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Estimation and Tracking of Blood 
Pressure Using Routinely Acquired 
Photoplethysmographic Signals and Deep 
Neural Networks
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Objectives: Continuous tracking of blood pressure in critically ill 
patients allows rapid identification of clinically important changes and 
helps guide treatment. Classically, such tracking requires invasive 
monitoring with its associated risks, discomfort, and low availability 
outside critical care units. We hypothesized that information contained 
in a prevalent noninvasively acquired signal (photoplethysmograph: a 
byproduct of pulse oximetry) combined with advanced machine learn-
ing will allow continuous estimation of the patient’s blood pressure.
Design: Retrospective cohort study with split sampling for model 
training and testing.
Setting: A single urban academic hospital.
Patients: Three-hundred twenty-nine adult patients admitted to a criti-
cal care unit.
Interventions: None.
Measurements and Main Results: One hundred thirty-six thousand 
four-hundred fifty-nine photoplethysmography waveforms of length 
30 seconds were used for training (60%), validation (20%), and test-
ing (20%) of the blood pressure estimation network. Each sample 
had an associated systolic, mean, and diastolic blood pressures 
extracted from concurrently recorded invasive arterial line waveforms. 
Blood pressure estimation using photoplethysmography waveforms 
is achieved using advanced machine learning methods (convolutional 

neural networks and a Siamese architectural configuration) calibrated 
for each patient on a single, first available photoplethysmography 
sample and associated blood pressure reading. The average estima-
tion bias error was 0.52, 0.1, and –0.76 mm Hg for diastolic, mean, 
and systolic blood pressure, respectively, with associated mean 
absolute errors of 4.11, 5.51, and 7.98 mm Hg. If used to identify 
clinically important changes in blood pressure from the initial base-
line, with a threshold of a 10 mm Hg increase or decrease in blood 
pressure, our algorithm shows an accuracy of 85%, 78%, and 74% 
for diastolic, mean, and systolic blood pressure, respectively. We also 
report the network’s performance in detecting systolic and diastolic 
hypo- or hypertension with accuracies ranging from 86% to 97%.
Conclusions: Using advanced machine learning tools, we show that 
blood pressure estimation can be achieved using a common non-
invasively recorded signal, the photoplethysmography. Such tools 
can allow for better monitoring of patients that do not have invasively 
recorded blood pressure, both in the critical care setting and on inpa-
tient wards.
Key Words: big data; blood pressure; critical care; deep learning; 
photoplethysmography

Critically ill patients present a unique treatment challenge 
as they exhibit rapid fluctuations in their physiologic 
state. To allow accurate appreciation of the patient’s state 

and prompt detection of deteriorations patients are continuously 
monitored with various vital signs collected and displayed on the 
bedside monitor (1). Of these, the most routinely measured are 
the electrocardiogram (ECG), respiratory impedance, photople-
thysmography as part of pulse oximetry and finally invasive blood 
pressure (BP) in a subset of the patients. BP tracking specifically 
is essential in critically ill patients to identify deterioration and 
help guide treatment in a goal-directed fashion. Invasive continu-
ous BP monitoring is often implemented in these patients, usu-
ally through a catheter inserted in a peripheral or central artery. 
However, arterial cannulation is an invasive maneuver with a 
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potential for adverse effects which are all associated with increased 
morbidity and costs. BP can also be monitored noninvasively 
using a cuff-based method, yet, these methods have been associ-
ated with measurement errors and are not continuous in nature.

Photoplethysmography is an optically obtained plethysmogram 
that can be used to detect blood volume changes in the microvas-
cular tissue beds and is often obtained by using a pulse oximeter 
which illuminates the skin to measure changes in light absorption 
and correlate them to the arterial hemoglobin’s saturation (2). The 
interaction between the light and the tissue is complex and con-
tains information on the instantaneous blood volume in the capil-
lary bed, the heart rate, respiratory rate, and even the BP.

The obvious need for noninvasive methods to continuously 
monitor BP accurately, together with observations that both the 
photoplethysmography and ECG signals contain information on the 
former led to many attempts to use these signals to estimate BP, both 
in critically ill patients and in the ambulatory settings (3–6). Many 
of these previously published studies used machine learning either 
based on multiple specific extracted features from the ECG, photo-
plethysmography or both such as the pulse transit time (3, 7–11), or 
even completely data-driven advanced methods utilizing deep net-
works (3, 12–16). Importantly, to the best of our knowledge, many 
of these studies focused on noncritically ill patients or used data-
sets that are small containing tens of patients. Furthermore, some 
studies used photoplethysmography signals in which samples from 
the same patients were used both for training and test datasets with 
significant overlap between the sets in terms of patient source—a 
form of label leakage inserting a bias and preventing generalization 
to a hitherto unseen cohort (we used a single sample for calibration 
as detailed below). A table summary of 21 studies using either pho-
toplethysmography, ECG or both to estimate BP is presented in the 
supplementary material (Supplemental Digital Content 1, http://
links.lww.com/CCX/A151).

In this study, we examined whether photoplethysmography sig-
nals acquired as part of routine care in a critical care setting can be 
used to track the BP of patients and reliably detect clinically relevant 
fluctuations in BP over time. To that end, we used an openly avail-
able dataset of physiologic waveforms and developed an advanced 
machine learning algorithm based on a Siamese architecture of 
a convolutional neural network. These networks were trained on 
photoplethysmography samples 30 seconds in length from a subset 
of patients and performance was tested on samples from a sepa-
rate group. We also hypothesized that utilizing for each patient, 
only the photoplethysmography signal and a calibration single BP 
reading that correlates to the first available photoplethysmography 
sample will allow better accuracy without sacrificing generalizabil-
ity. We demonstrate the feasibility of such an approach that has the 
potential to improve care and monitoring for critically ill patients 
and even to be extended to additional scenarios.

MATERIALS AND METHODS

Dataset and Preprocessing
A reliable, large dataset of photoplethysmography sample signals 
paired with their BP values was compiled using the Multiparameter 
Intelligent Monitoring in Intensive Care II (MIMIC-II) waveform 

database (17) containing deidentified health-related data associ-
ated with patients who stayed in critical care units of the Beth 
Israel Deaconess Medical Center. Patient demographics in this 
dataset can be found elsewhere (18). MIMIC database creation, 
access and study was approved by the Institutional Review Boards 
of Beth Israel Deaconess Medical Center (Boston, MA) and 
the Massachusetts Institute of Technology (Cambridge, MA). 
Requirement for individual patient consent was waived as all 
data were deidentified, and there is no impact on clinical care. 
We focused on two variables solely for our dataset: BP waveform 
signals that were recorded concurrently with photoplethysmog-
raphy raw signals at 125 Hz (Fig. 1, A and B for sample traces). 
Photoplethysmography and BP signals were divided to 30 seconds 
segments, to allow a balance between a minimal required sample 
length to derive informative features, BP stability and the potential 
for future real-time tracking (19–21). As this is a proof-of-concept 
study, we opted for preprocessing and samples were excluded if 
either of the following conditions applied: 1) Noisy photoplethys-
mography signals as defined by a threshold cutoff on the derived 
total power of the autocorrelation function—thus removing sig-
nals that were not strictly periodic as the photoplethysmography 
is expected to be, or extreme BP fluctuations within a 30 seconds 
window (reducing the sample from an initial 2,701,154 samples 
to 194,648 samples); 2) Physiologically improbable or extremely 
rare BP values (diastolic < 30 mm Hg or > 120 mm Hg, systolic 
< 55 mm Hg or > 185 mm Hg, reducing the samples to 175,368); 
and 3) All data from patients with less than 100 adequate samples 
or those who more than 95% of their data was filtered due to con-
ditions 1–2 (reducing the samples to 155,018). All noisy signal 
filtering was performed automatically without human reviewing. 
Furthermore, as our proposed method relies on estimating BP 
changes relative to a reference initial sample used for calibration, 
we removed for each patient subsequent samples that varied more 
than ± 50 mm Hg from the first available sample as such samples 
were very rare and did not allow for reliable training of the models 
using this database (reducing the samples slightly to 136,459).

After all the steps above for filtering, we remained with 136,459 
samples which belong to 329 different patients that we used for our 
tool development and testing. We divided the filtered samples into 
three different sets: 60% training set, 20% validation set, and 20% 
test set. Each of these contained samples from different patients 
with no overlap between patients in the sets. For each 30-second-
long photoplethysmography signal sample, we extracted from 
the concurrently recorded BP waveform the mean and median 
systolic BP (SBP) and diastolic BP values and these were used as 
training and test labels. Figure  1C–E shows the distribution of 
diastolic BP, mean BP, and SBP values for the samples used in this 
study. Supplemental Figure 1 (Supplemental Digital Content 2, 
http://links.lww.com/CCX/A152) shows the distributions of BPs 
in the prefiltered dataset.

Development of Deep Neural Network Models
The core task of our deep network models was to use photople-
thysmography waveforms samples of length 30 seconds to estimate 
the patient’s instantaneous SBP and diastolic BP. As noted above, 
BP labels were derived for this study from concurrently recorded 
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invasive arterial BP defined as the true value or training/test label. 
We opted to use deep networks for this task: a completely data-
driven approach that does not rely on human-oriented feature 

extraction. The chosen input for our training methods were pho-
toplethysmography-derived spectrograms (Fig. 1F shows a sam-
ple spectrogram), as a more robust way of representing the raw 

Figure 1. Signal samples and architecture overview. A, Arterial blood pressure (BP) trace from a single patient recorded at 125 Hz. B, Photoplethysmography 
(PPG) trace from the same patient, recorded at 125 Hz. C, Histogram of samples included in this study with a calculated diastolic BP as denoted on the x-axis. 
D, Histogram of samples included in this study with a calculated mean BP as denoted on the x-axis. E, Histogram of samples included in this study with a systolic 
BP as denoted on the x-axis. F, Sample spectrogram of the PPG signal.
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signals, since the signals are smoothed, and many features were 
problematic and unreliable to extract. Furthermore, spectrograms 
capture features from both the time and frequency domains and 
are less sensitive to signal phase shifts. Spectrograms were com-
puted using the short-time Fourier transform of subwindows of 
length 6 seconds with a Hamming window and with 95% overlap 
between adjacent subwindows.

The deep network architectures that classically lends itself to 
processing fixed-size input such as spectrograms are convolu-
tional neural networks. We did need to adapt these to performing 
regression rather than classification by changing the last layers of 
the networks to linear layers with one output channel and using 
the BP values as regression targets. Another important param-
eter, we adjusted to our task was the loss function, from cross-
entropy, as is customary in classification networks, to L1–loss, 
which is more suitable for solving regression problems and aims 
for minimizing the minimum absolute error used as a measure of 
BP estimation accuracy. Due to its simplicity and the good results 
it yielded, the specific architecture we chose to use for our net-
work is inspired by the AlexNet architecture (22), which consists 
of five convolutional layers and three fully connected layers. The 
first two convolutional layers and the fifth convolutional layer are 
followed by max pooling layers, while the third and fourth convo-
lutional layers are connected directly. The output of these feature 
extraction layers goes into a series of two fully connected layers. 
Finally, the second fully connected layer feeds into a linear regres-
sion layer. Rectified linear unit activation function is applied after 
all convolution and fully connected layers. For regularization, a 
batch normalization layer follows every convolutional layer and 
a dropout layer precedes the first two fully connected layers. The 
optimizer we chose for our network was Adam, and batch size for 
trainings was 32 (chosen after careful examination of batch size 
and optimizer type as hyperparameters). Using this approach and 
testing on samples derived from different patients than those in 
the training set resulted in mean absolute error (MAE) for estima-
tion of 4.95 mm Hg for diastolic BP, MAE of 6.5 mm Hg for mean 
BP, and an MAE of 9.71 mm Hg for SBP with mean bias error of 
0.22, 0.67, and –1.25 mm Hg, respectively (see Table 1 for addi-
tional performance statistics).

Improving Estimation Using Calibration and Siamese 
Networks
We sought to improve our estimation accuracy by calibrating the 
deep networks using a single BP recording associated with the first 
available photoplethysmography sample for each patient. The under-
lying assumption was that using a single calibration sample will allow 

us on the one hand to exploit patient-specific features captured by the 
photoplethysmography while retaining a generalizable and poten-
tially deployable method that does not require multiple samples 
from each patient or exhaustive retraining the net for each patient. 
Thus, the goal was to design a network that uses a photoplethysmog-
raphy sample to estimate the change in SBP and diastolic BP relative 
to a reference BP value (that could theoretically also be derived from 
a noninvasive cuff-based single measure) and associated reference 
photoplethysmography spectrogram used for calibration. The main 
idea behind this technique suggests that the physiologic characteris-
tics of each patient are embedded within its photoplethysmography 
spectrogram. Basically, we adapted a Siamese network architecture 
and devised a dual network that was fed two inputs: one which 
includes a reference photoplethysmography signal (the first avail-
able sample for that patient) and associated systolic and diastolic 
readings and the second input was a later acquired photoplethys-
mography signal. The output of this network is an estimate of the 
change in SBP, mean BP, and diastolic BP relative to the reference 
value based on the current photoplethysmography signal’s spectro-
gram. Siamese networks are neural networks containing two identi-
cal subnetwork components (23–25), meaning the Siamese network 
uses the same architecture and parameters while working in tandem 
on two different input vectors to compute a comparable output vec-
tor. This architecture was used in the past for applications such as 
face recognition, signature verification, and matching queries with 
indexed documents. Our architecture differed from classic Siamese 
network by being a regression neural network and by its final layer. 
We used the same architecture we used in the regression network, 
but while the regression network uses the features extracted by its 
final fully connected layer to estimate BP, our final fully connected 
layer extracts a vector which is the result of the subtraction of the 
patient’s representative photoplethysmography spectrogram fea-
tures, as recognized by the neural network up to this layer, from its 
current photoplethysmography spectrogram features. This subtrac-
tion yields the “Differences” vector between these photoplethysmog-
raphy spectrograms and used to estimate the change in BP relative 
to the calibration initial sample. Figure 2 shows an overview of the 
developed architecture and analysis pipeline. The Siamese networks 
architecture indeed provided an estimation improvement while still 
retaining a very applicable and clinically useful approach and the 
results reported in the next section are based on it.

RESULTS
Data (photoplethysmography and BP waveforms) from a total of 329 
patients were included for analyses, all derived from the MIMIC-II 
waveform database (17, 26). Each photoplethysmography sample 

TABLE 1. Performance Summary of the Regression Networks

Measurement

Calibration-Free Using Regression Network Calibration Using Siamese Network

MAE (mm Hg) Errors sd (mm Hg) RAE MAE (mm Hg) Errors sd (mm Hg) RAE

Systolic BP 0.48 9.81 7.98 0.49 11.27 9.71

Diastolic BP 0.44 5.16 4.11 0.47 5.94 4.95

Mean BP 0.47 5.63 5.51 0.50 7.04 6.5

BP = blood pressure, MAE = mean absolute error, RAE = relative absolute error.
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was 30-second-long with a total of 136,459 samples divided into 
training, validation and testing (60%, 20%, 20% or 81,629, 27,320, 
27,510, respectively). Data from a single patient were not shared 
between training, validation or testing sets, thus ensuring and 
accurately capturing the generalization potential of our method. 
For each tested patient and recorded photoplethysmography sam-
ple, we estimated BP changes relative to a single calibration sam-
ple using a deep network with Siamese architecture as detailed in 
the methods and shown in Figure 2. The calibration sample was 
always the first available photoplethysmography sample for that 
patient and its associated recorded SBP, mean BP, and diastolic BP. 
Acquiring a calibration BP and estimating the change from that 
reference using the deep network and a photoplethysmography 
sample allowed us to track the BP over time as can be seen, for 
example, in Figure 3A for a single patient. Figure 3B shows the 2D 
histogram, normalized per true change; that is, row-wise so that 
the sum of probabilities in each row is of estimated versus actual 
true mean BP fluctuations for the entire test dataset, with a maxi-
mal fluctuation size of 50 mm Hg. As can be seen, our method is 
accurate in estimating the magnitude of relatively small fluctua-
tions while for larger ones it is accurate in detecting the direction 
of change but not the exact magnitude, probably due to the rela-
tive scarcity of such fluctuations in the training dataset. Figure 
3C shows similarly the estimated versus true recorded mean BP 
(normalized similarly) demonstrating the network’s precision over 
a wide range of BPs, with a tendency to underestimate the mean 
BP for higher values (mean BP above 100 mm Hg). The network’s 
accuracy can be appreciated by examining the estimation errors 
distribution. Figure 3, D and E, show these distributions for dia-
stolic and systolic pressures, respectively. For SBP, the mean esti-
mation error is –0.76 ± 12.96 mm Hg (sd), for mean BP it is 0.1 
± 7.87 mm Hg, while for diastolic BP, the mean estimation error 
is 0.52 ± 6.59 mm Hg. Examining the error distributions, we also 
find that 95% and 88% of the errors are smaller than 10 mm Hg 
in magnitude for diastolic and systolic, respectively. Table 1 sum-
marizes the regression networks’ accuracy (both with and without 
patient-specific calibration) using MAE and the relative abso-

lute error (RAE) defined by: RAE =
| x

| mean

�x

x � x |
pred correct

correct correct

∑
∑ ( )

|
. Of 

note, the reduction in MAE achieved by using a Siamese network 

configuration was statistically signifi-
cant (p < 10–20, Wilcoxon rank-sum 
test) for diastolic BP, SBP, and mean 
BP estimation.

We tested the detection of clini-
cally significant changes in BP rela-
tive to a baseline—for example, using 
the noninvasively recorded photo-
plethysmography signal to detect a 
change in BP larger than a threshold 
of 10 mm Hg. Figure 4A–C shows 
the normalized confusion matrices 
for detection of a change of either 
an increase or decrease in BP (dia-
stolic, mean, and systolic, respec-
tively) with a threshold of 10 mm Hg 

in each direction. The total accuracy for detecting a 10 mm Hg 
fluctuation (and its direction) was 85%, 78%, and 74% for diastolic 
BP, mean BP, and SBP, respectively. Figure 4D for the same figure 
depicts the accuracy as a function of the fluctuation threshold.

We also examined the utility of our regression network to 
detect hypotensive and hypertensive events, as can be seen in the 
normalized (by class) confusion matrices in Figure  4, E and F. 
Diastolic hypotension, defined as a value below 60 mm Hg can be 
detected with a sensitivity of 87%, while systolic hypotension (SBP 
< 90 mm Hg) was detected at a sensitivity 65% and systolic hyper-
tension (SBP > 150 mm Hg) with a sensitivity of 70%. Table  2 
details summary statistics of detection sensitivities, specificities, 
and accuracies for these hypo-and hypertensive events with accu-
racies for each task ranging from 86% to 97%, as examined on 
the test dataset of 27,510 samples. As can be seen in Supplemental 
Figure 1 (Supplemental Digital Content 2, http://links.lww.com/
CCX/A152) showing the distribution of BP values in the pre-
filtered dataset, values above 180 mm Hg were too rare to allow 
training of the regression network. We also tested the stability of 
the estimation process and noted no decrease in precision for sig-
nal lengths of up to 600 minutes (data not shown).

DISCUSSION
We show that continuous noninvasive tracking of SBP and diastolic 
BP can be achieved using a noninvasively commonly recorded sig-
nal, the photoplethysmography waveform. All that is required for 
accurate tracking are a single calibration photoplethysmography 
sample with an associated concurrent recorded BP. Estimation 
is achieved by utilizing the power of advanced machine learning 
techniques, and more precisely convolutional deep networks, to 
automatically extract relevant information from 30-second-long 
samples of photoplethysmography waveforms. Using a custom 
designed architecture, we demonstrate an estimation bias of less 
than 1 mm Hg and a relatively narrow error distribution with a 
MAEs of ~8 mm Hg for SBP and 4.1 mm Hg for diastolic BP: even 
partially satisfying the published standards for validating blood 
measurements devices (27, 28). Additionally, the utility of this 
method in alerting a clinician to a significant fluctuation from a 
baseline and the accuracy of detecting hypo- and hypertension is 
demonstrated.

Figure 2. Outline of the Siamese architecture and analysis workflow. Two copies of the same neural network 
share parameters and are used to compare the current photoplethysmography (PPG)-derived spectrogram to 
the calibration sample (the first available sample) and is trained to extract features that enable estimating the 
change in blood pressure (BP) (systolic, mean, and diastolic) from the current value relative to the calibration 
sample. CNN = convolutional neural network, ReLU = rectified linear unit.
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A major strength of our method is that it requires only a single 
calibration sample, and thus, it is generalizable to new patients 
without requiring retraining for each new patient as the test and 
training samples did not overlap in terms of the patients from 

which these samples were recorded. This study shows that rel-
evant information about the patient’s BP can be extracted from 
the photoplethysmography spectrogram, emphasizing both the 
advantage of recording all physiologically derived waveforms 

Figure 3. Blood pressure (BP) tracking and estimation performance. A, Sample trace of systolic and diastolic true (as measured by the invasive arterial line, 
depicted in black) BP readings from one patient over several hours and the associated estimated BP (depicted in gray) derived from the phtoplethysmographic 
signal and the Siamese estimation network. B, Two-dimensional histogram (normalized per true change, i.e., row-wise) of estimated versus actual true mean BP 
fluctuations for the entire test dataset, with a maximal fluctuation size of 50 mm Hg. Probability is coded using a color bar as shown. C, Two-dimensional histogram 
(normalized per true value, i.e., row-wise) of estimated versus actual true mean BP for the entire test dataset. Probability is coded similarly to (C). D, Histogram of 
estimation errors for diastolic BP as derived for the full test dataset. E, Histogram of estimation errors for systolic BP as derived for the full test dataset.
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Figure 4. Detection of clinically significant fluctuations. A, Normalized (by true class) confusion matrix showing the conditional probabilities (in percentages) of 
detecting a diastolic change either less than –10 mm Hg or greater than 10 mm Hg (each row is normalized to the true change summing up to 100%). Probability is 
denoted using a color scale with black correlating to a probability of 0 and white to a probability of 1. B, Similar normalized confusion matrix as in (A), for mean blood 
pressure (BP) fluctuations with a similar magnitude. C, Similar normalized confusion matrix as in (A) for systolic BP (SBP) fluctuations with a similar magnitude.  
D, Accuracy of detecting a clinically relevant fluctuation as a function of the fluctuation magnitude. E, Normalized confusion matrix (normalization similar to (A) 
showing the sensitivity of detecting diastolic hypotension, normotension, or hypertension as defined by thresholds of less than 60 mm Hg, 60–90 mm Hg, and 
greater than 90 mm Hg, respectively.  F, Normalized confusion matrix (normalization similar to [A]) showing the sensitivity of detecting systolic hypotension, 
normotension, or hypertension as defined by thresholds of less than 90 mm Hg, 90–150 mm Hg, and greater than 150 mm Hg, respectively. DBP = diastolic blood 
pressure.
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from the bedside monitors and demonstrating the power of 
advanced machine learning to aid in bedside patient care.

Obvious limitations of this study are that all waveforms were 
derived from critically ill patients admitted to one hospital, the need 
for heavy preprocessing to exclude noisy or a-periodic photoplethys-
mography samples (limiting the ability for uninterrupted continuous 
estimation if this pipeline would have been deployed as is) and the 
fact that prediction accuracy was not tested using multiple sensor 
types and vendors. Furthermore, we limited fluctuations estima-
tion to changes under ± 50 mm Hg as larger fluctuations were very 
rare in out training dataset, and similarly, we could not identify in 
this dataset enough events of extreme hyper- or hypotension to 
allow accurate detection of these events. Also, at present, additional 
patient-level information such as demographics, ongoing treatments 
with vasoactive drugs, or underlying diagnoses were not available to 
us—the effects of these we plan to examine in future work. Working 
toward deployment, it is possible to test and refine our method to 
deal with these scenarios as well as extend our estimation algorithm 
to use additional signal types in more diverse patient populations.

In conclusion, this is a proof-of-concept study demonstrating 
how using advanced machine learning tools, we can estimate BP 
from a common noninvasively recorded signal, the photoplethys-
mography. We show the potential advantage of using deep learn-
ing to extract information from physiologic waveforms captured 
by the bedside monitors and furthermore, the importance of cali-
brating such models to the specific characteristics of each patient. 
In the future, these and similar tools can allow for better monitor-
ing of patients that do not have invasively recorded BP, both in the 
critical care setting and on inpatient wards.
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