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Abstract: Water-level monitoring systems are fundamental for flood warnings, disaster risk assess-
ment and the periodical analysis of the state of reservoirs. Many advantages can be obtained by
performing such investigations without the need for field measurements. In this paper, a specific
method for the evaluation of the water level was developed using photogrammetry that is derived
from images that were recorded by unmanned aerial vehicles (UAVs). A dense point cloud was
retrieved and the plane that better fits the river water surface was found by the use of the random
sample consensus (RANSAC) method. A reference point of a known altitude within the image was
then exploited in order to compute the distance between it and the fitted plane, in order to monitor
the altitude of the free surface of the river. This paper further aims to perform a critical analysis of the
sensitivity of these photogrammetric techniques for river water level determination, starting from the
effects that are highlighted by the state of the art, such as random noise that is related to the image
data quality, reflections and process parameters. In this work, the influences of the plane depth and
number of iterations have been investigated, showing that in correspondence to the optimal plane
depth (0.5 m) the error is not affected by the number of iterations.

Keywords: water level; river; photogrammetry; point cloud; plane extraction; RANSAC

1. Introduction

During the past decades, several efforts were made in monitoring geophysical and
environmental parameters by the use of unmanned aerial vehicles (UAVs) [1–3]. In particu-
lar, this technology is widely used for checking river and lake conditions [4–6] in terms of
their bathymetry and water level estimation. In fact, ground-based observations are not
always feasible because of the high purchase and maintenance costs that are associated with
gauging stations’ devices [7]; furthermore, space missions face several limitations in terms
of both their spatial and temporal resolutions, making these observations not possible
for this kind of investigations [8]. Bandini et al. [8] and Kasvi et al. [9] have provided
an assessment of the state of the art of the principal UAV solutions, i.e., radar and sonar
systems, camera-based laser distance sensor, echo sounding systems and aerial imagery.
In this article, the focus is put on the latter method; more precisely, the focus is on the
application of photogrammetry for the determination of rivers’ water levels. To this end, an
assessment of the state of the art reveals that this technology can be implemented both for
bathymetry, i.e., for rivers’ depth determination, and for water level (height above mean sea
level) evaluation. The first aspect, bathymetry, is of great importance for mapping channel
depths, channel morphology and the dynamics of fluvial systems [10,11]. In the pursuit of
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this, an approach that is called structure from motion (SfM) is diffusely exploited as it is
suitable for application to images that have been taken from low-cost cameras [9,11–14].
This method aims at producing a surface reconstruction, starting from a dense point cloud,
and then at finding a correlation between the river’s depth and an image-derived parameter
X that is related to optical band ratios. More precisely, this parameter can be evaluated
as the ratio between either the radiances or raw digital numbers of the bands that are
centered in two different wavelengths [15]. Therefore, here the issue consists of select-
ing the optimal wavelength combination that gives the best correlation with the river’s
depth. Alternatively, the same parameter can be determined by using a linear transform,
as described in Legleiter [10], wherein X is calculated by means of the natural logarithm
of the difference between the minimum digital number within the channel and the digital
number of each in-stream pixel. In both cases, X can be considered as a parameter that
is related to RGB values. This methodology in which X is evaluated as a band ratio is
called optimal band ratio analysis (OBRA). Hence, by subtracting the so-derived river’s
depth from the previously reconstructed water surface, one is able to determine the river
bed’s elevation. In Legleiter [15] a special toolkit that is based on these concepts has been
developed, integrating these latter methods with preliminary image analysis tools in order
to extract a water-only image and to reduce spurious points. Niroumand-Jadidi et al. [16]
presented an optimization of the OBRA technique that was aimed at overcoming the prob-
lems that are related to the choice of the optimal band ratio. This approach is called the
sample-specific multiple and ratio technique (SMART) and it divides the feature space of
the spectral data before creating, for each subspace, a different band ratio model that is
the optimal one within that subspace. Despite a good level of accuracy, these techniques
imply the need for field measurements in order to perform the correlation between depths
and the RGB value [11,12,15]. Legleiter et al. [10] developed a specific algorithm in or-
der to overcome this limitation. This algorithm links the linear relationship between the
river’s depth and the X parameter to basic equations of open channel flows: continuity and
flow resistance. However, despite having developed a strategy that is able to avoid field
measurements, some input data are still required: an approximated river aspect ratio and
flow discharge, the minimum expected depth and the water surface slope. On the other
hand, Mandlburger et al. [17] were able to provide the needed reference/input data for
extracting a depth estimation by photogrammetric methods by the use of a neural network
called “Bathynet” that has been developed by combining photogrammetric and radiometric
methods. In particular, 3D water surface and water bottom models that are derived from
simultaneously captured laser bathymetry point clouds serve as the reference and training
data for both the image preprocessing and actual depth estimation.

On the contrary, regarding the determination of the water level (the height above
mean sea level), approaches are slightly different. In fact, the evaluation of rivers’ depths
is not of interest, thus algorithms like OBRA and SMART are not required. Real-time
water-level monitoring systems are particularly important for flood warnings and disaster
risk assessment [18,19]. Even if the works that have been proposed by Lin et al. [19] and
by Elias et al. [7] did not exploit UAV systems, it is worthwhile to consider them for their
contributions to photogrammetric methods that can be applied for water level estimation.
In particular, Lin et al. [19] have exploited images that were acquired by a surveillance
camera, while Elias et al. [7] developed a procedure that is based on the use of smartphone
images. Both of these methods process a series of images that have been acquired in a
short period of time in order to reduce the noise effects by calculating the mean image.
At this point, high frequency filters are applied to the mean image and line extraction
algorithms, like the Hough transform, are implemented in order to retrieve the water
surface line. Such algorithms, which have also been described by Isidoro et al. [20], have
been used in this article too, as will be shown in the following sections. Lin et al. [19] have
used local water gauges both for the calibration between the object space and the image
space and for camera movement detection by least-squares matching and normalized cross-
correlation. Thus, by exploiting all of the collected data, i.e., by combining computer vision
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techniques and photogrammetric principles, collinearity equations can be written in order
to be able to estimate the water level. On the other hand, Elias et al. [7] have developed a
specific algorithm by which the water line is detected through the use of line-extraction
code, as mentioned before. In addition, the algorithm projects the previously recorded
3D data into a synthetic image (rendering) representing the same local situation as the
real camera-derived image. At this point, the real and the synthetic images are matched
by the use of feature-based methods in order to establish the 2D–3D correspondence that
is necessary for a subsequent space resection. At the end of the process, the detected
2D water line is transferred into object space and thus into metrically scaled 3D water-
level values. Furthermore, Elias et al. [7] have developed a smartphone-based method
for quantifying flood water levels using image-based volunteered geographic information
(VGI). Herein, digital image processing and a photogrammetric method were combined in
order to determine water levels. In particular, the random forest classification was exploited
in order to simplify the ambient complexity and the HT-Canny method was applied in
order to detect the flooding line of the classified image-based VGI. Hence, by combining the
photogrammetric method and a fine-resolution digital elevation model that is based on the
UAV mapping technique, the detected flooding lines were employed in order to determine
the water level. Moreover, Lin et et al. [21] have aimed at defining water level changes
during different tidal phases using a digital surface model (DSM) that is captured by a
UAV in conjunction with a global navigation satellite system (GNSS). Here, the authors
applied the SfM method that is also described in [9,11–14] in order to reconstruct a 3D scene
geometry from a set of images. Using the structure from motion (SfM) algorithm, a DSM
and orthomosaics were produced. Moreover, the GNSS provided horizontal and vertical
geo-referencing for both the DSM and orthomosaics during post-processing, after the field
observation at the study area. Ridolfi et al. [22] developed a methodology implementing a
sensing platform that is composed of a UAV and a camera in order to determine water levels.
In the mentioned work, the so-acquired images were analyzed using the Canny method to
detect the edges of the water level and of the ground control points (GCPs) that were used
as reference points. The water level was then extracted from the images and compared
to a benchmark value that was obtained by the use of a traditional device. Nevertheless,
SfM methods have to face problems that are related to water refraction. In order to address
this, some image-based refraction correction algorithms were developed [23], while other
works focused on machine learning for the classification of dense point clouds for refraction
correction [24,25]. Other problems affecting both bathymetry and water level estimation, as
already mentioned in this section, are related to the noise or reflections within the image. A
critical point affecting all of the methodologies is the need for references that, as previously
described, can be of different types: field measurement, fluid dynamics equations, ground
control points, etc.

In this paper, a specific method for the evaluation of water levels was developed by
using photogrammetry from images that were collected by a UAV. In particular, a dense
point cloud was retrieved and the random sample consensus (RANSAC) method was used
in order to find the plane that better fits the river water surface plane. A reference point of
a known altitude within the image was then exploited in order to compute the distance
between it and the fitted plane in order to obtain the altitude of the free surface of the
river. By the means of this methodology, this paper further aims at making a summary
of the critical aspects and strong points affecting the application of photogrammetric
techniques for river water level determination, starting from the ones that have already
been highlighted by the state of the art, such as the influence of reflections that can cause
false detections and geometrical distortions and random noise influencing the accuracy of
the water level estimation. In fact, the literature highlights that the sources of uncertainty
in water level computation methods, or in photogrammetry in general, are associated
with image-based measurement systems (image focus and resolution, perspective, lens
distortion, lighting effects, UAV flight altitude, yaw angle and viewing angle) [22,26,27] and
connected to the physical and environmental characteristics of the study area (the meniscus
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that water forms at the point of contact with a background because of surface tension
forces [26], the combination of waves and both the angle and intensity of the incoming
light source, the presence of clouds and fog [22] and the vegetation density and terrain
slope [28]). In this scenario, a great contribution is also given by the exploited algorithms
themselves [28,29] and this is the reason why it is extremely important to characterize each
new methodology in terms of the influences of the algorithmic parameters. This is valid not
only for UAV photogrammetry applications but also for aerial light detection and ranging
(LIDAR) techniques [30] that can be used for water level computation. For this purpose, in
this paper an analysis of the sensitivity of the water level estimation algorithm that was
used to process the parameters has been also performed.

In Section 2, the workflow for rivers’ water level evaluation is presented and each
step of the workflow is described. In Section 3, the authors show the results and report a
sensitivity study about the process parameters of the exploited algorithm. Within this same
section, a discussion about the results and a comparison with LIDAR used for the same
applications is provided, while in Section 4 the conclusions are outlined.

2. Materials and Methods

The workflow for determining the altitude of the free surface of the river from aerial
images is shown in Figure 1 and can be described as follows.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 15 
 

image-based measurement systems (image focus and resolution, perspective, lens distor-
tion, lighting effects, UAV flight altitude, yaw angle and viewing angle) [22,26,27] and 
connected to the physical and environmental characteristics of the study area (the menis-
cus that water forms at the point of contact with a background because of surface tension 
forces [26], the combination of waves and both the angle and intensity of the incoming 
light source, the presence of clouds and fog [22] and the vegetation density and terrain 
slope [28]). In this scenario, a great contribution is also given by the exploited algorithms 
themselves [28,29] and this is the reason why it is extremely important to characterize each 
new methodology in terms of the influences of the algorithmic parameters. This is valid 
not only for UAV photogrammetry applications but also for aerial light detection and 
ranging (LIDAR) techniques [30] that can be used for water level computation. For this 
purpose, in this paper an analysis of the sensitivity of the water level estimation algorithm 
that was used to process the parameters has been also performed. 

In Section 2, the workflow for rivers’ water level evaluation is presented and each 
step of the workflow is described. In Section 3, the authors show the results and report a 
sensitivity study about the process parameters of the exploited algorithm. Within this 
same section, a discussion about the results and a comparison with LIDAR used for the 
same applications is provided, while in Section 4 the conclusions are outlined. 

2. Materials and Methods 
The workflow for determining the altitude of the free surface of the river from aerial 

images is shown in Figure 1 and can be described as follows. 

 
Figure 1. Workflow for determining altitude of the free surface of the river for aerial images. 

2.1. Analysis of the Area Under Study 
Before conducting the flyover, it is necessary to visit the site in order to check for 

obstacles and to establish the shooting height and angle. The chosen body of water for this 
study was the Piave River, a tributary to the Centro Cadore Lake, which is an artificial 
lake in the province of Belluno (Italy), see Figure 2a. The choice fell on this river for several 
reasons. Firstly, the height of the free water surface of the river is related to the height of 

Figure 1. Workflow for determining altitude of the free surface of the river for aerial images.

2.1. Analysis of the Area under Study

Before conducting the flyover, it is necessary to visit the site in order to check for
obstacles and to establish the shooting height and angle. The chosen body of water for this
study was the Piave River, a tributary to the Centro Cadore Lake, which is an artificial lake
in the province of Belluno (Italy), see Figure 2a. The choice fell on this river for several
reasons. Firstly, the height of the free water surface of the river is related to the height of
the upstream lake, which is artificially controlled. For this reason, it is possible to know in
advance the height of the free water surface at any time of the day. Moreover, this river
is particularly suitable for the test because it is a perfect real-life case study, not easily
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accessible and full of disturbing elements such as tall trees, pylons, bridges, rocks and
bends. In addition, the lake undergoes lamination throughout the year and the water level
can vary more than 10 m during the course of the year.
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in order to move the UAV from point A to point B.

2.2. Mission Planning

Google Earth Pro was used to select the coordinates of the UAV mission. The Litchi
software for DJI UAVs was used to establish the trajectory and shooting data [31]. Once
the mission start point (A) and mission end point (B) had been defined, the number of
images to be recorded and the shooting data were determined. The software automatically
discretized the trajectory into a series of n points, from point A, i.e., p (0), to point B,
i.e., p (n). The UAV moved to the first point and captured an image, then it moved from
point to point until the end of the trajectory, at the position p (n).

2.3. Image Collection

The UAV was programmed to move from point A to point B (200 m of distance) at an
altitude of 30 m from the ground level, for a total of 200 frames. The UAV’s trajectory from
46◦27′20.11′ ′ N 12◦25′5.01′ ′ E to 46◦27′24.46′ ′ N 12◦25′11.54′ ′ E is reported in Figure 2b. The
coordinate position of each image, taken from the UAV’s on-board GPS system, was stored
in the image metadata in order to help the photogrammetric software to align the photos
properly. The UAV that was used for the image recording is the DJI Mavic 2 Pro (equipped
with 20 MPx 1” RGB CMOS sensor and 35 mm f 2.8 lens with a 77◦ field of view—FOV).
The pitch angle of the UAV’s camera was fixed at 45 ◦. An example of an image that was
recorded by the UAV at 30 m with 77◦ FOV with a pitch angle of 45◦ is shown in Figure 3.

2.4. Point Cloud Computation

The software that was used for the point cloud computation is AGISOFT Metashape, a
stand-alone software product that performs the photogrammetric processing of 2D images
and generates 3D spatial data that can be used in several applications. The images that
were recorded in the previous step were imported into the AGISOFT Metashape software.
The images (some of which are reported in Figure 3) were firstly aligned, then the dense
point cloud was computed with the parameters that are reported in Table 1. After this
processing, a 3D point cloud was obtained as the output (Figure 4). The point coordinates
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were then exported in an ASCII text file with the local coordinates, in meters, in order for
these data to be processed with external software.
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Table 1. Parameters used for point cloud computation. References can be found in the documentation
of the software Metashape [32].

Photos Alignment

Accuracy Highest
Key point limit 40,000
Tie point limit 4000

Guided image matching OFF
Adaptive camera model fitting ON

Dense Cloud Computation

Quality Ultra High
Depth filtering Mild
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2.5. River Water Surface Plane Extraction

The pyRANSAC-3D Python implementation of the random sample consensus (RANSAC)
method was used in order to find the plane that best fits the river water surface plane.
This algorithm is able to fit primitive shapes (line, cylinder, cuboids, and planes) into
a point cloud. The plane primitive is chosen in order to find the water surface plane.
The algorithm finds the best equation of the plane that maximizes the point cloud inliers,
based on a threshold that randomly takes 3 different points of the selected point cloud
for each iteration. For this purpose, the algorithm takes 3 parameters as its inputs. The
first parameter is the threshold: the maximum distance from the plane that is required in
order to consider a point to be an inlier. This threshold can be also seen as the depth of the
bundle of planes fitting the river water surface. The second parameter is the minPoints: the
minimum number of inlier points that a selected plane must have so as not to be discarded.
The third parameter is the maxIteration: the number of maximum iterations which the
algorithm will loop over. As its output, the algorithm then returns the plane equation
β : ax + by + cz + d = 0 and the array of points that are considered to be inliers. Figure 5
shows how the RANSAC algorithm automatically detects the water surface plane; the
black dots represent the point cloud and the red dots represent the river water surface
plane inliers.
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2.6. Known Point Selection

After the determination of the equation of the river water surface plane, a reference
with a known altitude is needed for the relative altitude computation. This reference must
be time invariant. This feature can be a point or a more complex geometrical entity, such as
a horizontal plane that is parallel to the water surface. This latter kind of feature provides
lower uncertainty and a higher level of consistency over time but is not always available in
the territory. Therefore, it was decided to use a reference point, due to its common presence
in the study area and due to the fact that it is more conservative in terms of uncertainty.
Hence, a reference point had to be manually selected from the point cloud. In this particular
case it was easy to select a point belonging to the road over the bridge that is known to be
positioned at 685 m AMSL.

2.7. Estimation of the Altitude of the Free Surface of the River

Knowing the positions px, py, pz of the previously selected point and the equation of
the plane belonging to the water surface plane, the altitude (above sea level) of the river
water’s free surface is easily calculated by subtracting the altitude of point p from the
distance point-plane p and β (Figure 6, Equation (1)). This approach also works well in all
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of the cases wherein the resulting point cloud is randomly skewed because the distance
that is calculated is always perpendicular to the target plane.

h = paltitude −
∣∣apx + bpy + cpz + d

∣∣
√

a2 + b2 + c2
(1)
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3. Results

Ten flyovers were carried out on separate dates, over the course of a month, when the
height of the water level was different. The method that is described above was applied to
the ten obtained datasets of images and the results were compared with the data that were
provided by the manager of the dam upstream of the river.

In order to simulate the use of image sensors with lower resolution and/or framing
at higher distances, the method was applied to the same subsampled dataset in such a
way that 20, 12, 6 and 2 megapixel-sized images were used as the input for the point cloud
computation. Table 2 shows the results of the point cloud computation of the datasets with
different resolutions. These results show how, as the resolution is reduced, the number
of points that are detected by the photogrammetry software increases. This is probably
because, by lowering the level of detail, METASHAPE’s image alignment algorithm can
more easily find matches between the input images. This results in a more detailed point
cloud, as evidenced by the increase in the total number of the points that were computed.
By increasing the point cloud quality, the number of points that are associated with the
river’s edge also increases, as is reported in the third column of Table 2. Losing resolution,
in fact, compensates for all of the noise effects that are introduced by natural elements in
the footage, such as the flow of the water or the movement of tree branches in the wind.
For these reasons, the algorithm was tested in the 2 MP configuration.

Table 2. The number of detected points within the point cloud and the points associated with the
river’s edge in relation to the image resolution.

Resolution [MP] Total Points River Edge Points

20 19,656 4012
12 22,600 4265
6 36,433 8552
2 53,001 12,722

The results of the 10 flyovers using images at 2 MP are reported in Figure 7. As far as
the calculated water level values are concerned, it can be seen that the proposed method
corresponds well to the reference values with an R2 = 0.98, which indicates a very strong
correlation between the two approaches. In fact, the linear fit of the values of the water
level shows a slope of 0.95 and a standard deviation of 0.37 m.
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3.1. Uncertainty and Sensitivity Analysis
3.1.1. Sensitivity to Image Reflection

It is interesting to note the possibility of having some artifacts that could affect the
points cloud computation and, therefore, the water level estimate’s accuracy. In the case of
a flat water surface and in particular lighting conditions, specular reflections may occur (as
is evident in Figure 8) where the reflections of clouds, of the bridge and of other “objects”
that are present on the banks are visible.
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These reflections can be interpreted by the photogrammetry program as “virtual”
objects under the water level, making it sometimes difficult to recognize the panorama.

This condition is not very frequent and its effects can be minimized with the appro-
priate choice of the UAV’s mission paths. Furthermore, although the point clouds are not
of very good quality when they are viewed at glance, the algorithm that is proposed in
this article is quite immune to this problem by focusing on a plane that contains a dense
population of points, which does not necessarily define a half-space.
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3.1.2. Sensitivity to Algorithm Input Parameters

The parameters that are considered to have influenced the accuracy of the algorithm
for the plane extraction process are:

• the threshold or depth of the bundle of planes fitting the river water surface;
• the maximum number of iterations.

The threshold, i.e., the plane bundle depth, has been varied between 0.05 m and 2 m,
for a total of 24 values, while the number of iterations has been ranged from 1000 to 100,000,
for a total of 5 values.

Furthermore, the sensitivity of the algorithm to noisy point clouds has been tested.
In order to create noisy point clouds on purpose and to control the level of the noise, a
Gaussian distribution was created with the same dimensions of the point cloud and it was
then added to the point positions. Different levels of noise have been considered, from
0 (i.e., no noise added) up to 4.5 m, for a total of 10 values. Those values were used as
the mean values of the Gaussian distributions that were created. This is intended to take
into account:

• conditions in which the software would have difficulty in correctly reconstructing the
point cloud, such as in the case of images that have been affected by thermal noise, low
ambient light, dusk, dawn, long exposure times or the presence of haze, fog or rain;

• the repeatability and reproducibility of the process in reconstructing the point cloud
from several images that were recorded at the same time.

The absolute error in the water level evaluation, with respect to the known ground
level depth of 18 m, has been calculated for the 1200 different combinations of cases,
i.e., 24 plane depth values, times 5 iteration numbers, times 10 levels of noise.

The maps of the absolute levels at different noise levels that were simulated on the
point clouds are reported in Figure 9. It can be deduced that the optimal plane depth is
0.5 m since, from this value, the error level exhibits a drop from a maximum of 20 m to
a mean value of 4.9 m. The error increases with the increase in the plane depth but it is
not affected by the number of iterations. From the previous maps it is possible to extract
slices at different number of iterations, for instance 1000, 10,000 and 100,000, showing
the trend of the absolute error in the function of the plane depth, for the different noise
levels. Those trends are illustrated in Figure 10 which show that, for a low number of
iterations—see Figure 10a, the absolute error assumes important levels, except in the case of
plane depths between 0.4 and 0.7 m. When the number of iterations increases, for instance
up to 100,000—see Figure 10c, the absolute error decreases regardless of the noise level,
even if the minimum error is always concentrated as it is in the cases of plane depths
between 0.4 and 0.7 m.
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If slices at different plane depths are extracted, as illustrated in Figure 11, it is possible
to show that when a small threshold is set the error reaches 20, see Figure 11a. When the
threshold is 0.5, the error presents its minimum value, as visible in the Figure 11b, and
when the threshold increases the error increases again.
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For a better explanation, Figure 12 shows the superimposition between the point cloud
and the resulting plane, in two extreme cases:

1. Threshold = 0.05 m—Figure 12a, giving as an output a revealed plane, very thin and
sloping, that is significantly different from the actual one;

2. Threshold = 2.00 m—Figure 12b, resulting in a correct plane, but one which is too
thick, giving a consequent error.
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3.2. Discussion

In this subsection, the analysis of the uncertainty of the measurement system and of
its sources is discussed. These sources are related to the random noise that can affect the
point clouds and to the parameters that must be set in the algorithm for the estimation
of the water plane (plane depth and number of iterations). By observing the uncertainty
analysis results, it has been deduced that the source of uncertainty to which the algorithm
is most sensitive is the plane depth, which can give an important bias (up to 20 m) if it is set
to extremely low values (below 0.05 m), as evidenced in Figures 9 and 10. In addition, with
regard to the number of iterations, it has been observed that when the number increases, the
absolute error decreases regardless of the noise level, even if the minimum error is always
concentrated as it is in the cases of plane depths between 0.4 and 0.7 m; see Figure 11.
Therefore, when the plane depth assumes a reasonable value, e.g., between 0.4 and 0.7 m,
the uncertainty that is related to the other sources (noise and number of iterations) is kept to
limited levels (below 2 m). In this case, the effects of noise and of the number of iterations
do not affect the uncertainty.

Thus, by the exploitation of the optimal parameters, the comparison with the data
that were provided by the manager of the dam upstream of the river shows an accuracy
level of around 100%. In fact, the linear fit of the values of the water level shows a slope
of 0.95 and a standard deviation of 0.37 m; see Figure 7. Similarly, accurate results can
also be obtained by LIDAR-based techniques, as shown in Paul [31], wherein a relative
error of 0.1% is declared in spite of the low reflectivity of the air–water interface to near
infrared radiation (NIR). However, LiDAR methods are expensive and extensive field data
collection can be an extremely challenging task for large river studies [11].

4. Conclusions

This paper presents a methodology that is based on photogrammetry and may be
used to measure the altitude of river water without the need for a reference artifact. The
method uses images that, in the specific case that has been discussed, have been acquired
by an RGB camera that was mounted on a UAV system in order to reconstruct dense point
clouds. From the point cloud, the river water surface plane was retrieved by applying the
random sample consensus (RANSAC) method.

The procedure has been applied for the retrieval of the water altitude of a river that
was monitored during three missions and the results, in all of the missions, were very
promising. This demonstrates that the automatic identification of the altitude is robust
and efficient.

The paper has also focused on the analysis of the uncertainty of the measurement
system and of its sources, aiming at finding the optimal process parameters. In this regard,
the optimal plane depth is 0.5 m and, in proximity to this value, the number of iterations
has no influence on the error amount.

The proposed methodology is suitable for the monitoring of ungauged rivers. When
the placement of continuous real-time meters is not feasible due to the orography or the
river’s path, a survey by means of a UAV may represent a valid alternative. Due to the
intrinsic discrete frequency of the data acquisition, the use of a UAV should obviously
be contextualized to those cases which do not require a high data acquisition frequency
(e.g., sub-daily). In addition, the uncertainty that has been described above is another factor
to be considered for the actual applications of this methodology. Some contexts, for example
the monitoring of urban drainage canals, require real-time and high accuracy measures,
since in those scenarios just a small increase in the level may result in a flood, and moni-
toring by a UAV is not a proper solution. Conversely, survey campaigns that are aimed at
studying the overall river’s behavior during an extended period could benefit from the use
of UAV measures. Specific objectives could be the study of rainfall-induced effects on rivers
when the peak flow duration spans over several days or, conversely, the effects of drought
or other sources of flow reduction from irrigation demands. Moreover, the estimation of
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the environmental flow and similar measurement campaigns that have aimed at defining
strategic plans represent a suitable context for the application of UAV photogrammetry.
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