figure 2D, lanes 1 and
4), and ssDNAzymes (Dz) were found to be expressed at
readily detectable levels (Figure 2D, lanes 2 and 5). We
also examined ssDNA expression in HIV-1-uninfected
SupTl cells stably expressing U6-D-tR* and
U6-D-3-endtR". The corresponding template RNAs
(Figure 2C, lanes 2 and 4), but not the corresponding
ssDNAzymes (Figure 2D, lanes 3 and 6), were expressed.
Furthermore, the control lentiviral vector
U6-D-I-3-endtR" (DNAzyme with the inverted catalytic
core sequences) also expressed the corresponding template
RNA (Figure 2C, lane 6) and ssDNAzyme (Figure 2D,
lane 8). ssDNA from the corresponding U6-D-tR",
U6-D-3-endtR" and U6-D-1-3-endtR" produced the
expected 34-bp band (Figure 2D, lanes 2, 5 and 8).

Long-term inhibition of HIV-1 gene expression by HIV-1
RT-dependent lentiviral vector-derived DNAzyme

To investigate the long-term inhibition of HIV-1 replica-
tion, SupT1 cells were stably transduced with the lentiviral
expression vectors and then challenged with HIV-1yp4.3.
HIV-1 gag p24 antigen levels were measured as an index of
viral replication or inhibition by the expressed transgenes
at 3 days intervals over a 60 days period. HIV-1 replica-
tion was inhibited in SupTl1 cells stably expressing the
DNAzyme without any viral breakthrough at 60 days
postinfection (Figure 3A). By contrast, the control
lentiviral vector, tRM, failed to inhibit viral replication
under these experimental conditions. Furthermore, we
observed enhanced green fluorescent protein (EGFP) ex-
pression at 60 days postinfection in transduced SupTl
cells (Figure 3B). These results suggest that ssDNAzyme
expression might initiate from the primer binding site. In

SupT1 cells stably expressing env-shRNA, the siRNA-
related escape mutant phenomenon was observed at 33
days postinfection in transduced SupT]1 cells, as indicated
by the virus breakthrough effect (Figure 3A).

To compare the U6 and tRNAMet promoters, we
examined the long-term inhibition of HIV-1 replication
in the different types of stable DNAzyme-expressi%
SupTl cells (U6-D-tRY, U6-D-3-endtR“ or tRM-
D-tRY). HIV-1 replication was completely inhibited in
all cell types without any viral breakthrough at 60 days
postinfection (Figure 3A). By contrast, the controls, U6
and DNAzyme with an inverted catalytic core sequence
(U6-D-I-3-endtR") (32,33), showed no inhibitory effect
on HIV-1 replication (Figure 3A). We also observed
EGFP expression at 60 days postinfection in transduced
U6-D-tR", U6-D-3-endtR" and U6-D-I-3'-endtR"
SupTl cells (Figure 3B). Therefore, the efficacy of
HIV-1 replication inhibition did not differ between these
two promoters. Furthermore, our data demonstrated a
DNAzyme-specific inhibitory effect on HIV-1 replication,
but not an antisense effect.

The inhibitory effect of the DNAzyme occurs via target
RNA degradation

The contribution of HIV-1 mRNA degradation to the
DNAzyme-mediated anti-HIV-1 effect was examined by
measuring HIV-1 mRNA levels. Two sets of RT-PCR
reactions were used to establish the level of HIV-1
mRNA at the target site that was not cleaved by
DNAzyme (product 1; 529 bp) and the total amount of
HIV-1 mRNA cleaved at the target site (product 2;
351bp). The uncleaved HIV-1 mRNA was amplified
using primers F2 and R2 (Figure 4A) (35). The levels of
product 1 were expected to decrease after cleavage of the
HIV-1 mRNA, whereas the levels of product 2 reflected
the total amount of HIV-1 mRNA, as the 3'-fragment of
the cleaved HIV-1 mRNA remained a viable template for
RT-PCR amplification. We observed that progeny virus
production was decreased in cells expressing DNAzyme or
shRNA, whereas the control lentiviral vector, tR™¢, did
not greatly alter uncleaved HIV-1 mRNA expression after
10 days postinfection (Figure 4A). However, after 43 days
postinfection, a band of uncleaved HIV-1 mRNA
appeared in the shRNA-dependent expression system
(Figure 4A, lane 6) but not in the DNAzyme system
(Figure 4A, lane 7). Furthermore, the contribution of
HIV-1 mRNA cleavage to the DNAzyme-mediated
anti-HIV-1 effect was examined by measuring HIV-1
mRNA levels, which revealed that the DNAzyme
degraded the target RNA (Figure 4B, lane 3). These
data are consistent with the results of the gag-p24
antigen assays and suggest that the inhibitory effect of
the DNAzyme is achieved via degradation of the target
RNA by the DNAzyme.

Generation of HIV-1 mutants that escape shRNA-env

RNAI has not been shown to protect cells against HIV-1
in long-term virus replication assays. Here the
siRNA-related escape mutant phenomenon was observed
at 33 days postinfection in transduced SupTl1 cells, as
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Figure 3. (A) Inhibition of HIV-1 gene expression by tRNA™" or U6 promoter-mediated DNAzyme and env-shRNA in human T cells. p24 antigen
levels assessed over a 60-days period. Data represent means + SDs (error bars) from three independent experiments. (B) Long-term EGFP expression
in SupTl cells transduced with the indicated lentiviruses as examined by fluorescence microscopy for EGFP expression at 60 days following
transduction. (a) tRM; (b) tRM-D-tR"; (¢) tRM-D-AARMIR"; (d) tRM-D-3-endtR"; (e) U6; (f) U6-D-tR"; (g) U6-D-3-endtR™ and (h) U6-

D-I-3-endtR".

indicated by the virus breakthrough effect (Figure 3).
Therefore, we investigated the sudden surge of viral repli-
cation in cultures expressing env shRNA; sequence
analyses were performed wusing different cultures
(samples mut-a and -b) at 43 days postinfection. This
analysis revealed that the RNAi-resistant viruses con-
tained nucleotide substitutions within the shRNA-env
target sequence (Figure 5A), whereas the DNAzyme se-
quences remained unchanged (data not shown). These
results suggest that the DNAzyme inhibited HIV-1 repli-
cation and prevented the emergence of resistant viruses.
To determine whether inhibition of HIV-1 replication
was dependent on the DNAzyme, we infected SupT1 cells
stably expressing tRM-D-tR" and U6-D-tR" with the
evolved HIV-Inp4-3.env-mut-a CArrying mutations corres-
ponding to positions 7201, 7203 and 7206 of the env
target sequence. Although viral challenge of the
DNAzyme-expressing SupT]l cells with
HIV-1NL4-3-env-mut-a did not suppress viral replication
(Figure 5B), 92% inhibition was observed in

DNAzyme-expressing SupT1 cells with HIV-1yp 4.3 over
a 60 days period (Figure 3A). This lack of suppressive
effects on the HIV-Inp4-3-env-mut-a Strain might be ex-
plained by a single base substitution (AU to CU) at the
DNAzyme cleavage site. This finding confirms a
DNAzyme-mediated anti-HIV-1 effect and not an anti-
sense effect.

DISCUSSION

Recent reports have documented the emergence of virus
escape variants following siRNA treatment in long-term
cultures (13-17,37) and have raised doubts about the
application of siRNA to HIV-1 gene therapy.
RNAi-resistant variants can emerge through mutations
in siRNA target regions and also through mutations
that alter the local RNA structure (38). Furthermore,
Bull et al. (39) also reported that antisense RNA
directed against the viral gene confers resistance to viral
replication. However, multiple shRNA gene therapy
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Figure 4. HIV-1 mRNA expression at the target site after treatment
with the DNAzyme. (A) RT-PCR analyses of uncleaved (product 1)
and total cleaved and uncleaved (product 2) HIV-1 mRNA at 10 days
posttransfection in SupT1 cells. Lane 1, tRM; lane 2, tRM-D-tRY; lane
3, tRM-D-AARM(R"; lane 4, tRM-D-3-endtR"; lane 5, env-shRNA;
lane 6, env-shRNA, 43 days and lane 7, tRM-D-tR", 43 days.
Schematic representation of HIV-1-specific primer sites with respect
to HIV-1 mRNA: forward primers F2 and F3 as well as reverse
primer R2. (B) RT-PCR analyses of uncleaved (product 1) and total
cleaved and uncleaved (product 2) HIV-1 mRNA performed using
HIV-1 env-specific primers with concurrent amplification of G3PDH
mRNA. Lane 1, tR™; lane 2, (RM-D-tR" and lane 3, U6-D-tR".
Schematic representation of HIV-1-specific primer sites with respect
to HIV-1 mRNA: forward primers F3 and F4 as well as reverse
primer R3.

strategies are currently being investigated for the treat-
ment of viral diseases such as HIV-1. It is important to
use several different shRNAs to prevent the emergence of
treatment-resistant strains (40—43).

Here we propose the use of a DNA rather than an RNA
molecule, because the DNAzyme has a secondary struc-
ture similar to that of hammerhead ribozymes (23,24,44).
Previous studies have shown that the DNAzyme can be
expressed by an ssDNA expression vector using HIV-1
reverse transcriptase (28). The ssDNA expression vectors
used in the present study contained the DNAzyme, the
HIV-1 primer binding site and a native tRNA™*? as
well as flanking arms complementary to the HIV-1
V3-loop of the env mRNA. However, their anti-HIV-1
activity was low as a result of low posttransfection
efficacy of the plasmid DNA vector in human T cells.
Recently, Jakobsen et al. (45) also reported the efficient
inhibition of HIV-1 expression by DNAzymes.

The DNAzyme-induced inhibition of HIV-1 expression
was examined in human T cells by constructing an HIV-1
RT-dependent lentiviral ssDNA vector. Lentiviruses inte-
grate into the chromosomal DNA, and therefore their
genomes are stable in host cells and are inherited by
host cell progeny (46,47). Accordingly, the long-term ex-
pression of a transduced gene can be achieved through
lentivirus-mediated gene transfer. Other advantages of
this vector include its broad host range and the availability
of packaging cell lines for the large-scale production of

A env-shRNA target
Vector days 7193 7213
HIV-1NL4-3 AGACAAGCACAUUGUAACAUU
mut-a 43 AGACAAGCCCCUUCUAACAUU
mut-b 43 AGACAAGCACUUUCUAACAUU
B
3500 -5 MOCK
{l —e—tRM
;_E\ 3000 -8 tRM.D-tR-
) -®-U6-D-tR-
£ 2500 / //
C
o)
22000 / //
C
(0]
S 1500 J/ //
o
1000 /T /
500
0
0 4 8 12

Days post infection

Figure 5. Generation of HIV-1 variants resistant to RNAI.
(A) Genotype sequence analysis of escape variants. The postinfection
day is indicated. The target nucleotides (AU) are underlined.
Substitutions are indicated in bold. (B) HIV-1 gag-p24 antigen expres-
sion in SupTl cells stably expressing DNAzymes (tRM-D-tR" and
U6-D-tRY) that evolved HIV-1np43env-muca OVEr a 12-days period.
Mock: HIV-1np4-3-env-muta- Data represent means + SDs (error bars)
from three independent experiments.

high-titer vectors. The DNAzyme construct was
designed to target HIV-1 (NL4-3 env 7196-7210), which
is more accessible to DNAzyme oligonucleotides. The ex-
pression of template RNA containing the DNAzymes
driven by the tRNAM® or U6 promoters was observed
in stable DNAzyme-expressing SupT1 cells [Figure 2A
(lanes 2—4) and C (lanes 2, 4 and 6)]. Furthermore,
ssDNA expression was achieved from the template RNA
by HIV reverse transcriptase [Figure 2B (lanes 3-5) and D
(lanes 2, 5 and 8)].

We evaluated the effectiveness of long-term inhibition
of HIV-1 replication in HIV-1 RT-dependent
lentiviral-mediated DNAzyme-expressing SupT1 cells
and found that SupTl cells stably expressing the
DNAzyme showed inhibition of HIV-1 replication for
60 days postinfection (Figure 3A). By contrast, the
control lentiviral vectors, tRM, ué6 and
U6-D-1-3-endtR" (DNAzyme with inverted catalytic
core sequence) (32,33), failed to inhibit viral replication
under these experimental conditions. These results
indicate that DNAzyme-mediated inhibition of HIV-1
replication occurred without an antisense effect. We also
found that the primer binding site is required for the ex-
pression of ssDNA.

Next, we showed that the effectiveness of the long-term
inhibition of HIV-1 replication did not differ under the
control of two different promoters: U6 and tRNA;M<
(Figure 3A). The DNAzyme was found to inhibit HIV-1
replication through target RNA degradation (Figure 4A
and B), thus preventing the emergence of resistant viruses



(Figure 3A). However, the siRNA-related escape mutant
phenomenon was observed in SupTT1 cells stably express-
ing the env-shRINNA at 33 days postinfection (Figure 3A).
Sequence analyses at 43 days postinfection revealed that
the RNAi-resistant viruses contained nucleotide substitu-
tions in the shRNA-env target sequence (Figure 5A)
(13-17). Furthermore, viral challenge of DNAzyme-
expressing (tRM-D-tR" and U6-D-tR") SupT1 cells with
HIV-1NL4-3-env-mut-a  did not suppress viral replication
(Figure 5B), demonstrating that DNAzyme-mediated
specific silencing of HIV genes significantly inhibited
HIV-1 replication. The loss of the inhibitory effect in the
HIV-1N14-3-env-mut-a Strain occurred via a single base
mutation (AU to CU) at the DNAzyme cleavage site.
Taken together, our results demonstrate the potential of
an anti-HIV-1 DNAzyme for controlling HIV-1 infection
(22) and preventing the emergence of resistant viruses in
long-term assays. More experiments are needed to verify
the role of DNAzyme in the inhibition of HIV-1 replica-
tion. The results obtained in the present study for
DNAzymes might be useful in the development of an ef-
fective gene therapy for HIV-1 infections.
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