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Abstract

Background: Genomic prediction is now an essential technology for genetic improvement in animal and plant
breeding. Whereas emphasis has been placed on predicting the breeding values, the prediction of non-additive
genetic effects has also been of interest. In this study, we assessed the potential of genomic prediction using non-
additive effects for phenotypic prediction in Japanese Black, a beef cattle breed. In addition, we examined the
stability of variance component and genetic effect estimates against population size by subsampling with different
sample sizes.

Results: Records of six carcass traits, namely, carcass weight, rib eye area, rib thickness, subcutaneous fat thickness,
yield rate and beef marbling score, for 9850 animals were used for analyses. As the non-additive genetic effects,
dominance, additive-by-additive, additive-by-dominance and dominance-by-dominance effects were considered.
The covariance structures of these genetic effects were defined using genome-wide SNPs. Using single-trait animal
models with different combinations of genetic effects, it was found that 12.6–19.5 % of phenotypic variance were
occupied by the additive-by-additive variance, whereas little dominance variance was observed. In cross-validation,
adding the additive-by-additive effects had little influence on predictive accuracy and bias. Subsampling analyses
showed that estimation of the additive-by-additive effects was highly variable when phenotypes were not available.
On the other hand, the estimates of the additive-by-additive variance components were less affected by reduction
of the population size.

Conclusions: The six carcass traits of Japanese Black cattle showed moderate or relatively high levels of additive-
by-additive variance components, although incorporating the additive-by-additive effects did not improve the
predictive accuracy. Subsampling analysis suggested that estimation of the additive-by-additive effects was highly
reliant on the phenotypic values of the animals to be estimated, as supported by low off-diagonal values of the
relationship matrix. On the other hand, estimates of the additive-by-additive variance components were relatively
stable against reduction of the population size compared with the estimates of the corresponding genetic effects.

Keywords: Epistasis, Dominance, Genomic selection, Mixed model, GBLUP

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: onogiakio@gmail.com
1Department of Plant Life Science, Faculty of Agriculture, Ryukoku University,
1-5, Yokotani, Seta, Oe-cho, Shiga 520-2194 Otsu, Japan
Full list of author information is available at the end of the article

Onogi et al. BMC Genomics          (2021) 22:512 
https://doi.org/10.1186/s12864-021-07792-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-021-07792-y&domain=pdf
http://orcid.org/0000-0003-1707-9539
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:onogiakio@gmail.com


Background
Genomic prediction is a technology using whole-genome
information to predict the genetic merits of genotypes
[1]. Genomic selection, selection based on genomic pre-
diction, was first implemented in dairy cattle and has
been shown to increase genetic gain more quickly than
the conventional method based only on pedigree records
and phenotypic information [2]. Now, genomic predic-
tion/selection is recognised as a useful tool for improv-
ing quantitative traits. Because genetic ability
transmittable to the progeny is important in animal
breeding, genomic prediction usually focuses on predic-
tion of breeding values. Nevertheless, prediction of the
non-additive genetic effects (dominance and epistatic ef-
fects) has also been of interest for, for example, predict-
ing future performance in farms, designing mating or
increasing the accuracy of predicting the additive com-
ponents [3]. Prediction of the non-additive effects can be
achieved by explicitly adding the corresponding effects
to the prediction models or by using non-linear predic-
tion methods such as neural networks [4] and reprodu-
cing kernel Hilbert space regression with non-linear
kernels [5]. A merit of the former explicit approach is
that breeding values can be predicted, which is more in-
formative for breeding purposes.
The contributions of the non-additive effects to the

prediction of phenotypes appear to be case-dependent.
For example, dominance effects slightly increased accur-
acy in several pig studies [6, 7], whereas the effects
achieved little improvement in dairy [8] and beef [9] cat-
tle populations, although plenty of dominance variance
was found for several traits in the beef cattle study [9].
Epistasis effects improved phenotype prediction in Dros-
ophila [10], whereas no improvement was reported in
the aforementioned pig study [6], regardless of the rela-
tively large proportion of additive-by-additive variance.
The improvement by adding non-additive effects is thus
elusive, and empirical evaluation of the populations and
traits of interest is necessary.
Japanese Black is a major beef cattle breed unique to

Japan, which is now known as Wagyu and associated
with an abundance of fat and flavour. Genomic predic-
tion of the breed was assessed using the single-step ap-
proach, which combines SNP information with pedigree
information in a single genetic relationship matrix [11].
Now, genomic estimated breeding values (breeding
values from genomic prediction) are used for sire evalu-
ation. The purpose of this study is to assess the possibil-
ity of using non-additive genetic effects for predicting
cattle phenotypes in farms for Japanese Black cattle.
First, we estimated the non-additive genetic variance
components for carcass traits using 9850 animals. Then,
we examined the accuracy of predicting phenotypes
using both additive and non-additive effects with cross-

validation. Finally, to assess the stability of the variance
component and genetic effect estimates against the
population size, we conducted subsampling analysis with
different sampling sizes.

Results and discussion
To assess the possibility of using non-additive genetic ef-
fects for predicting cattle phenotypes in farms for Japa-
nese Black cattle, we estimated the non-additive genetic
variance components for six carcass traits using 9850
animals. The traits analysed were carcass weight (CW,
kg), rib eye area (REA, cm2), rib thickness (RT, cm), sub-
cutaneous fat thickness (SFT, cm), yield rate (YI, %) and
beef marbling score (BMS). A summary of the pheno-
typic values is presented in Table 1. Total six single-trait
animal models with different combinations of genetic ef-
fects, Models A, D, AA, AA2, AD, and Full, were fitted
for each trait (Methods).
The proportions of each variance component relative

to the total phenotypic variance are shown in Fig. 1. The
proportions of the additive variance component were
0.483–0.506 for CW, 0.412–0.431 for REA, 0.316–0.336
for RT, 0.452–0.470 for SFT, 0.419–0.443 for YI and
0.465–0.484 for BMS. The proportions of the additive
variance slightly decreased when the additive-by-additive
(AA) components were added. The proportions of the
dominance variance were almost 0 for each trait. The
proportions of the AA component were generally one-
quarter to one-half of those of the additive component,
and the estimates were stable across the models: 0.162–
0.183 for CW, 0.160–0.166 for REA, 0.145–0.195 for RT,
0.126–0.126 for SFT, 0.190–0.192 for YI and 0.138–
0.160 for BMS. The proportions of the additive-by-
dominance (AD) variance and the dominance-by-
dominance (DD) variance were accompanied by large
standard errors and appeared to be negligible, except for
AD of RT.
For the Japanese Black cattle, non-additive genetic

variance components of carcass traits have not been re-
ported previously, so this is the first report on them. For
growth traits (birth weight, market weight and average
daily gain), on the other hand, dominance variances were
estimated for this breed using pedigree records [12]. The
proportions of dominance variances relative to the
phenotypic variances of these traits were 0.00 ± 0.00,
0.13 ± 0.06 and 0.09 ± 0.05, respectively. Although mar-
ket weight would be highly correlated with CW, the pro-
portion for market weight was higher than that for CW
in our study (0.005–0.015 depending on the model).
This would be attributable to the difference in the stud-
ied populations. In the preceding study, the population
consisted of animals dispersed across multiple small
islands where different rearing and breeding systems
were used. Thus, the population might be genetically
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diverse, which could result in greater dominance vari-
ances. On the other hand, the genetic structure of the
population in the present study was more uniform, as il-
lustrated by the population structure analysis (Figure
S1), and consequently lower estimates might be ob-
tained. Dominance variances for carcass traits can be
found in other breeds, for example, CW of Simmental
(the proportion relative to the phenotypic variance was

0.158) [13] and intramuscular fat and carcass retail yield
of a population consisting of multiple breeds (0.10 ± 0.03
and 0.18 ± 0.06, respectively) [9]. Dominance variances
of growth traits were also reported in other breeds of
beef cattle, for example, for yearling weight of Brahman
and Tropical composite (up to 0.13 and 0.10, respect-
ively) [14], 205-day body weight in synthetic populations
(0.00–0.52) [15] and post-weaning gain for Limousin

Table 1 Mean (SD) values of phenotypes

CW (kg) REA (cm2) RT (cm) SFT (cm) YI (%) BMS (1–12)

Heifer 443.7 (52.5) 58.5 (9.7) 7.92 (0.89) 2.89 (0.81) 74.2 (1.6) 6.6 (2.0)

Steer 489.4 (54.3) 60.8 (10.6) 8.03 (0.85) 2.49 (0.71) 74.3 (1.6) 6.8 (2.1)

CW carcass weight, REA rib eye area, RT rib thickness, SFT subcutaneous fat thickness, YI yield rate, BMS beef marbling score

Fig. 1 Proportions of each variance component relative to phenotypic variance. Different colours indicate different models. Bars are standard
errors. A, additive variance; D, dominance variance; AA, additive-by-additive variance; AD, additive-by-dominance variance; dominance-by-
dominance variance; CW, carcass weight; REA, rib eye area; RT, rib thickness; SFT, subcutaneous fat thickness; YI, yield rate; BMS, beef
marbling score
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(0.099 ± 0.016) [16]. Regardless of the traits and popula-
tions, zero or near zero dominance variances as observed
in our study appear to be rare.
Our study showed that AA variance constituted

0.126–0.195 of the phenotypic variance of carcass traits
(Fig. 1). The epistatic genetic variance in beef cattle was
reported in some of the above-mentioned studies; for
yearling weight of Brahman and Tropical composite, the
proportions of the AA component relative to the pheno-
typic variance were approximately 0.20 and 0.25, re-
spectively [14], and for 205-day body weight in synthetic
populations, the proportions of AA were almost negli-
gible, at 0.000–0.003 [15]. Besides beef cattle, the AA
components were estimated as 0.093–0.098 [6] for pig
daily gain and as typically 0.05–0.20 for growth traits of
tilapia [17]. Although the detected amount of epistatic
variance would vary depending on the trait and popula-
tion, the AA variance components estimated in our
study appear to be moderate or relatively high. A recent
study illustrates that models with epistatic effects can
show higher prediction accuracy than additive models
when the linkage disequilibrium (LD) between markers
is low [18]. Thus, it is suggested that epistatic variance
components can be overestimated in such situation. The
r2 values between contiguous SNPs in our study are
0.126, 0.293, and 0.771 at 50 %, 70 %, and 90 % quantiles,
respectively. These values largely correspond with the
Arabidopsis data with 105 and 106 markers in Ref. [18]
where the superiority of the epistasis models over the
additive models in prediction accuracy disappeared.
Moreover, to verify this, we estimated the variance com-
ponents with model AA2 using AA generated from the
reduced numbers of SNPs; the SNP densities were re-
duced to 0.125-, 0.25-, 0.5- and 0.75-fold of the original
density by sampling the corresponding number of SNPs
from the consecutive eight SNPs. As a result, the AA
variance increased with the reduction in the density (Fig-
ure S2). However, the variance at 0.75-fold was almost
equal to that at the original density for all traits. Thus,
we conclude that the LD issue would not affect the esti-
mates of the AA components in our study.
Based on the results of variance component estima-

tion, for the cross-validation (CV) of traits except for
RT, we adopted Model AA2, in which the dominance ef-
fect from Model AA was removed. For RT, we adopted
Model AD because of its relatively large AD component.
Although Akaike information criterion (AIC) tended to
support complex models such as Model Full and Model
AD (Table S1), our choice would be more reasonable.
Actually, the predictive accuracy of the models with the
lowest AICs were almost equivalent to those of the
models shortlisted in this study (Table S2). The esti-
mates of variance components with the selected models
are presented in Table 2. In Table 3, directional

dominance estimated as the slope of the proportion (%)
of heterozygotes on phenotypic values with the selected
models is shown. Dominance and dominance-related
epistatic variances (AD and DD) were negligible for
most traits, whereas directional dominance was not neg-
ligible for CW, REA, RT and SFT, and almost zero for
the others. Inbreeding depression can occur for the traits
with positive slopes, so care is needed not to increase
the inbreeding coefficients.
Predictive accuracy of the models was measured as the

correlation coefficients between the phenotypes adjusted
for fixed effects, and total genotypic values predicted in
the CV. The predictive accuracy with Model A was
moderate (0.449–0.630) and models with non-additive
genetic effects (Model AD for RT and Model AA2 for
the others) showed little gain of accuracy. The bias of
prediction was also similar between the models (Table 4).
We also evaluated the models in terms of predictive ac-
curacy and bias of additive genetic effects by comparing
the predicted additive genetic effects with the adjusted
phenotypic values. However, only slight difference was
observed between the models (Table S3). In short, al-
though certain proportions of the AA variance compo-
nents were estimated, the effects had little influence on
prediction. Similar results were reported in a study of
pig; inclusion of the AA effects did not improve the pre-
dictive accuracy, despite the relatively large proportion
of the variance component (0.093–0.098) [6]. It was also
reported that, although the dominance variance was
smaller than the AA (the proportion was 0.056), the
dominance effects could increase the predictive accur-
acy. The small contribution of epistatic effects to predic-
tion would result from the low off-diagonals of the
relationship matrices. The off-diagonal elements of AA
were much closer to zero than those of A and D because
of the Hadamard product of A (Fig. 2). Roughly speak-
ing, AA considers the proportions of genotype combina-
tions shared between animals, but these proportions are
expected to be very low. Thus, estimation of the AA ef-
fect of an animal will rely heavily on its phenotypic
value, which makes prediction of this effect difficult.
When the population size was reduced by subsamp-

ling, the estimates of the additive variance tended to be
inflated as the size decreased (Fig. 3). The estimates of
the AA and residual variances were highly unstable
when the sizes were 500 and 1000, and gradually con-
verged to the estimates from the full data as the size ex-
panded. These results suggest that (1) the variance
component estimates of the epistatic effects are unreli-
able when the population size is quite small (here, <
1000), but (2) the estimates are stable against the popu-
lation size (or choice of animals) once the population
reaches a certain size (> 5000). Thus, the AA variance
components estimated from the full data would be
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reliable. Different tendencies were observed for the gen-
etic effects (Fig. 4). For the genetic effects of sampled an-
imals, regardless of the effect types (additive and AA),
correlations between the estimates from the subsamples
and the full data sets approached 1 as the population
size increased (Fig. 4). However, for the genetic effects of
unsampled animals, the correlations were quite different
between the additive and AA effects. For the latter, r
values were still 0.281–0.369 when 8865 animals were
used (Fig. 4), although the estimated variance compo-
nents at that sample size were almost equivalent to those
from the full data (Fig. 3). These results clearly showed
that estimation of the AA effects relied on the pheno-
typic values of the animals to be estimated and thus,
prediction, or extrapolation, of the AA effects is difficult,
as suggested by the comparison of the off-diagonal ele-
ments between the relationship matrices (Fig. 2). Con-
sidering that the population used in this study consists
of paternal half-sib families, prediction of the AA effect
(or epistatic effects) would be difficult unless more
closely related counterparts (e.g. full-sibs or progeny)
exist in the training population and/or an extremely
large training population is available.

Conclusions
The six carcass traits of Japanese Beef cattle showed
moderate or relatively high levels of the AA variance
components. However, incorporating the AA effects did
not improve the predictive accuracy. Subsampling ana-
lysis revealed that estimation of the AA effects was
highly reliant on the phenotypic values of the animals to
be estimated. On the other hand, the estimates of the
AA variance components were less affected by the
choice or reduction in number of the phenotyped ani-
mals. This study illustrated this interesting contrast be-
tween the genetic effect and variance component
estimation of epistatic effects.

Methods
Animals and traits
The data used in this study were collected in the pro-
geny testing programme conducted by the Livestock Im-
provement Association of Japan, Inc. (LIAJ). The
number of animals with phenotypes was 9850, of which
4142 were heifers and 5708 were steers. These animals
had been fattened in 65 farms, of which two were ex-
perimental stations of LIAJ, one was a national experi-
mental station, and the rest were commercial farms.
Slaughter dates ranged from April 2012 to December
2018, and the mean ± SD ages at slaughter were 30.1 ±
1.5 (heifer) and 28.8 ± 1.2 months (steer). These animals
were the offspring of a total of 487 sires. The number of
offspring per sire was a mean of 20.2 ± 42.3, ranging
from 1 to 554.
All traits (CW, REA, RT, SFT, YI, and BMS) were

measured by the Japan Meat Grading Association,
which is an official grader in Japan. The value of
BMS was an integer between 1 and 12, with higher
values indicating more abundant intramuscular fat. YI
was estimated from CW, REA, RT and SFT by the
grader.

SNP genotypes
The animals with phenotypes were genotyped for
genome-wide SNPs using Illumina BovineLD Geno-
typing BeadChip ver. 1, 1.1 or 2 (Illumina, CA, USA).
The call rate of these animals was 0.998 ± 0.003.
Using Beagle ver. 4.0 [19], the BovineLD genotypes
were expanded to the SNP genotypes of the Illumina
BovineSNP50 BeadChips ver. 2, with the Bovi-
neSNP50 genotypes of 1223 sires and 4 dams as a
reference. After pruning with a minor allele frequency
threshold of > 0.05, 33,738 SNPs were used in this
study.

Table 2 Variance component estimates (standard errors)

CW REA RT SFT YI BMS

A 1061.2 (50.9) 37.2 (2.0) 0.200 (0.012) 0.236 (0.012) 0.959 (0.050) 1.754 (0.086)

D 0.004 (0.006)

AA 412.5 (78.0) 14.4 (3.4) 0.091 (0.030) 0.066 (0.018) 0.443 (0.087) 0.517 (0.132)

AD 0.112 (0.049)

R 724.2 (70.8) 38.6 (3.1) 0.222 (0.042) 0.219 (0.017) 0.888 (0.079) 1.488 (0.122)

CW carcass weight, REA rib eye area, RT rib thickness, SFT subcutaneous fat thickness, YI yield rate, BMS beef marbling score, A additive, D dominance, AA additive-
by-additive, AD additive-by-dominance, R residual

Table 3 Directional dominance (standard errors) estimated as the effect of the proportion (%) of heterozygotes on phenotypic
values

CW REA RT SFT YI BMS

4.255 (0.372) 0.366 (0.077) 0.052 (0.007) 0.041 (0.006) −0.007 (0.012) −0.017 (0.015)

CW carcass weight, REA rib eye area, RT rib thickness, SFT subcutaneous fat thickness, YI yield rate, BMS beef marbling score
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Genetic relationship matrix
The realised genetic relationship matrices for the addi-
tive and dominance effects (A and D, respectively) were
calculated using the imputed SNP genotypes following
the natural and orthogonal interactions model [20, 21].
In addition, AA, AD and DD relationship matrices (AA,
AD and DD, respectively) were calculated as the Hada-
mard products between the corresponding matrices [21].
The diagonals of these matrices were scaled such that
the trace of the matrix (i.e. sum of the diagonal ele-
ments) was equal to the number of animals [21]. As im-
plied from a study by Vitezica et al. [21] and as
illustrated by Jiang et al. [22], the Hadamard product be-
tween the corresponding matrices includes the squares
of the same SNP and reciprocal products between two
SNPs (e.g., SNP A by SNP B and SNP B by SNP A).
Thus, for the AA interaction, which was shown to have
non-negligible variance components for all traits, we cal-
culated AA avoiding these issues and compared it with
AA calculated with the Hadamard product of A. How-
ever, the off-diagonal elements were almost the same be-
tween the two matrices (the Pearson correlation
coefficient > 0.999), thus, we used the AA generated by
the Hadamard product.

Statistical models
Single-trait animal models implemented in the R pack-
age sommer v4.09 and v4.12 [23] were used for variance
component estimation and phenotype prediction. The
base model includes the additive genetic effect as a ran-
dom effect. The model is referred to as Model A, and
can be written as:

Y ¼ XBþUA þ E ðModelAÞ

where Y is the phenotypes, X is the incidence matrix
of fixed effects, B is the fixed effects, UA is the additive
genetic effect and E is the residuals. Here the additive
genetic effect refers to the effect of least-squares mean-
ings [21]. The fixed effects included sex, farm, slaughter date
(month-year combinations), age in months and the propor-
tion of heterozygotes of SNP genotypes. This last effect was
included to consider the directional effects of dominance
[24]. The average heterozygosity was 0.318 ± 0.016. Age in
months and the proportion of heterozygotes were standar-
dised before model fitting. Farms with few animals (typic-
ally < 10) were grouped together according to geographical
regions, resulting in 22 levels. UA and E were assumed to

Table 4 Predictive accuracy and bias in cross-validation

CW REA RT SFT YI BMS

Accuracya Additivec model 0.630 0.541 0.449 0.550 0.546 0.596

Non-additived model 0.632 0.546 0.450 0.552 0.552 0.599

Biasb Additive model 0.399 0.290 0.201 0.302 0.295 0.352

Non-additive model 0.401 0.294 0.203 0.303 0.299 0.354

CW carcass weight, REA rib eye area, RT rib thickness, SFT subcutaneous fat thickness, YI yield rate, BMS beef marbling score
aPearson’s correlation coefficient between adjusted phenotypic values and predicted total genotypic values
bCoefficient obtained by regressing predicted total genotypic values on adjusted phenotypic values
cModel A
dModel AD for RT and Model AA2 for the other traits

Fig. 2 Comparison of off-diagonal elements among the realised relationship matrices, A, D and AA. A, additive matrix; D, dominance matrix; AA,
additive-by-additive matrix
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followUA � MVN 0; Aσ2A
� �

, andE � MVN 0; Iσ2E
� �

re-
spectively, where MVN denotes the multivariate normal dis-
tributions, σ2A and σ2E are the variance components, and I is
the identity matrix. Model D includes the dominance com-
ponent as:

Y ¼ XBþUA þUD þ E ðModelDÞ
where UD � MVN 0; Dσ2D

� �
.

The AA, AD and DD variance components were esti-
mated by adding the corresponding terms to Model D
incrementally, that is:
Y ¼ XBþUA þUD þUAA þ E (Model AA),
Y ¼ XBþUA þUD þUAA þUAD þ E (Model AD)

and
Y ¼ XBþUA þUD þUAA þUAD þUDD þ E (Model

Full),
respectively, where UAA � MVN 0; AAσ2AA

� �
,

UAD � MVN 0; ADσ2AD
� �

and

UDD � MVN 0; DDσ2
DD

� �
. After model fitting, the

dominance component was found to be negligible for
most traits. Thus, we also fitted the following model that
does not include the dominance component:
Y ¼ XBþUA þUAA þ E (Model AA2).

Cross-validation
The predictive ability of the models was examined by 10-fold
CV. For each trait, one model with non-additive effects was em-
pirically selected from Models D, AA, AA2, AD and Full based
on the full data analyses, as described in the Results section. Be-
cause genetic population structure was negligible in this popula-
tion (Figure S1), the animals with phenotypes were randomly
split into 10 folds such that all levels of slaughter dates and
farms were always included in the training populations. Predict-
ive accuracy was evaluated using Pearson’s correlation coeffi-
cient (r) between the phenotypic values adjusted with the fixed
effects estimated from the full data and the summation of pre-
dicted genetic effects (total genotypic values). The fixed effects
used for this adjustment were estimated with the same non-
additive models as prediction. Prediction bias was evaluated
using the coefficient obtained by regressing the predicted gen-
etic effects on the adjusted phenotypic values.

Subsampling
To investigate the stability of variance component and
genetic effect estimates against the population size, we
reduced the population size by subsampling and fitted
the models. The sizes considered were 500, 1000, 5000
and 8865. The last of these corresponds to the training
population size of CV (9850 − 985). We used the pheno-
types of CW adjusted with the fixed effects estimated
with Model AA2 from the full data. For each population
size, animals were randomly sampled without

Fig. 3 Variance component estimates when population size was
reduced by subsampling. The x-axis indicates the population size.
The phenotypes of carcass weight adjusted with the fixed effects
estimated from the full data with Model AA2 were used. The
horizontal broken lines indicate the estimates from the full data with
Model AA2
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replacement. Then, the models that had the same random
effects as Model AA2, but only had the intercept as the
fixed effect, were fitted. The estimates of variance compo-
nents and genetic effects (additive and AA effects) were
compared with those from the full data. For the genetic ef-
fects, r was calculated between the estimates from the sub-
sampled and full data sets. This calculation was performed
for the sampled animals (i.e. animals with phenotypes)
and unsampled animals (animals without phenotypes)
separately. The latter corresponds to comparing the pre-
dicted genetic effects with the estimates from the full data.
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