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Abstract: Iron (Fe) is one of the most widely studied trace mineral elements. Fe metabolism and
homeostasis could be altered by physical training. The aim of this study was to analyze the influence
of long-term physical training on serum, plasma, urine (extracellular), erythrocyte and platelet
(intracellular) Fe concentrations. Forty men from the same geographical area divided into a training
group (TG; n = 20; 18.15 ± 0.27 years) and a control group (CG; n = 20; 19.25 ± 0.39 years) participated
in this study. The TG was composed of soccer players of the highest youth category. The CG
consisted of young people who did not follow any training routine and had not practiced any sport
for at least the previous six months. The TG showed higher plasma and serum Fe concentrations
(p < 0.05), but lower concentrations in erythrocytes and platelets compared to the CG (p < 0.01). Due
to the differences observed in the extracellular and intracellular compartments, it seems necessary to
perform a global Fe analysis to assess Fe status.
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1. Introduction

Iron (Fe) is one of the most abundant elements in the earth’s crust and one of the most
studied micronutrients [1]. It is a biologically essential component of all living organisms
and plays a key role in exercise-related processes [2,3]. Fe is mainly found in the body in
complex forms bound to proteins (hemoproteins) such as heme compounds (hemoglobin or
myoglobin), heme enzymes (cytochromes) or non-heme compounds (ferritin). Furthermore,
Fe could be linked with Sulphur (Fe-S), forming proteins with oxidoreductive activity [4].

Body Fe content is approximately 3.5 g in a 70 kg individual. Fe is mainly distributed
within hemoglobin (about 65% of the total) [5] in the human body, approximately 10% of Fe
is present in muscle fibers within myoglobin, enzymes and cytochromes [5]; the remaining
body Fe is stored in the liver, macrophages and bone marrow [6]. Once absorbed, Fe is
transported by transferrin to cells or bone marrow for erythropoiesis [1]. Within the cell, Fe
can be stored in the cytosol as ferritin and hemosiderin. Dietary Fe is found in heme (10%)
and non-heme (90%) forms. Non-heme dietary Fe is mainly in a ferric form (Fe3+) that is
not bioavailable and must be reduced to the ferrous form (Fe2+) [7]. Heme Fe is absorbed
at a higher rate than the non-heme form by enterocytes [5].

Fe is vital in the transportation of oxygen, as a component of hemoglobin and myo-
globin [8]. In addition, the Fe-S complex is involved in enzymes responsible for electron
transport, energy generation in mitochondrial respiration, the Krebs cycle and ribonu-
cleotide reductase, which is essential for DNA synthesis. Fe plays important roles in
hormone synthesis, muscle division and growth [2,5,9].
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Fe metabolism and homeostasis could be altered by exercise and nutrition [10–12].
Physical exercise could impair Fe status through several mechanisms, including exercise-
induced inflammation, hemolysis, or losses through sweat or urine [13–15]. Elsewhere, Fe
deficiency is one of the most prevalent nutritional deficiencies in the general population [16,17].
In athletes, Fe deficiency is more prevalent, most commonly affecting women [18–20]. Fe
status could influence physiological function and performance. Fe deficiency impairs aerobic
capacity, reduces muscle function and leads to increased lactate concentrations [21].

Soccer is characterized by intermittent work periods combining low-, moderate- and
high-intensity running, constantly interrupted by jumping, dribbling, tackling, breaking
and heading. These physiological demands can compromise the musculoskeletal, nervous,
immune and metabolic systems, which could be reflected in changes in biochemical and
hematological parameters [22].

Previous authors reported no differences between male soccer players and control
subjects in parameters such as serum Fe, ferritin or transferrin saturation [23]. However,
when comparisons are made throughout the sports season on indicators of Fe status,
significant changes are observed in hematocrit, ferritin, mean corpuscular hemoglobin and
mean corpuscular volume in various assessments [24].

As previously noted, evaluation of Fe status is usually performed indirectly using
several indicators [25]. These include: serum ferritin, transferrin saturation and hemoglobin
concentration, which are the most commonly used parameters to assess Fe status indi-
rectly [26–29]. However, some indicators such as ferritin or transferrin saturation could be
altered by inflammation or diurnal fluctuations [30,31]. Previously, Sherwood et al. [32]
reported that serum, urine or tissue Fe concentration assessments are accurate when deal-
ing with disorders of Fe metabolism. Normally, Fe levels are assessed in extracellular
compartments such as serum or plasma [13,26,33]. Nevertheless, studies analyzing Fe
concentrations in intracellular compartments are scarce [10,34]. Assessments of Fe status in
athletes are usually performed in one or two compartments [13,26,33], with limited studies
with more than two compartments [34,35]. Regarding intracellular Fe determinations,
these are usually assessed in erythrocytes [10,34]. Nonetheless, the study of erythrocyte
Fe can be time-consuming because the half-life of erythrocytes is about 120 days [36]. The
study of platelets could be a reliable and current alternative due to their reduced half-life
(approximately 10 days) [37]. Relationships between Fe status and platelet parameters have
been reported [38].

It has recently been reported that deficits in intracellular compartments could exist
despite there being no differences in the extracellular compartments of trace mineral
elements (TME) [39–41]. Therefore, a complete assessment of several compartments must be
performed simultaneously when assessing TME status. Hence, the aim of this study was to
analyze the influence of long-term physical training on serum, plasma, urine (extracellular),
erythrocyte and platelet (intracellular) Fe concentrations simultaneously with a method
not used until now: inductively coupled plasma mass spectrometry (ICP-MS).

2. Materials and Methods

The participants, materials and methods were previously described by Toro-Román et al.
[39,41]. However, they are explained below. TG reduced the intensity and volume of
training the two previous days and rested the day before the evaluations to avoid fatigue.

2.1. Subjects

Forty healthy men divided into a training group (TG; n = 20; 18.15 ± 0.27 years) and a
control group (CG; n = 20; 19.25 ± 0.39 years) voluntarily participated in this study. All of
them were informed of the purpose of the study and signed an informed consent form. The
protocol was reviewed and approved by the Biomedical Ethics Committee of the University
of Extremadura (Cáceres, Spain) following the guidelines of the Helsinki ethical declaration
(code 13/2021). All study participants had resided in the area of Cáceres (Spain) in the
previous 24 months prior to the start of the study.
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Inclusion criteria were the following: to be a man, not to follow any special diet or take
vitamin/mineral supplements, or specific supplementation, medication or over-the-counter
medication and not to have had any injuries or illness during the investigation or at least
6 months before the study.

The TG consisted of 20 semi-professional soccer players from a national youth di-
vision of honor team. All of them had training experience of at least 5 years and per-
formed regular soccer training of approximately 10 h per week. The CG was composed of
20 youngsters who did not follow any physical training plan and had not practiced any
sport in the previous 6 months. A physical activity questionnaire—short form (IPAQSF)
Spanish version was used to assess the levels of physical activity [42,43].

To ascertain Fe intake, all participants completed the nutritional survey. The survey
consisted of a 4-day daily nutritional record for three working days and one weekend. Par-
ticipants indicated the frequency and amount of each food consumed, and the nutritional
composition was assessed using food composition tables [44].

The evaluations were carried out at the end of the first month of the season. The
characteristics of the training sessions performed by TG are shown in Table 1.

Table 1. Team and training characteristics of soccer players (TG).

Parameters TG (n = 20)

Position (%)

Goalkeeper 10.00
Defense 35.00

Midfielder 40.00
Forward 15.00

Matches played (n) 1.00
Trainings (n) 17.04 ± 4.39

Training sessions (min) 1534.28 ± 416.71
Training load (RPExmin) 2778.54 ± 1118.13

RPE: rate of perceived exertion.

2.2. Anthropometric Measurements

The anthropometric measurements obtained were height, weight, skinfolds (abdominal,
suprailiac, subscapular, tricipital, thigh and leg), bone diameters (bistyloid, humeral biepi-
condyle and femoral biepicondyle) and muscle perimeters (relaxed arm and leg). Body height
was measured using a wall-mounted stadiometer (Seca 220. Hamburg, Germany). Body
weight was measured using calibrated electronic digital scales (Seca 769. Hamburg, Germany)
in nude, barefoot conditions. A Holtain© 610ND (Holtain, Crymych, UK) skinfold compass,
a Holtain© 604 (Holtain, Crymych, UK) bone diameter compass, and a Seca© 201 (Seca,
Hamburg, Germany) brand tape measure, were used for the anthropometric assessments. An-
thropometric measurements were taken by the same operator. The guidelines of the Spanish
Group of Kinanthropometry were used to calculate the muscle and fat percentages [45].

2.3. Sample Collection and Fe Determination

A sample of 12 mL of venous blood was withdrawn from each subject using a plastic
syringe fitted with a steel-free catheter to avoid Fe contamination after a fasting period of at
least 8 h. First, 2 mL of blood were used for the determination of hematological parameters
using an automatic cell counter (Coulter Electronics LTD, Model CPA; Northwell Drive,
Luton, UK).

For serum, a blood sample of 5 mL was collected in a metal-free polypropylene tube
and then centrifuged at 3000 rpm for 15 min. Serum was aliquoted into an Eppendorf tube
and was left to stand at −80 ◦C.

For plasma, a blood sample of 5 mL was collected in a metal-free polypropylene tube
with ethylenediaminetetraacetic acid (EDTA) and then centrifuged at 1800 rpm for 8 min.
The platelet-rich plasma obtained was collected in a metal-free polypropylene tube and
centrifuged for 15 min at 3000 rpm and the plasma was aliquoted into an Eppendorf tube
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and was left to stand at −80 ◦C. One milliliter of pure water was added to the tube of the
concentrate of platelets and stored at −80 ◦C.

The erythrocytes were extracted from the rest of the blood and were washed with 0.9%
sodium chloride (NaCl) three times. They were then aliquoted into Eppendorf tubes and
conserved at −80 ◦C.

The first urine sample was obtained from all subjects, collected in polyethylene tubes
previously washed with diluted nitric acid, and frozen at −80 ◦C until analysis.

Techniques for Fe determination in plasma, serum, urine, erythrocytes and platelets
were similar to those reported by Toro-Román et al. [39–41].

Fe determination was performed by ICP-MS (7900; Agilent Tech., California, CA, USA).
The instrument had a fast dual simultaneous mass detector, a high-frequency hyperbolic
quadrupole, and a fourth-generation reaction octopole system that allowed operation in
two modes: no reaction gas and kinetic energy discrimination with helium as the collision
gas. The collision gas and the argon for the plasma were 99.999% pure and supplied
by Praxair (Madrid, Spain). In addition, it had a 27 MHz variable frequency generator,
cooled spray chamber, low-flow sample introduction system, Off-Axis ionic lenses, and an
extraction interface with high transmission and matrix tolerance.

For plasma, serum, and urine samples, the reagents used were 69% nitric acid (Trace-
SELECT™, Fluka™) and ultrapure water obtained from a Milli-Q system (Millipore®,
Burlington, MA, USA). A 400 µgL-1 Rhodium dilution was used as an internal standard
and continuously fed into the apparatus with the aid of the three-channel peristaltic pump.
The 0.2 mL of the samples to a volume of 5 mL with a 1% nitric acid solution prepared from
a 69% commercial one. The equipment was calibrated with several calibration standards
prepared from commercial multielemental solutions of certified standards.

For erythrocyte and platelet samples, the reagents used in method development
and sample analysis were 69% nitric acid, hydrogen peroxide (TraceSELECT™, Fluka™)
and ultrapure water obtained from a Milli-Q system (Millipore®, Burlington, MA, USA).
A 400 µgL-1 Ytrium and Rhodium dilution was used as internal standard, which was
continuously fed into the apparatus with the aid of the three-channel peristaltic pump.

Samples were weighed on a precision balance ± 0.4 g and introduced into glass tubes
for microwave digestion. Then, 3.5 mL of a 3:1 mixture of 69% nitric acid and hydrogen
peroxide (TraceSELECT™, Fluka™) was added.

Once digested, the resulting solutions were diluted to 25 mL with MilliQ water. The
limits of detection and limits of quantification for Fe were 0.17 µg/L and 1.69 µg/L. The
linearity of the calibration curves in plasma, serum, urine, erythrocytes and platelets were
greater than 0.985. The values of the standard materials for this element (10 µg/L) used for
quality controls coincided with intra- and inter-assay coefficients of variation lower than 5%.

2.4. Statistical Evaluations

The normality of variables was analyzed using the Shapiro–Wilk test and the homo-
geneity of the variances with the Levene test. Student’s t-test was used to compare the
different parameters of both groups. A p < 0.05 was considered statistically significant.
Effect size (ES) was calculated [46]. ES of 0.2, 0.4, and 0.8 were considered small, moderate,
and large, respectively [47]. Statistical analyses were carried out with IBM SPSS Statistics
22.0 for Windows (SPSS Inc., Chicago, IL, USA).

2.5. Incremental Test until Exhaustion

Participants performed a maximal incremental test to exhaustion to assess cardiorespi-
ratory fitness. The protocol started at 8 km/h for CG and 10 km/h for TG. Every minute it
increased by 1 km/h with a 1% slope. All the participants performed a 15-minute warm-up
by running progressively until they achieved the starting speed of the test. A treadmill (Trac
Alpin 4000, ERGOFIT, Pirmasens, Germany), equipped with a gas analyzer (Geratherm
Respiratory GMBH, Ergostik, Ref 40.400, Corp Bad Kissingen, Geschwenda, Germany) and
a Polar pulsometer (Polar® H10, Kempele, Finland) were used.
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3. Results

Table 2 reflects the characteristics of the participants. The TG recorded lower weight,
fat percentage and resting heart rate compared to the CG (p < 0.05). However, the TG had
higher muscle percentage, maximal oxygen consumption (VO2max), expiratory volume
(VE) and physical activity levels (p < 0.05).

Table 2. Characteristics of the participants.

Parameters CG (n = 20) TG (n = 20)

Weight (kg) 73.45 ± 9.04 68.59 ± 4.18 *
Height (m) 1.79 ± 0.06 1.76 ± 0.04

Muscle Mass (%) 44.22 ± 5.71 49.03 ± 2.56 *
Fat Mass (%) 15.64 ± 5.78 9.32 ± 2.76 *

VO2 max (mL/Kg/min) 45.61 ± 4.95 61.02 ± 4.35 **
VE (L/min) 88.34 ± 11.18 120.56 ± 18.79 **

Resting HR (bpm) 67.31 ± 6.49 54.41 ± 5.29 *
Maximum HR (bpm) 189.3 ± 7.1 193.8 ± 6.5

Physical activity (MET-hours/weekly) 27.36 ± 4.45 56.13 ± 6.21 **
CG = control group; TG = training group; VO2max = maximal oxygen consumption; VE = expiratory volume;
HR = heart rate; MET = metabolic equivalent of task; * p < 0.05; ** p < 0.01.

Table 3 displays the energy, macronutrient and Fe intakes of the study participants.
There were no differences between groups.

Table 3. Nutritional intake of participants.

Parameters CG (n = 20) TG (n = 20)

Energy (kcal/day) 2112.34 ± 345.78 2456.16 ± 504.11
Water (L/day) 1.145 ± 0.241 1.421 ± 0.356

Carbohydrates (g/kg/day) 3.11 ± 1.28 3.98 ± 1.78
Proteins (g/kg/day) 1.25 ± 0.37 1.44 ± 0.41
Lipids (g/kg/day) 1.51 ± 0.47 1.64 ± 0.31

Fe (mg/day) 13.67 ± 3.21 14.18 ± 2.74
CG = control group; TG = training group; Fe = Iron.

Table 4 shows the hematological parameters in both groups. No significant differences
were observed among participants.

Table 4. Erythrocyte, hemoglobin, hematocrit and platelet values.

Parameters CG (n = 20) TG (n = 20) ES

Erythrocytes (cell 1012/L) 4.81 ± 0.72 4.76 ± 0.89 0.14
Hemoglobin (g/dL) 14.75 ± 0.78 14.14 ± 0.95 0.08

Hematocrit (%) 43.24 ± 1.04 42.65 ± 1.23 0.10
Platelets (cell 109/L) 190.23 ± 67.13 198.35 ± 60.51 0.17

CG = control group; TG = training group; ES = effect size.

Table 5 reports plasma, serum and urine Fe concentrations. The TG showed higher
plasma and serum Fe concentrations (p < 0.05).

Table 5. Fe concentration in extracellular compartments.

Parameters CG (n = 20) TG (n = 20) p ES

Plasma (µg/L) 2023.37 ± 514.61 2486.51 ± 573.24 0.016 0.61
Serum (µg/L) 1536.13 ± 416.29 1840.00 ± 583.64 0.031 0.43
Urine (µg/L) 3.77 ± 0.99 3.62 ± 1.61 0.641 0.02

CG = control group; TG = training group; ES = effect size.
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Table 6 illustrates the erythrocyte and platelet Fe concentrations. The TG had lower
erythrocyte and platelet Fe values, both in absolute and relative terms compared to the
CG (p < 0.01).

Table 6. Fe concentration in intracellular compartments.

Parameters CG (n = 20) TG (n = 20) p ES

Erythrocytes (mg/L) 927.38 ± 115.88 787.05 ± 85.71 <0.001 1.00
Erythrocytes (µg/cell10−6) 193.21 ± 21.06 167.03 ± 17.65 0.003 0.84

Platelets (µg/L) 54.04 ± 36.79 25.34 ± 9.44 0.008 0.69
Platelets (pg/cell 10−3) 0.284 ± 0.164 0.127 ± 0.082 0.006 0.73

CG = control group; TG = training group; ES = effect size.

4. Discussion

This research aimed to analyze the influence of regular physical training on intracellu-
lar and extracellular Fe concentrations using a highly reliable technique for this purpose
such as ICP-MS. The TG showed elevated serum and plasma Fe concentrations compared to
the CG (p < 0.05). However, the TG had lower concentrations in erythrocytes and platelets,
both in absolute and relative values (p < 0.01). Soccer players exposed to a demanding
calendar during a competitive period may be predisposed to a Fe deficiency that could
compromise their performance and metabolic health towards the end of the season [48].
Accumulated fatigue and inadequate recovery time during a competitive period may
predispose players to alterations in the state of Fe [20].

Fe status has been associated with athletic performance [25,49,50]. Indirect assess-
ment of Fe through other markers could have certain limitations in populations such as
athletes [51]. Ferritin levels could only indicate the magnitude of Fe stores and not its
functional reserve (amount of Fe in hemoglobin, myoglobin and other enzymes) [52]. De-
tection of Fe deficiency based on ferritin assessment is limited in athletes since physical
training could induce inflammatory responses, especially in acute phases [52]. It has been
reported that increases in plasma ferritin could be maintained for several days after stren-
uous physical exercise [52,53]. Elsewhere, hemoglobin assessment to analyze Fe status
has certain limitations because a low hemoglobin level could be due to an expansion of
plasma volume [54]. Regarding serum Fe evaluation, it is known to have a high diurnal
variability. Diurnal Fe values are higher compared to values obtained in the afternoon,
which may not be a reliable measure of Fe status [55]. Therefore, due to the different
limitations of the markers of Fe status, a multicompartmental total Fe analysis seems to
be necessary for a more complete assessment [39]. The Fe concentrations obtained in each
compartment, by ICP-MS, were within the ranges reported in other investigations with
similar techniques [10,56–58].

Fe is the most abundant trace element involved in cell metabolism and growth of
organisms [59]. Regular assessment of Fe status in athletes is crucial for optimal perfor-
mance, especially in endurance sports. Physical performance could decrease, leading to
constant fatigue and cognitive impairment when Fe stores are inadequate [10]. The body
has no mechanism to restore Fe losses due to physical exercise. Therefore, adequate dietary
intake is essential for athletes during periods of intense training [60]. As mentioned above,
Fe deficiency is one of the most common deficits in the general population and among
athletes, mostly in women [61]. In the present study, Fe intake in both groups was higher
than dietary reference intakes (DRI) (9–11 mg/day) [62]. Nutritional intake is the first step
in correcting Fe deficiency. Heme Fe uptake and absorption is higher compared to free or
non-heme Fe [61]. Moreover, hepcidin, a hormone that regulates Fe availability, plays an
important role in Fe absorption [63]. This hormone is increased, among other factors, by
inflammation, decreasing Fe absorption [14]. The relationship between exercise, inflamma-
tion and hepcidin activity has been well studied because exercise is a potent inflammatory
stimulus [14,64,65]. Furthermore, low energy availability resulting from reduced energy
intake and/or increased training load is associated with an increase in hepcidin, triggering
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abnormal upregulation and impairment of Fe metabolism [11]. Therefore, the timing of
Fe intake and energy availability are two factors that must be taken into account when
optimizing Fe status.

Concerning extracellular Fe concentrations, the TG showed higher serum and plasma
Fe concentrations compared to the CG (p < 0.05). The Fe values in the TG were higher than
those reported in other studies in soccer players [24,66]. Rakhra et al. [33] and Mettler and
Zimmermann [67] observed increased plasma Fe values in active people and marathon
runners with respect to the results obtained in this study. However, other authors observed
no differences with the CG and other sports disciplines [21,68,69], or even reported reduced
values in athletes [70]. Regarding serum concentrations, Schumacher et al. [71] reported
increased Fe values in international endurance athletes compared to local athletes. Similarly,
Constantini et al. [72] reported higher Fe levels in swimmers and racquet sports athletes
compared to gymnasts. Nevertheless, other authors observed no differences in plasma
Fe concentration over the season in soccer players [24,66] and endurance runners [73]. In
contrast, Ponorac et al. [26] and Sandström et al. [70] documented lower Fe concentrations
in women athletes compared to the CG.

The differences in plasma and serum Fe concentrations between the groups could
be multifactorial. Hemolysis occurring during training, specifically in soccer, could be
an important factor [74,75]. Another factor may be hemoconcentration due to changes in
plasma volume caused by regular training [12,75,76]. Soccer is an anaerobic-aerobic sport
where sprints, acceleration, deceleration, changes of direction and trauma are prevalent [77].
These actions could enhance muscle damage and hemolysis [74]. Elevated body tempera-
ture, metabolic acidosis and hemoconcentration, observed during physical exercise, reduce
the osmotic resistance of erythrocytes [78]. Previous studies suggested that the intravascu-
lar hemolysis observed during exercise is a consequence of injury to older erythrocytes,
which are less elastic and more susceptible to damage [79]. The same authors documented
an inverse correlation between hemolysis and levels of the erythrocyte membrane protein
spectrin [79]. These results could support the hypothesis that structural alterations of
erythrocyte membranes increase the susceptibility of these cells to hemolysis, leading to
elevated plasma levels of free Fe. Regarding plasma volume, it is necessary to consider
the change in plasma volume during exercise when assessing the effects of exercise on
the concentrations of non-diffusible blood components [80]. As blood components with
high molecular weight cannot freely cross vascular walls, their serum concentrations may
increase or decrease according to changes in plasma volume and vascular tone [81].

Regarding intracellular concentrations, lower values were observed in the TG compared
to the CG in erythrocytes and platelets (p < 0.01). It is unusual to assess Fe in these com-
partments. Similar results were reported by Maynar et al. [10] in erythrocytes. In addition,
previous authors observed an inverse relationship (r = −0.744; p = 0.000) between training
status and the amount of Fe in this compartment. Concerning platelets, inverse relationships
between serum Fe levels and platelet and plateletcrit numbers have been found [82]. However,
to our knowledge, there is no information on platelet Fe content in athletes.

Erythrocyte Fe deficiencies could be due to insufficient Fe intake in the months prior to
the study. As mentioned above, the half-life of erythrocytes is approximately 120 days [36].
Additionally, the intracellular concentration of TME in erythrocytes is not affected by the
acute inflammatory response or by short-term diets [83]. Therefore, the reported data on
erythrocyte Fe concentrations may not be recent. On the other hand, it could be related
to the hemolysis mentioned above. It is known that physical exercise, characterized by a
significant strain on the athlete, especially in competitive situations, leads to a more rapid
aging of erythrocytes. The half-life of erythrocytes in athletes could be significantly shorter
than in non-exercising subjects [84]. Exercise-induced hemolysis could be implicated in the
suboptimal erythrocyte Fe status of athletes [85]. This could trigger Fe loss as a consequence
of erythrocyte membrane destruction and subsequent release of hemoglobin and Fe to
extracellular compartments [60]. The rate of erythrocyte destruction could be altered as a
consequence of repetitive training [76]. Elevated red cell turnover could be a consequence
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of blood loss or hemolysis during training [76]. Related to the above, regular physical
exercise causes stressful physiological situations, such as increased oxidative stress, which
can alter the membrane properties of red blood cells and trigger eryptosis [86]. As with
programmed nucleated cell death or apoptosis, eryptosis is a coordinated suicidal death
that ultimately eliminates defective cells without cell membrane rupture and release of
intracellular material. It is considered a valuable mechanism to avoid a complication of
hemolysis by initiating a program of cell death with controlled elimination before any
damage can cause uncontrolled hemolysis [87]. Iron-deficient erythrocytes are known to be
more sensitive to eryptosis [88]. Therefore, erythrocyte iron concentrations are essential in
promoting eryptosis and reducing hemolysis complications.

Regarding platelet Fe differences, these could be due to insufficient current Fe intake,
since platelets provide more current information due to their short half-life (approximately
2 weeks). Short-term variations in the status of other TMEs only seem to influence newly
synthesized cells, as the incorporation of TMEs occurs in bone marrow cells [89]. Further
research on Fe concentrations in this compartment is needed in order to provide more
current information.

The present study has some limitations: (a) the small sample size; (b) the absence of
complementary parameters of Fe metabolism such as ferritin or transferrin; (c) the absence
of plasma volume assessment; and (d) the absence of women athletes, since Fe metabolism
is not only subject to changes related to physical exercise or diet, but monthly blood loss
through menstruation could lead to a greater decrease.

5. Conclusions

Regular physical training could affect extracellular and intracellular Fe concentrations.
Specifically, physical training could increase Fe concentrations in extracellular compart-
ments (plasma and serum) and decrease intracellular Fe concentrations (erythrocytes and
platelets). We encourage a global analysis of TME by assessing extracellular and intracel-
lular compartments simultaneously due to the discrepancies in Fe determination in the
present study.
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