In depth sequencing of a serially sampled household cohort reveals the within-host dynamics of Omicron SARS-CoV-2 and rare selection of novel spike variants

Emily E. Bendall¹, Derek Dimcheff², Leigh Papalambros², William J. Fitzsimmons², Yuwei

Zhu³, Jonathan Schmitz⁴, Natasha Halasa⁵, James Chappell⁵, Emily T. Martin⁶, Jessica E. Biddle⁷,

Sarah E. Smith-Jeffcoat⁷, Melissa A. Rolfes⁷, Alexandra Mellis⁷, H. Keipp Talbot^{8,9}, Carlos

Grijalva⁹, Adam S. Lauring^{1,2*}

¹ Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA

² Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA

³ Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA

⁴ Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA

⁵ Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA

⁶ Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA

⁷ Centers for Disease Control and Prevention, Atlanta, GA, USA

⁸ Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA

⁹ Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA

* Correspondence

Adam Lauring, MD, PhD

1137 Catherine Street, MS2 4742C

Ann Arbor, MI 48109

alauring@med.umich.edu

1 Abstract

2 SARS-CoV-2 has undergone repeated and rapid evolution to circumvent host immunity. 3 However, outside of prolonged infections in immunocompromised hosts, within-host positive 4 selection has rarely been detected. The low diversity within-hosts and strong genetic linkage 5 among genomic sites make accurately detecting positive selection difficult. Longitudinal 6 sampling is a powerful method for detecting selection that has seldom been used for SARS-CoV-7 2. Here we combine longitudinal sampling with replicate sequencing to increase the accuracy of 8 and lower the threshold for variant calling. We sequenced 577 specimens from 105 individuals 9 from a household cohort primarily during the BA.1/BA.2 variant period. There was extremely 10 low diversity and a low rate of divergence. Specimens had 0-12 intrahost single nucleotide 11 variants (iSNV) at >0.5% frequency, and the majority of the iSNV were at frequencies <2%. 12 Within-host dynamics were dominated by genetic drift and purifying selection. Positive 13 selection was rare but highly concentrated in spike. Two individuals with BA.1 infections had 14 S:371F, a lineage defining substitution for BA.2. A Wright Fisher Approximate Bayesian 15 Computational model identified positive selection at 14 loci with 7 in spike, including S:448 and 16 S:339. We also detected significant genetic hitchhiking between synonymous changes and 17 nonsynonymous iSNV under selection. The detectable immune-mediated selection may be 18 caused by the relatively narrow antibody repertoire in individuals during the early Omicron 19 phase of the SARS-CoV-2 pandemic. As both the virus and population immunity evolve, 20 understanding the corresponding shifts in SARS-CoV-2 within-host dynamics will be important. 21

22

23 Introduction

24	As SARS-CoV-2 continues to circulate, population immunity from infections and vaccinations
25	has resulted in the evolution of new variants that quickly become the dominant circulating
26	strain ^{1,2} . This has contributed to decreased vaccine effectiveness, and in response, multiple
27	reformulations of the SARS-CoV-2 vaccines ^{3–5} . The continual evolution of SARS-CoV-2 as a result
28	of selection from the host adaptive immune system is likely to continue. Similar to this global
29	antigenic drift, partial immunity from previous exposure may lead to the selection of new
30	antigenic variants within hosts ^{6,7} . Because all variation originates from intrahost processes,
31	understanding within-host dynamics is crucial to understanding the evolutionary trajectory of
32	SARS-CoV-2.
33	
34	To date, there has been limited evidence of positive selection of immune escape variants within
35	individuals with acute, self-limited SARS-CoV-2 infections. We and others have found that SARS-
36	CoV-2 infections exhibit low genetic diversity and few <i>de novo</i> mutations that reach significant

37 frequencies^{8–11}. Select studies have identified spike variants in sites known to confer antibody

resistance^{8,11}. Additionally, Farjo *et al.* found nonsynonymous intrahost single nucleotide

39 variants (iSNVs) to be enriched in individuals who had been vaccinated or previously infected¹¹.

40 Regions of within-host positive selection in non-spike regions have also been detected when

41 comparing intrahost diversity of synonymous and nonsynonymous variants (p_N/p_S)¹². However,

42 genetic hitchhiking (i.e., changes in a mutation's frequency as a result of selection on a linked

43 site on the same genome/chromosome) and genetic drift make it difficult to accurately detect

44 positive selection with viruses from only a single timepoint¹³.

45

46	Most studies of serially sampled individuals come from prolonged infections in
47	immunocompromised patients, where immune escape variants have repeatedly been found ^{14–}
48	¹⁸ . Prolonged infections release the virus from the frequent population bottlenecks
49	characteristic of acute infections, increasing the amount of genetic variation and allowing time
50	for selection to occur ¹⁹ . The selection pressures in immunocompromised individuals may differ
51	from those in immunocompetent individuals with acute infections, with selection for increased
52	cell-cell transmission and viral packaging ¹⁷ . Additionally, monoclonal antibodies commonly used
53	to treat immunocompromised individuals may exert more targeted selection than a polyclonal
54	response from prior exposure in immunocompetent individuals ²⁰ .
55	
56	To more thoroughly examine the role of positive selection within hosts during acute SARS-CoV-
57	2 infections, we studied individuals from a case-ascertained household cohort, in which nasal
58	swab specimens were collected daily for 10 days after enrollment. All specimens were
59	sequenced in duplicate, allowing for robust variant calling at a very low frequency threshold
60	(0.5%). With serial sampling and low frequency variant calling, we were able to define the
61	within-host divergence of SARS-CoV-2 populations, detect genetic hitchhiking, and identify rare,
62	but potentially significant, instances of positive selection in spike.
63	
64	Methods

65 **Cohort and Specimens**

66	Households were enrolled through the CDC-sponsored Respiratory Virus Transmission Network
67	– Sentinel (RVTN-S), a case ascertained household transmission study coordinated at Vanderbilt
68	University Medical Center. All individuals provided written, informed consent and those
69	included in the current study were enrolled in Nashville, TN from September 2021 to February
70	2022. The study was reviewed and approved by the Vanderbilt University Medical Center
71	Institutional Review Board (see 45 C.F.R. part 46.114; 21 C.F.R. part 56.114). Index cases (i.e.
72	the first household members with laboratory-confirmed SARS-CoV-2 infection) were identified
73	and recruited from ambulatory clinics, emergency departments, or other settings that
74	performed SARS-CoV-2 testing. Index cases and their households were screened and enrolled
75	within 6 days of the earliest symptom onset date within the household. Vaccination status was
76	determined by plausible self-report (report of a manufacturer and either a date or location) or
77	vaccine verification through vaccination cards, state registries, and medical records. Only
78	vaccines received more than 14 days before the date of the earliest symptom onset in the
79	household were considered.
80	
81	Nasal swabs specimens were self- or parent-collected daily from all enrolled household
82	members during follow-up for 10 days and tested for SARS-CoV-2. Nasal swabs were tested by
83	transcription mediated amplification using the Panther Hologic system. All available specimens
84	were processed for sequencing as described below.

85

86 Sequencing and Variant Calling

87	SARS-CoV-2 positive specimens with a cycle threshold (Ct) value ≤32 were sequenced in
88	duplicate after the RNA extraction step. RNA was extracted using the MagMAX viral/pathogen
89	nucleic acid purification kit (ThermoFisher) and a KingFisher Flex instrument. Sequencing
90	libraries were prepared using the NEBNext ARTIC SARS-CoV-2 Library Prep Kit (NEB) and ARTIC
91	V5.3.2 primer sets. After barcoding, libraries were pooled in equal volume. The pooled libraries
92	(up to 96 specimens per pool) were size selected by gel extraction and sequenced on an
93	Illumina NextSeq (2x300, P1 chemistry).
94	
95	For the first specimen with adequate sequencing, we aligned the sequencing reads to the
96	MN908947.3 reference using BWA-mem v0.7.15 ²¹ . Primers were trimmed using iVar v1.2.1 ²² .
97	Reads from both replicates were combined and used to make a within host consensus
98	sequence using a script from Xue et al. ²³ . All specimens were aligned to their respective within-
99	host consensus sequences. Intrahost single nucleotide variants (iSNV) were identified for each
100	replicate separately using iVar ²² with the following criteria: average genome wide coverage
101	>1000x, frequency 0.005-0.995, p-value <1x10 ⁻⁵ , variant position coverage depth > 400x. We
102	also masked ambiguous and homoplastic sites ²⁴ . Specific to this study, T11075C was found at
103	low frequencies in 48 individuals and also masked. Finally, to minimize the possibility of false

were not evaluated. Lineages were determined with Nextclade²⁵ and Pango^{26,27}, based on the
 within-host consensus sequence.

variants being detected, the variants had to be present in both sequencing replicates. Indels

107

104

108 **iSNV Dynamics and Divergence rates**

We calculated the divergence rate as in Xue *et al.*²³. Briefly, we calculated the rate of evolution 109 110 by summing the frequencies of within-host mutations (non-consensus allele in first specimen) 111 and dividing by the number of available sites and the time since the infection began. We 112 calculated the rates separately for nonsynonymous and synonymous mutations. We used 0.77 113 for the proportion of available sites for nonsynonymous mutations and 0.23 for synonymous. 114 To determine the number of available sites, we multiplied the proportion of sites available by 115 the length of the coding sequence of the MN908947.3 reference. Because symptoms typically 116 start 2-3 days post infection and nasal swab collection occurred after symptom onset among 117 most individuals, we added 2 days to the time since symptom onset to obtain the time elapsed 118 between infection and sampling $^{28-30}$. We excluded individuals who were asymptomatic from 119 the divergence rate analysis, as we are not able to date their infection by symptom onset (e.g. 120 2-3 days prior as above). Because the calculated rate of divergence varied over the course of 121 the infection, we also calculated the rate using the specimen with the highest viral load for each 122 individual. In addition, we used linear regression to estimate the divergence rates in individuals 123 with multiple specimens. We calculated per-site viral divergence for each specimen. For each 124 person, a linear regression was performed with the per specimen divergences and the days 125 post infection. A person's divergence rate was the slope of this regression line. The rate was 126 calculated for the whole genome and for each gene separately.

127

Mann-Whitney U tests were used to determine if the number iSNV per specimen and iSNV frequencies differed by mutation type, vaccination, and age group. Kruskal-Wallace tests were performed determine if the number iSNV per specimen and iSNV frequencies differed by clade

131	and days post symptom onset. Mann-Whitney U tests were used to determine if the divergence
132	rate differed by vaccination and age group. Kruskal-Wallace tests were performed to determine
133	if divergence rate differed by clade, gene and days post infection. For the linear regression
134	method, a Kruskal-Wallace test was also performed for the number of specimens available to
135	test if the amount of information impacted the divergence rate calculations. All analyses were
136	conducted using R version 4.3.1.
137	
138	Analysis of selection
139	The study period included the Delta, BA.1, and BA.2 variant periods of the SARS-CoV-2
140	pandemic. For each of these clades, we looked at the lineage-defining mutations in spike of the
141	subsequent wave (i.e. BA.1, BA.2, and BA.4/BA.5). We compared the iSNV within our specimens
142	to these lineage defining mutations.
143	
144	We also used Wright Fisher Approximate Bayesian Computation (WFABC) to estimate the
145	effective populations size (Ne) and per locus selection coefficient (s) based on allele
146	trajectories ³¹ . Generation times of 8 hours and 12 hours were used ^{32–34} . To maximize the
147	number of loci used in the calculation of Ne and to avoid violating the assumption that most
148	loci are neutral, we estimated a single Ne using all loci in which the first two time points were
149	one day apart. 10,000 bootstrap replicates were performed to obtain a posterior distribution. A
150	fixed Ne was used for the per locus selection coefficient simulations, with the analysis repeated
151	for the mean Ne, and +/- 1 standard deviation estimated from the previous step. A uniform

153	0.01. We estimated the 95%	highest posterior density	intervals using the boa	package ³⁵ in R.
		0		1 0 -

- 154 We considered a site to be positively selected if the 95% highest posterior density did not
- 155 include 0 for all three effective population sizes.
- 156
- 157 To understand how within-host selection relates to between host selection, we used the SARS-
- 158 CoV-2 Nextstrain build³⁶ (nextstrain/ncov, the Nextstrain team) to examine the global
- 159 frequencies of iSNV that were under positive within-host selection in our study. We also
- 160 compared the selection coefficients we estimated to the selection coefficients that Bloom and
- 161 Neher³⁷ estimated from the global phylogeny.
- 162
- 163 Data Availability
- 164 Raw sequence reads are available at the NCBI Sequence Read Archive, Bioproject
- 165 PRJNA1159790.
- 166

167 **Results**

168 There were 212 SARS-CoV-2 infected individuals enrolled from September 2021 to February

169 2022 in this case-ascertained household cohort. Of these, we successfully sequenced 577/825

- 170 (70%) specimens from 105 individuals. Ninety nine out of 105 (94%) individuals had multiple
- 171 specimens successfully sequenced (Figure 1A, Table S1). Consistent with the viruses circulating
- 172 in the United States during this timeframe, the individuals in the study were infected with
- 173 Delta, BA.1, and BA.2. Depth of coverage was generally high (Figure S1) and iSNV frequency
- 174 was similar between replicates (Figures 1B).

175

176 **iSNV dynamics**

- 177 The allele frequencies of identified iSNV were generally very low, with the majority of iSNV
- 178 present at ≤2% frequency (Figure 2A). In our cohort, the frequencies of iSNV in vaccinated
- individuals were higher than in unvaccinated individuals (p = 0.022, Table S2), but this
- 180 difference was extremely small and unlikely to be biologically significant (Figure S2).
- 181 Frequencies of iSNV also varied by the day of sampling (p = 0.002, Figure S2, Table S2) but did
- 182 not differ based on host age, SARS-CoV-2 clade, or mutation type (i.e., nonsynonymous vs.
- 183 synonymous; Figure S2).

184

- 185 All specimens had between 0-12 iSNV identified at an allele frequency ≥0.5% (Figure 2B).
- 186 Unvaccinated individuals (p < 0.001) and children (p = 0.011) had greater numbers of iSNV per
- 187 specimen than vaccinated individuals and adults (Figure 2C,D, Table S2). BA.1 had fewer iSNV
- per specimen (p < 0.001) than BA.2 (p = 0.033) or Delta (p < 0.001) infections (Figure 2E, Table
- 189 S2). The number of iSNV per specimen increased as the infection progressed, and after 8-10
- 190 days post symptom onset, the number of iSNV decreased (p = 0.005, Figure 2F, Table S2). The
- 191 time of sampling (days post symptom onset) did not noticeably differ by vaccination status, age,
- 192 or clade (Figure S3).

193

194 Within-host divergence rates

195 We estimated within-host evolutionary rates as nucleotide divergence per site per day on a per-

196 specimen basis and by linear regression in individuals for whom we had multiple sequenced

197	specimens. The genome-wide mean divergence rate was 5.03 x 10^{-7} nucleotide
198	substitutions/site/day for nonsynonymous mutations and 1.08 x 10^{-6} for synonymous
199	mutations. Although not statistically significant, the estimated divergence rate varied according
200	to the day of sampling when using the point method (Figure 3). The divergence rate increased
201	from the onset of the infection until approximately day 5 for nonsynonymous sites and day 8
202	for synonymous sites and then decreased. For the rest of the comparisons using the point
203	method, the divergence rate from the specimen with the highest viral load was used. Children
204	had higher rates for nonsynonymous mutations, but not synonymous mutations (p= 0.019,
205	Figure 3C, Table S3), while rates for synonymous mutations were not associated with age. The
206	divergence rate did not differ by vaccination status or clade (Figure 3, Table S3). There were
207	significant differences in divergence rate based on gene (p<0.001); notably, spike had a higher
208	divergence rate compared to ORF1a for nonsynonymous mutations, but did not differ from any
209	of the other genes (Figure 3E,F, Table S4).
210	
211	Results obtained by linear regression were slightly different. The divergence rate did not differ
212	by vaccination, age, clade, or gene (Figure S4, Table S3). For synonymous mutations, individuals
213	with two specimens had a lower rate than individuals with more than two specimens (p =
214	0.046, Figure S4, Table S3). In many cases in which there were only two specimens for an
215	individual, these were collected after the peak of infection giving the regression a negative
216	slope.

217

218 Analysis of selection

219 We analyzed selection by first looking for iSNV that anticipated mutations that defined 220 subsequent variants. Two individuals with BA.1 had an iSNV that causes S:371F, a BA.2 lineage 221 defining mutation (Table 1). These iSNV were at low frequencies, with a maximum observed 222 frequency of 0.8% and 1.8%. There were 3 additional iSNV in the codon for a lineage defining 223 mutation but resulted in a different amino acid substitution. This included a third iSNV at 224 position 371. 225 226 Using a WFABC model, we estimated a within-host effective population size of 78. Fourteen 227 iSNV from 11 individuals were under positive selection: 7 in spike, 6 in other coding regions and 228 1 in a non-coding region (Figure 4A, B, Table 2). The results were the same for 8hr and 12hr 229 generation times. Of the iSNV found in coding regions, 10 were nonsynonymous, including 6 of 230 the iSNV in spike. Two of the selected synonymous iSNV were in individuals that had 231 nonsynonymous iSNV under positive selection, suggestive of linkage as the allele trajectories of 232 the two iSNV were closely matched (Figure 4C, D). 233 234 Three of the selected spike amino acid substitutions were in the RBD (Receptor Binding 235 Domain). Outside of the RBD, two individuals shared the positively selected substitution, 236 S:D574N. A third individual had S:D574N in 4 specimens, yet without a positive selection 237 coefficient. None of the iSNV in future lineage defining codons had a positive selection 238 coefficient. However, one individual had both an iSNV in a lineage defining codon (S:547) and 239 an iSNV with a positive selection coefficient in the viral replicase (ORF8:S54L). All of the

240 nonsynonymous spike iSNV were in vaccinated individuals.

24	1

We used the SARS-CoV-2 nextstrain build to determine whether any of the iSNV with positive
selection coefficients were also identified as increasing in global frequency³⁶. None of the iSNV
or resulting amino acid changes reached more than 5% globally (data not shown). The selection
coefficients we estimated were only weakly related to the between host selection coefficients
estimated by Bloom and Neher³⁷ (Figure S5).

247

248 **Discussion**

249 In this intensive evaluation of serially sampled individuals in a longitudinal household 250 transmission study, we found that within-host SARS-CoV-2 populations are dominated by purifying selection and genetic drift. This results in low levels of diversity and low rates of 251 252 divergence, consistent with previous studies^{8–10,38,39}. There were differences in divergence rate 253 based on age and in the frequency of iSNV based on vaccination, but these are unlikely to be 254 biologically significant. Multiple factors influenced the number of iSNV per specimen, notably 255 day of sampling. Positive selection was rare, but when present, it tended to be enriched in 256 spike and the RBD.

257

The low level of diversity is similar to what we and others have reported for SARS-CoV-2^{8–10,38,39}. Some study-specific differences in diversity are noteworthy. For example, Farjo *et al.* (with specimens from 40 individuals) observed higher numbers of iSNV in vaccinated individuals, while we found higher numbers of iSNV in unvaccinated individuals¹¹. However, their quality metrics differed between vaccinated and unvaccinated individuals, and their sample size was

263	smaller than the present study. Additionally Gu et al. found that the number of iSNV per
264	specimen was higher in VOC compared to non-VOC clades, but did not find any differences
265	between VOC clades ¹² . In contrast, we found Delta and BA.2 had more iSNV than BA.1. Our
266	frequency threshold for variant calling was lower, and potentially more sensitive to differences
267	in iSNV number. Variation between cohorts likely contributes to differences between studies,
268	but different study designs and methods also account for dissimilarities.
269	
270	SARS-CoV-2 has comparable within-host dynamics to influenza A virus. The distribution of allele
271	frequencies is very similar in influenza A and SARS-CoV-2, with most iSNV found at very low
272	frequencies ^{23,40,41} . However, compared to studies of influenza with the same iSNV threshold,
273	SARS-CoV-2 had fewer iSNV per specimen despite the genome being twice the size. SARS-CoV-2
274	also had lower divergence rates of 10 ⁻⁶ div/site/day for synonymous sites and 10 ⁻⁷ for
275	nonsynonymous sites, compared to 10^{-5} and 10^{-6} for influenza A in synonymous and
276	nonsynonymous sites respectively ^{23,40} . The lower within-host diversity of SARS-CoV-2 is largely
277	attributable to the difference in mutation rates. With its proofreading capabilities, SARS-CoV-2
278	has a mutation rate of 9 x 10^{-7} mutations per nucleotide per replication cycle ⁴² compared to 2 x
279	10 ⁻⁶ in influenza A (using analogous assays) ⁴³ . The strength of genetic drift may also contribute
280	to the observed differences. While both influenza A virus (Ne ~150-300) 40,41 and SARS-CoV-2
281	have small effective population sizes, the smaller effective population size in SARS-CoV-2 will
282	result in stronger genetic drift. More of the variation will be lost from the population or not

- 283 repeatedly sampled due to changes in population structure. These within-host dynamics are
- 284 largely consistent with the neutral theory of evolution⁴⁴. Strongly deleterious mutations are

removed quickly from the population and the remaining variation is largely neutral.

286

287	Despite overall similar patterns of within-host dynamics between SARS-CoV-2 and influenza A
288	virus, there are differences in the nature of selected sites. In influenza A virus, we have not
289	found an overrepresentation of selected sites in hemagglutinin (HA), including antigenic sites,
290	or in neuraminidase (NA) ⁴⁰ . In contrast, in SARS-CoV-2 we found a greater number of positively
291	selected sites in spike (7/13) and in the RBD (3) than expected by chance. This is consistent with
292	selection for immune escape. Within the RBD, S:D339E was under positive selection. Although
293	this exact amino acid substitution has not previously been known to be under selection, S:339 is
294	the most variable amino acid in spike ⁴⁵ . Additionally, G339D is a lineage defining mutation in
295	BA.1, BA.2, BA.4, and BA.5 ⁴⁶ , and D339H is a lineage defining mutation for BA.2.75, XBB, and
296	BA.2.86 ^{47,48} . Both of these amino acid substitutions have been shown to escape neutralizing
297	antibodies ^{49,50} .

298

In the RBD, S:448 is an epitope targeted by multiple monoclonal antibodies, including
bebtelovimab, imdevimab, and cilgavimab⁴⁶. These monoclonal antibodies have high similarity
to germline encoded antibodies^{51–53}, making S:448 an epitope that is likely to be commonly
targeted across individuals. Outside of the RBD, two individuals in different households had
D574N under positive selection. This substitution has been observed in a long-term infection of
an immunocompromised patient⁵⁴ and also detected in a small proportion of BA.5 lineages.

306	This infrequent but detectable positive selection may be due to the timing of these infections
307	relative to viral emergence. This study enrolled individuals within approximately the first 18-24
308	months of the pandemic. At this time, only the Wuhan strain spike was used for vaccination,
309	leading to a relatively narrow antibody repertoire. A narrow antibody repertoire may cause
310	uniform selection pressure, with one or a few mutations being sufficient for SARS-CoV-2 to be
311	resistant to a majority of the host antibodies, similar to treatment with monoclonal
312	antibodies ^{51,55} . In our study, six of the selected sites in spike, all of the nonsynonymous sites,
313	and all of the selected sites in the RBD occurred in vaccinated individuals. Over time as the
314	number of exposures and lineages individuals are exposed to increases, their antibody
315	repertoires also increase ^{56,57} . As the antibody repertoire diversifies, individual mutations may
316	make SARS-CoV-2 resistant to only a small proportion of antibodies, leading to weaker
317	selection ⁵⁷ . Earlier in the pandemic there may have been low levels of selection due to lack of
318	even partial immunity, coinciding with a period of global evolutionary stasis ⁴² .
319	
320	Despite finding immunologically relevant iSNV, our results had low predictive power for trends
321	in SARS-CoV-2 evolution globally. None of the iSNV under positive selection or the
322	corresponding amino acid substitutions reached >5% frequency globally at any time. Two
323	individuals with BA.1 infections had a lineage defining mutation, S:371F, for BA.2. However, the
324	mutation remained at very low frequencies within these two individuals. In the first individual,
325	the selection coefficient was not statistically significantly different than 0 (s= -0.07), and a
326	selection coefficient was unable to be calculated for the second individual due to the number of
327	specimens. With low effective population sizes and stochastic dynamics, our estimates of

328 positive selection are conservative. However, combining within-host variant data with other

- 329 sources (e.g. deep mutational scanning or inferred between-host selection coefficients) may be
- 330 fruitful for understanding the evolutionary trajectory of SARS-CoV-2.
- 331

332	A major strength of this study is daily sampling, with up to 9 successfully sequenced specimens
333	per individual, allowing us to examine allele trajectories. Summary statistics meant to detect
334	selection can be misleading due to genetic linkage and hitchhiking ¹³ . These effects are
335	especially prominent in cases where there are strong bottlenecks and low levels of
336	recombination. With serial sampling, we were able to calculate selection coefficients and detect
337	hitchhiking of synonymous mutations with a physically linked nonsynonymous mutation. To
338	illustrate, in one individual, there were three iSNV with nearly identical allele trajectories: 2
339	nonsynonymous and 1 synonymous. Most likely, the nonsynonymous iSNV in ORF1a and the
340	synonymous iSNV in ORF1b were swept along with the nonsynonymous iSNV in spike (L461I).
341	
342	Our study has several limitations. First, our results may not generalize to other phases of the
343	SARS-CoV-2 pandemic. The study took place over 6 months in the second year of the pandemic
344	after the availability of a single vaccine formulation. Results may differ as vaccine and exposure
345	history become more variable across the population and as SARS-CoV-2 has had a longer
346	evolutionary history with human hosts. Indeed, we speculate that SARS-CoV-2 evolution during
347	acute infections could become more similar to the dynamics of influenza A virus within
3/18	
5-0	hosts ^{40,41} . Second, there is always the possibility of inaccurate variant calls. However, this

350	specimens per person reduces this possibility. Third, SARS-CoV-2 has significant
351	compartmentalization ^{58,59} , and we are only sampling one location in the body; but when
352	compared, nasal and saliva specimens have similar within-host dynamics dominated by
353	stochastic processes ¹¹ .
354	
355	Across studies, acute respiratory viruses have similar within-host dynamics: tight bottlenecks,
356	low genetic diversity, and populations dominated by purifying selection and genetic drift ⁸⁻
357	^{12,19,38–41,60,61} . Overall, our findings are consistent with this pattern. However, nuanced
358	differences exist between viruses, cohorts, and demographic features. In our cohort, within-
359	host positive selection was rare, but appeared to frequently be immune mediated when
360	present. As viruses adapt to human hosts and the population develops immunity, it will be
361	important to follow the shifting impacts on within-host dynamics and selective pressure.
362	
363	Acknowledgements
364	We thank all participants in the study for their time and effort. Primary funding for the RVTN
365	study was provided by the US Centers for Disease Control and Prevention (CDC
366	75D30121C11656). CGG was partially supported by NIH K24A I148459. Scientists from the US
367	CDC participated in all aspects of this study, including its design, analysis, interpretation of data,
368	writing the report, and the decision to submit the article for publication. Sequencing and
369	associated analysis was supported by a NIH R01 AI148371 (to ASL and ETM), and the Penn
370	Center for Excellence in Influenza Research and Response, Penn-CEIRR, NIH 75N93021C00015
371	(to ASL and ETM) and the Michigan Infectious Disease Genomics Center, NIH (to ASL).

372

373 Disclaimer

- 374 The findings and conclusions in this report are those of the authors and do not necessarily
- 375 represent the official position of the Centers for Disease Control and Prevention (CDC).
- 376

Author Contributions

- 378 Conceptualization: Lauring, Grijalva, Talbot
- 379 Data Curation: All authors
- 380 Formal Analysis: Bendall, Zhu, Lauring
- 381 Funding Acquisition: Lauring, Martin, Grijalva, Talbot
- 382 Investigation: All authors
- 383 Methodology: All authors
- 384 Manuscript writing: Bendall, Lauring
- 385 Manuscript editing: All authors
- 386 Project Administration: Lauring, Grijalva, Talbot
- 387 Resources: All authors
- 388

389 Conflicts of Interest

- 390 All authors have completed ICMJE disclosure forms (www.icmje.org/coi_disclosure.pdf). Carlos
- 391 Grijalva reports grants from NIH, CDC, AHRQ, FDA, Campbell Alliance/Syneos Health, consulting
- 392 fees and participating on an advisory board for Merck, outside the submitted work. Natasha
- 393 Halasa reports grants from Sanofi, Quidel, and Merck, outside the submitted work. James

- 394 Chappell reports research support from Merck outside the submitted work. Adam Lauring
- 395 reports receiving grants from CDC, NIAID, Burroughs Wellcome Fund, Flu Lab, and consulting
- 396 fees from Roche, outside the submitted work. Emily Martin reports receiving a grant from
- 397 Merck, outside the submitted work.
- 398

399

400

401 *References*

- 402 1. Carabelli, A. M. *et al.* SARS-CoV-2 variant biology: immune escape, transmission and fitness.
- 403 Nat. Rev. Microbiol. **21**, 162–177 (2023).
- 404 2. Chaudhari, A. M. *et al.* Evaluation of immune evasion in SARS-CoV-2 Delta and Omicron
- 405 variants. *Comput. Struct. Biotechnol. J.* **20**, 4501–4516 (2022).
- 406 3. Pouwels, K. B. et al. Effect of Delta variant on viral burden and vaccine effectiveness against
- 407 new SARS-CoV-2 infections in the UK. *Nat. Med.* **27**, 2127–2135 (2021).
- 408 4. Andrews, N. *et al.* Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant.
- 409 *N. Engl. J. Med.* **386**, 1532–1546 (2022).
- 410 5. Marks, P. Fall 2022 COVID-19 Vaccine Strain Composition Selection Recommendation.
- 411 https://www.fda.gov/media/159597/download?attachment (2022).
- 412 6. Luo, S., Reed, M., Mattingly, J. C. & Koelle, K. The impact of host immune status on the
- 413 within-host and population dynamics of antigenic immune escape. J. R. Soc. Interface 9,
- 414 2603–2613 (2012).
- 415 7. Volkov, I., Pepin, K. M., Lloyd-Smith, J. O., Banavar, J. R. & Grenfell, B. T. Synthesizing within-
- 416 host and population-level selective pressures on viral populations: the impact of adaptive
- 417 immunity on viral immune escape. J. R. Soc. Interface 7, 1311–1318 (2010).
- 418 8. Lythgoe, K. A. et al. SARS-CoV-2 within-host diversity and transmission. Science 372,
- 419 eabg0821 (2021).
- 420 9. Valesano, A. L. *et al.* Temporal dynamics of SARS-CoV-2 mutation accumulation within and
- 421 across infected hosts. *PLOS Pathog.* **17**, e1009499 (2021).

- 422 10. Tonkin-Hill, G. et al. Patterns of within-host genetic diversity in SARS-CoV-2. eLife 10,
- 423 e66857 (2021).
- 424 11. Farjo, M. et al. Within-host evolutionary dynamics and tissue compartmentalization during
- 425 acute SARS-CoV-2 infection. 2022.06.21.497047 Preprint at
- 426 https://doi.org/10.1101/2022.06.21.497047 (2022).
- 427 12. Gu, H. *et al.* Within-host genetic diversity of SARS-CoV-2 lineages in unvaccinated and
- 428 vaccinated individuals. *Nat. Commun.* **14**, 1793 (2023).
- 429 13. Soni, V., Terbot, J. W. & Jensen, J. D. Population genetic considerations regarding the
- 430 interpretation of within-patient SARS-CoV-2 polymorphism data. *Nat. Commun.* **15**, 3240
- 431 (2024).
- 432 14. Riddell, A. C. et al. Generation of Novel Severe Acute Respiratory Syndrome Coronavirus 2
- 433 Variants on the B.1.1.7 Lineage in 3 Patients With Advanced Human Immunodeficiency
- 434 Virus-1 Disease. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. **75**, 2016–2018 (2022).
- 435 15. Scherer, E. M. et al. SARS-CoV-2 Evolution and Immune Escape in Immunocompromised
- 436 Patients. N. Engl. J. Med. **386**, 2436–2438 (2022).
- 437 16. Kemp, S. A. et al. SARS-CoV-2 evolution during treatment of chronic infection. Nature 592,
- 438 277–282 (2021).
- 439 17. Wilkinson, S. A. J. *et al.* Recurrent SARS-CoV-2 mutations in immunodeficient patients. *Virus*440 *Evol.* 8, veac050 (2022).
- 18. Weigang, S. *et al.* Within-host evolution of SARS-CoV-2 in an immunosuppressed COVID-19
- 442 patient as a source of immune escape variants. *Nat. Commun.* **12**, 6405 (2021).

- 443 19. McCrone, J. T. & Lauring, A. S. Genetic bottlenecks in intraspecies virus transmission. *Curr.*
- 444 *Opin. Virol.* **28**, 20–25 (2018).
- 445 20. Focosi, D., Maggi, F., Franchini, M., McConnell, S. & Casadevall, A. Analysis of Immune
- 446 Escape Variants from Antibody-Based Therapeutics against COVID-19: A Systematic Review.
- 447 Int. J. Mol. Sci. 23, 29 (2021).
- 448 21. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.
- 449 *Bioinformatics* **25**, 1754–1760 (2009).
- 450 22. Grubaugh, N. D. et al. An amplicon-based sequencing framework for accurately measuring
- 451 intrahost virus diversity using PrimalSeq and iVar. *Genome Biol.* **20**, 8 (2019).
- 452 23. Xue, K. S. & Bloom, J. D. Linking influenza virus evolution within and between human hosts.
- 453 *Virus Evol.* **6**, veaa010 (2020).
- 454 24. De Maio, N. *et al.* Issues with SARS-CoV-2 sequencing data. *Virological* (2020).
- 455 25. Aksamentov, I., Roemer, C., Hodcroft, E. B. & Neher, R. A. Nextclade: clade assignment,
- 456 mutation calling and quality control for viral genomes. J. Open Source Softw. 6, 3773 (2021).
- 457 26. Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist
- 458 genomic epidemiology. *Nat. Microbiol.* **5**, 1403–1407 (2020).
- 459 27. O'Toole, Á. *et al.* Assignment of epidemiological lineages in an emerging pandemic using
- the pangolin tool. *Virus Evol.* **7**, veab064 (2021).
- 461 28. Baccam, P., Beauchemin, C., Macken, C. A., Hayden, F. G. & Perelson, A. S. Kinetics of
- 462 influenza A virus infection in humans. J. Virol. **80**, 7590–7599 (2006).

- 463 29. Beauchemin, C. A. A. & Handel, A. A review of mathematical models of influenza A
- 464 infections within a host or cell culture: lessons learned and challenges ahead. BMC Public
- 465 *Health* **11 Suppl 1**, S7 (2011).
- 466 30. Carrat, F. *et al.* Time lines of infection and disease in human influenza: a review of volunteer
- 467 challenge studies. *Am. J. Epidemiol.* **167**, 775–785 (2008).
- 468 31. Foll, M., Shim, H. & Jensen, J. D. WFABC: a Wright-Fisher ABC-based approach for inferring
- 469 effective population sizes and selection coefficients from time-sampled data. *Mol. Ecol.*
- 470 *Resour.* **15**, 87–98 (2015).
- 471 32. Schneider, M. *et al.* Severe acute respiratory syndrome coronavirus replication is severely
- impaired by MG132 due to proteasome-independent inhibition of M-calpain. J. Virol. 86,
- 473 10112–10122 (2012).
- 474 33. Bar-On, Y. M., Flamholz, A., Phillips, R. & Milo, R. SARS-CoV-2 (COVID-19) by the numbers.
- 475 *eLife* **9**, e57309 (2020).
- 476 34. Harcourt, J. *et al.* Isolation and characterization of SARS-CoV-2 from the first US COVID-19
- 477 patient. *BioRxiv Prepr. Serv. Biol.* 2020.03.02.972935 (2020)
- 478 doi:10.1101/2020.03.02.972935.
- 479 35. Smith, B. J. boa: An R Package for MCMC Output Convergence Assessment and Posterior
- 480 Inference. J. Stat. Softw. **21**, 1–37 (2007).
- 481 36. Hadfield, J. *et al.* Nextstrain: real-time tracking of pathogen evolution. *Bioinforma. Oxf.*
- 482 *Engl.* **34**, 4121–4123 (2018).
- 483 37. Bloom, J. D. & Neher, R. A. Fitness effects of mutations to SARS-CoV-2 proteins. *Virus Evol.*
- 484 **9**, vead055 (2023).

- 485 38. Bendall, E. E. *et al.* Rapid transmission and tight bottlenecks constrain the evolution of
- 486 highly transmissible SARS-CoV-2 variants. *Nat. Commun.* **14**, 272 (2023).
- 487 39. Braun, K. et al. Limited within-host diversity and tight transmission bottlenecks limit SARS-
- 488 CoV-2 evolution in acutely infected individuals. *bioRxiv* (2021)
- 489 doi:10.1101/2021.04.30.440988.
- 490 40. Bendall, E. E. et al. Influenza A virus within-host evolution and positive selection in a
- densely sampled household cohort over three seasons. *bioRxiv* 2024.08.15.608152 (2024)
- 492 doi:10.1101/2024.08.15.608152.
- 493 41. McCrone, J. T. *et al.* Stochastic processes constrain the within and between host evolution
- 494 of influenza virus. *eLife* **7**, e35962 (2018).
- 495 42. Markov, P. V. *et al.* The evolution of SARS-CoV-2. *Nat. Rev. Microbiol.* **21**, 361–379 (2023).
- 496 43. Nobusawa, E. & Sato, K. Comparison of the mutation rates of human influenza A and B
- 497 viruses. J. Virol. **80**, 3675–3678 (2006).
- 498 44. Kimura, M. The Neutral Theory of Molecular Evolution. *Sci. Am.* **241**, 98–129 (1979).
- 499 45. Guruprasad, L., Naresh, G. K. & Boggarapu, G. Taking stock of the mutations in human SARS-
- 500 CoV-2 spike proteins: From early days to nearly the end of COVID-19 pandemic. *Curr. Res.*
- 501 Struct. Biol. 6, 100107 (2023).
- 502 46. Cox, M. et al. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro
- 503 studies. *Nat. Rev. Microbiol.* **21**, 112–124 (2023).
- 47. Escalera-Zamudio, M., Tan, C. C. S., Van Dorp, L. & Balloux, F. Early evolution of the BA.2.86
- 505 variant sheds light on the origins of highly divergent SARS-CoV-2 lineages. Preprint at
- 506 https://doi.org/10.1101/2024.07.18.604213 (2024).

- 507 48. Tamura, T. et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from
- 508 recombination of two Omicron subvariants. *Nat. Commun.* **14**, 2800 (2023).
- 509 49. Qu, P. *et al.* Evasion of neutralizing antibody responses by the SARS-CoV-2 BA.2.75 variant.
- 510 *Cell Host Microbe* **30**, 1518-1526.e4 (2022).
- 511 50. Cao, Y. *et al.* Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies.
- 512 *Nature* **602**, 657–663 (2022).
- 513 51. Halfmann, P. J. et al. Evolution of a globally unique SARS-CoV-2 Spike E484T monoclonal
- 514 antibody escape mutation in a persistently infected, immunocompromised individual. *Virus*
- 515 *Evol.* **9**, veac104 (2023).
- 516 52. Dong, J. *et al.* Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-
- 517 antibody cocktail. *Nat. Microbiol.* **6**, 1233–1244 (2021).
- 518 53. Jones, B. E. *et al.* The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2
- 519 infection in nonhuman primates. *Sci. Transl. Med.* **13**, eabf1906 (2021).
- 520 54. Futatsusako, H. *et al.* Longitudinal analysis of genomic mutations in SARS-CoV-2 isolates
- 521 from persistent COVID-19 patient. *iScience* **27**, 109597 (2024).
- 522 55. Bronstein, Y. et al. Evolution of spike mutations following antibody treatment in two
- 523 immunocompromised patients with persistent COVID-19 infection. J. Med. Virol. 94, 1241–
- 524 1245 (2022).
- 525 56. Scheaffer, S. M. et al. Bivalent SARS-CoV-2 mRNA vaccines increase breadth of
- 526 neutralization and protect against the BA.5 Omicron variant in mice. *Nat. Med.* **29**, 247–257
- 527 (2023).

- 528 57. Schmidt, F. *et al.* High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody
- 529 escape. *Nature* **600**, 512–516 (2021).
- 530 58. Ke, R. et al. Daily longitudinal sampling of SARS-CoV-2 infection reveals substantial
- 531 heterogeneity in infectiousness. *Nat. Microbiol.* **7**, 640–652 (2022).
- 532 59. Ke, R. *et al.* Longitudinal Analysis of SARS-CoV-2 Vaccine Breakthrough Infections Reveals
- 533 Limited Infectious Virus Shedding and Restricted Tissue Distribution. *Open Forum Infect.*
- 534 *Dis.* **9**, ofac192 (2022).
- 535 60. Hannon, W. W. et al. Narrow transmission bottlenecks and limited within-host viral
- 536 diversity during a SARS-CoV-2 outbreak on a fishing boat. *Virus Evol.* **8**, 1–9 (2022).
- 537 61. Lin, G.-L. *et al.* Distinct patterns of within-host virus populations between two subgroups of
- 538 human respiratory syncytial virus. *Nat. Commun.* **12**, 5125 (2021).
- 539
- 540
- 541

Figure 1. (A) The number of specimens per person. (B) intra-host single nucleotide variants (iSNV) frequency is consistent across replicates. The insert shows iSNV frequency up to 0.1

Figure 2. (A) iSNV frequency. (B) The number of iSNV per specimen. The number of iSNV per specimen by (C) vaccination status, (D) age with child <18 and adult 18+, (E) clade, (F) and days post symptom onset. The red lines are the mean.

Figure 3. (A) Divergence rate (divergence/site/day) for all specimens by days post infection. Divergence rate (divergence/site/day) using the specimen with the highest viral titer by (B) vaccination status, (C) age, (D) clade, and (E) gene. (F) is a zoomed in version of (E), note y-axis. Black lines are the mean divergence rate. Green is synonymous, and purple is nonsynonymous.

Figure 4. (A) WFABC selection coefficients for iSNV under positive selection for the whole genome and (B) for spike. (C) The allele trajectories of the iSNV with positive selection coefficients by individual. (D) The allele trajectory for iSNV in individual 103403, denoted with an asterisk in (C). Green is synonymous, and purple is nonsynonymous. WFABC = Wright Fisher Approximate Bayesian Computation; iSNV = intra-host single nucleotide variants

bioRxiv preprint doi: https://doi.org/10.1101/2024.11.21.624722; this version posted November 22, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Table 1. intra-host single nucleotide variants (iSNV) that are in the position as lineage

defining mutations in spike for the subsequent variant of concern wave.

		Lineage Defining	Observed		Max Obs.	
Clade	Next Wave	Mut.	Mutation	Individual	Frequency	_
Delta	BA.1	N440K	N440Y	102101	0.049	
Delta	BA.1	G446S	G446V	101201	0.018	
Delta	BA.1	T547K	T547I	101703	0.008	
BA.1	BA.2	S371F	L371I	102601	0.008	
BA.1	BA.2	S371F	L371F	105701	0.018	
BA.1	BA.2	S371F	L371F	107303	0.008	

Table 2. iSNV with positive selection coefficient. Selection coefficient values are from the 8hr generation time results.

		AA	Mutation	Selection				
Gene	iSNV	Mutation	Туре	Coefficient	Individual	Age	Clade	Vaccinated
ORF1a	C1218T	S318L	Non	0.41550572	103403	42	BA.1	Yes
ORF1b	C14178T	237T	Syn	0.42198689	103403	42	BA.1	Yes
ORF1b	G21249T	2594V	Syn	0.36034801	102603	46	BA.1	Yes
S	T22579A	D339E	Non	0.37183336	105202	54	BA.1	Yes
S	A22905C	L461I	Non	0.43687486	103403	42	BA.1	Yes
S	C22943A	N448T	Non	0.44314941	105901	49	BA.1	Yes
S	G23282A	D574N	Non	0.38677793	103404	36	BA.1	Yes
S	G23282A	D574N	Non	0.41807759	102801	39	BA.1	Yes
S	C23987A	P809T	Non	0.37079572	107201	50	BA.1	Yes
S	C24904T	1114	Syn	0.43920636	103801	47	BA.1	No
ORF7a	C27434T	T14I	Non	0.41432335	103801	47	BA.1	No
ORF8	C28054T	S54L	Non	0.40091975	101703	10	Delta	No
Ν	C29370T	T366I	Non	0.28217821	104501	10	BA.1	Yes
NA	G29742A	NA	NA	0.35436237	106103	36	BA.1	Yes

Footnote: iSNV = intra-host single nucleotide variants

Figure S1. Boxplots of coverage across the genome in non-overlapping windows of 400 bp for specimens with high quality sequencing. The box shows the first quartile, median, and third quartile. The whiskers are 1.5x interquartile range, and the dots are the outliers.

Figure S2. iSNV frequency by (A) mutation type, (B) vaccination status, (C) age with child <18 and adult 18+, (D) clade, and (E) days post symptom onset. The red lines are the mean. iSNV = intra-host single nucleotide variants.

Figure S3. Number of specimens collected per day post symptom onset by (A) vaccination status, (B) age with child <18 and adult 18+, and (C) clade.

Figure S4. Divergence rate (divergence/site/day) using linear regressions by (A) vaccination status, (B) age with child <18 and adult 18+, (C) clade, (D) gene, (E) and number of specimens used in the calculation (green synonymous, purple nonsynonymous).

Figure S5. Comparison of the within-host selection coefficient and the population level selection coefficient for Bloom & Neher 2023. Green is synonymous and purple is nonsynonymous. Triangles are mutations in spike z circles are in non-spike genes.

Characteristic		n
Age	Child (<18 years)	32
	Adult (≥18 years)	73
Clade	Delta	17
	BA.1	86
	BA.2	2
Vaccination	Yes	76
	No	23
	Missing	6
Sex	Female	57
	Male	47
	Missing	1
Symptomatic	Voc	102
Symptomatic	No	105
	Missing	1
	MISSING	I
Multiple specimens sequenced	Yes	99
	No	6

Table S1. Demographic information and infection details for individuals in this study (n=105).

Table S2. Comparisons of the number of iSNV per specimen and of iSNV frequency. For statistically significant differences the p values are bolded. x^2 test statistics are from Kruskal-Wallis rank sum tests and W test statistics are from Mann-Whitney U tests.

Number of iSNV per sample	Test statistic (χ^2 or W)	df	p value
Age	28066	1	0.011
Vaccination	37242	1	< 0.001
Days Post Symptom Onse	t 35.768	17	0.005
Clade	38.751	2	< 0.001
Clade - Post Hoc	Test statistic (Z)	p.unadj	p.adj
Delta vs BA.1	5.890058	< 0.001	< 0.001
Delta vs BA.2	-0.278536	0.781	0.781
BA.1 vs BA.2	-2.392985	0.017	0.033
iSNV Frequency	Test statistic (χ^2 or W)	df	p value
Age	144856	1	0.792
Vaccination	135509	1	0.022
Clade	2.4914	2	0.288
Days Post Symptom Onse	t 34.069	17	0.002

Footnote: iSNV = intra-host single nucleotide variants

Table S3. Comparisons of divergence rates. Statistically significant differences are bolded. x^2 test statistics are from Kruskal-Wallis rank sum tests and W test statistics are from Mann-Whitney U tests.

	Nonsynonymous		5	Synonymous		
	lest statistic			lest statistic		
Point Estimate	(χ² or W)	df	p value	(χ² or W)	df	p value
Gene	76.888	8	<0.001	55.212	8	<0.001
Age	821.5	1	0.019	957.5	1	0.165
Days Post Symptom						
Onset	21.724	17	0.196	15.159	17	0.584
Vaccination	1040.5	1	0.835	1034	1	0.869
Clade	1.6218	2	0.444	3.095	2	0.213
Logistic Regression						
Gene	7.6549	8	0.468	12.619	8	0.126
Age	970	1	0.930	1056	1	0.440
Vaccination	1057.5	1	0.239	980	1	0.585
Clade	0.74911	2	0.688	0.044783	2	0.978
Number of Specimens	3.8194	7	0.800	14.318	7	0.046

Table S4. Post hoc (Dunn) tests for divergence rate between genes using the point

Nonsynonymous			Synonymous					
Comparis	son	Z	P.unadj	P.adj	Z	P.unadj	P.adj	
Μ	N	-0.804078	0.421	1.000	-1.1911933	0.234	1.000	
М	ORF1a	-6.5913858	< 0.001	< 0.001	-4.3091874	< 0.001	< 0.001	
Ν	ORF1a	-5.7873077	< 0.001	< 0.001	-3.1179941	0.002	0.046	
М	ORF1b	-3.5232883	< 0.001	0.012	-4.6389208	< 0.001	< 0.001	
Ν	ORF1b	-2.7192103	0.007	0.144	-3.4477275	0.001	0.015	
ORF1a	ORF1b	3.06809744	0.002	0.056	-0.3297334	0.742	1.000	
М	ORF3a	-0.5484495	0.583	1.000	-0.595282	0.552	1.000	
Ν	ORF3a	0.25562853	0.798	1.000	0.59591129	0.551	1.000	
ORF1a	ORF3a	6.04293627	< 0.001	< 0.001	3.71390542	< 0.001	0.006	
ORF1b	ORF3a	2.97483883	0.003	0.073	4.04363881	< 0.001	0.002	
М	ORF6	-0.0066613	0.995	0.995	-0.3089677	0.757	1.000	
Ν	ORF6	0.79741668	0.425	1.000	0.88222558	0.378	1.000	
ORF1a	ORF6	6.58472442	< 0.001	< 0.001	4.00021971	< 0.001	0.002	
ORF1b	ORF6	3.51662698	< 0.001	0.012	4.3299531	< 0.001	< 0.001	
ORF3a	ORF6	0.54178815	0.588	1.000	0.28631429	0.775	1.000	
М	ORF7a	-1.6364667	0.102	1.000	0.00377557	0.997	1.000	
Ν	ORF7a	-0.8323887	0.405	1.000	1.19496889	0.232	1.000	
ORF1a	ORF7a	4.95491909	< 0.001	< 0.001	4.31296302	< 0.001	< 0.001	
ORF1b	ORF7a	1.88682164	0.059	1.000	4.64269641	< 0.001	< 0.001	
ORF3a	ORF7a	-1.0880172	0.277	1.000	0.5990576	0.549	1.000	
ORF6	ORF7a	-1.6298053	0.103	1.000	0.31274331	0.754	1.000	
М	ORF8	-0.2756125	0.783	1.000	0.00629262	0.995	1.000	
Ν	ORF8	0.52846549	0.597	1.000	1.19748594	0.231	1.000	
ORF1a	ORF8	6.31577323	< 0.001	< 0.001	4.31548007	< 0.001	0.001	
ORF1b	ORF8	3.24767579	0.001	0.031	4.64521345	< 0.001	< 0.001	
ORF3a	ORF8	0.27283696	0.785	1.000	0.60157465	0.547	1.000	
ORF6	ORF8	-0.2689512	0.788	1.000	0.31526036	0.753	1.000	
ORF7a	ORF8	1.36085415	0.174	1.000	0.00251705	0.998	0.998	
М	S	-2.8735311	0.004	0.097	-2.3660258	0.018	0.396	
Ν	S	-2.0694531	0.039	0.732	-1.1748325	0.240	1.000	
ORF1a	S	3.71785465	< 0.001	< 0.001	1.94316163	0.052	0.988	
ORF1b	S	0.6497572	0.516	1.000	2.27289502	0.023	0.484	
ORF3a	S	-2.3250816	0.020	0.401	-1.7707438	0.077	1.000	
ORF6	S	-2.8668698	0.004	0.095	-2.0570581	0.040	0.794	
ORF7a	S	-1.2370644	0.216	1.000	-2.3698014	0.018	0.409	
ORF8	S	-2.5979186	0.009	0.197	-2.3723184	0.018	0.424	