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Chronic myeloproliferative neoplasms (MPN) are stem cell disorders driven by mutations

in JAK2, CALR, or MPL genes and characterized by myeloid proliferation and increased

blood cell counts. They encompass three closely related conditions, including essential

thrombocythemia, polycythemia vera, and primary myelofibrosis. Elevated levels of

cytokines released by clonal and non-clonal cells generate a chronic proinflammatory

state that contributes to disease pathogenesis. Thrombosis represents the most

common cause of morbidity and mortality in MPN, although paradoxically, patients

may also present with a bleeding diathesis. The mechanisms leading to thrombosis

are complex and multiple and include increased blood cells together with qualitative

abnormalities of red cells, leukocytes, and platelets that favor a prothrombotic

activated phenotype. The functional interplay between blood cells, the clotting cascade,

and dysfunctional endothelium contributes to hypercoagulability and this process is

perpetuated by the effect of inflammatory cytokines. In addition to their well-known

function in hemostasis, platelets contribute to innate immunity and inflammation and play

a key role in MPN thromboinflammatory state. In vivo platelet activation leads to platelet

aggregate formation and exposure of adhesion molecules which favor their interaction

with activated neutrophils and monocytes leading to circulating platelet-leukocyte

heterotypic aggregates. Platelets are recruited to the activated endothelium further

enhancing the reciprocal activation of both cell types. Crosstalk between activated

cells drives cytokine production, further fuelling the self-reinforcing thromboinflammatory

loop. In addition, MPN platelets provide a procoagulant scaffold which triggers the

coagulation cascade and platelet-derived microparticles amplify this response. Markers

of platelet, leukocyte, endothelial and coagulation activation are increased in MPN

patients although prospective studies are required to determine the potential value

of these parameters for identifying patients at increased thrombotic risk. Thrombosis

remains the main complication of MPN patients, with a high risk of recurrence

despite adequate cytoreductive and antithrombotic treatment. Deeper insight into the

mechanism favoring thrombosis development in this settingmay lead to novel therapeutic

approaches for MPN thrombosis. Considering the critical role of inflammation in the

vascular risk, concomitant targeting of inflammatory pathways could potentially impact

on primary or secondary prevention strategies.
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INTRODUCTION

Philadelphia-negative chronic myeloproliferative neoplasms
(MPN) are clonal hematopoietic stem cell disorders
characterized by excessive production of myeloid progenitors
and mature blood cells. They comprise three closely related
disorders, including essential thrombocythemia (ET),
which is characterized by megakaryocyte proliferation and
thrombocytosis, polycythemia vera (PV), which is defined by
predominant erythroid expansion and increased red blood cells,
frequently associated with high leukocyte and platelet counts, and
primary myelofibrosis (PMF), featured by increased numbers
of dysplastic megakaryocytes and granulocyte progenitors
together with variable degrees of bone marrow fibrosis (1).
Hyperactivation of JAK2-signaling is a common feature in
MPN pathogenesis and is driven by mutations in three genes,
including JAK2, CALR, and MPL. The JAK2V617F mutation is
the most frequent molecular abnormality and may be found in
over 95% of patients with PV and 50–60% of those with ET and
PMF (1, 2). Defects in calreticulin (CALR) represent the second
most frequent abnormality, which can be detected in 20–30%
of ET and PMF patients (1, 2). Calreticulin mutants interact
abnormally with the Mpl receptor leading to its activation and
persistent JAK2 signaling (3). Finally, MPL mutations can be
found in a low proportion (1–10%) of ET and PMF patients
and generate constitutive receptor activation. None of the
above-mentioned mutations are detected in 10–25% of ET and
PMF cases, so-called triple-negative patients (1, 2).

Thrombosis is the main cause of morbidity and mortality
in MPN and develops in around 20–35% of patients with PV,
15–30% in ET, and 10–15% in PMF (4, 5). Arterial thrombosis
accounts for 60–70% of all vascular complications, and include
stroke, cardiovascular events, and peripheral artery disease,
whereas venous events include deep venous thrombosis and
pulmonary embolism, but may also occur at unusual sites, such
as the splachnic circulation. Indeed, MPN are the most frequent
underlying disorders leading to Budd-Chiari syndrome and non-
cirrhotic portal vein thrombosis, which may develop even in the
absence of overt MPN (4, 5). A population-based study on the
causes of death in MPN patients showed that cardiovascular and
cerebrovascular disease accounted for high risk of death at all
ages, particularly in younger patients. The most common cause
of death was cardiovascular disease in patients with PV and ET,
whereas patients with PMF had an increased probability of dying
from hematologic malignancies (6). In addition to large-vessel
thrombosis, transient platelet aggregates may clog small vessels
and lead to microvascular disturbances, such as erythromelalgia
and visual abnormalities, seen typically, but not exclusively, in ET
(7). Paradoxically, MPN patients may also suffer from bleeding
complications, which also substantially contribute to morbidity
in these disorders.

THROMBOTIC RISK FACTORS

The main risk factors for thrombosis include age over 60 years
and a previous history of thrombosis. According to the presence
or absence of these factors, patients are stratified into low- or

high-risk groups in order to guide treatment recommendations
and the use of cytoreductive therapy (1). More recently, the
IPSET-thrombosis model, which includes cardiovascular risk
factors and the JAK2V617Fmutation, has been proposed to better
predict the thrombotic outcome in ET (8), although this score has
not been yet incorporated into clinical practice. The influence
of the JAK2V617F mutation in the thrombotic risk has been
established by several studies (1, 9) and confirmed by a meta-
analysis, which revealed a two-fold increase in vascular events
(10). Interestingly, individuals harboring JAK2V617F-positive
clonal hematopoiesis of indeterminate potential, in the absence of
overt MPN, have an increased thrombotic risk, highlighting the
relevance of the JAK2mutation in the thrombotic predisposition
(11, 12). Conversely, CALR-positive patients are at lower risk of
thrombosis (1).

PATHOGENESIS OF MPN THROMBOSIS

The pathogenesis of thrombosis in MPN is multifactorial
and results from the complex interplay among blood cells,
the endothelium and the clotting system. Increased numbers
of red cells, leukocytes and platelets coupled to qualitative
abnormalities that favor a prothrombotic phenotype contribute
to the hypercoagulable state (4, 5). Hyperviscosity due to
increased red cell mass clearly plays a role in the thrombotic
predisposition of PV and, moreover, PV red cells display
enhanced adhesion to endothelial laminin (13). In addition,
high hematocrit favors platelet margination and accumulation at
sites of vascular injury (14). In recent years, growing evidence
has highlighted the key role of leukocytes in the prothrombotic
state and leukocytosis has been shown to be an independent
risk factor for thrombosis (15). In addition to increased
numbers, there is evidence of in vivo neutrophil activation,
as revealed by CD11b expression and elevated elastase and
myeloperoxidase in circulation (16, 17), and of monocyte
activation, as shown by elevated CD25 (18). Another element
contributing to the thrombotic tendency involves endothelial
dysfunction, which renders a pro-adhesive and proinflammatory
surface, favoring leukocyte and platelet tethering and
activation (4, 5).

It is currently well-established that the MPN clone induces
a systemic inflammatory response, reflected by elevated levels
of a wide spectrum of proinflammatory cytokines, such as IL-
6, IL-1, IL-8, and TNFα (19). Inflammation and hemostasis are
closely connected processes and, recently, the link between the
innate immune system and coagulation as a host defense strategy
against pathogens has led to the concept of immunothrombosis
(20). Dysregulation of this mechanism may drive vascular
disease and contribute to arterial and venous thrombosis in
several disease conditions (20). Emerging work highlights the
contribution of chronic inflammation to MPN hypercoagulable
state, as demonstrated by the association of elevated C-reactive
protein and thrombosis (5, 21). Inflammatory mediators favor
the activation of both malignant and non-malignant blood cells,
induce microparticle generation and elicit vascular damage,
fuelling the thrombotic process (5).
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ROLE OF PLATELETS IN
MPN THROMBOSIS

Platelet Activation
Platelets are essential players in MPN thrombosis. Their role
in this process and interplay with other elements of the
procoagulant network represents the focus of this review. Both
increased platelet numbers and in vivo activation may be
involved in the prothrombotic phenotype. However, considerable
controversy exists regarding the role of thrombocytosis in the
thrombotic risk, as no correlation has been shown between
platelet counts and vascular complications (22). Furthermore,
extreme thrombocytosis (>1,000–1,500 × 109/L) is associated
with increased bleeding rather than thrombosis. Indeed, ET
patients with extreme thrombocytosis, in the absence of
leucocytosis, carry a lower thrombotic risk (23). Nonetheless,
reduction in platelet counts by cytoreductive therapy is useful
at preventing thrombotic and bleeding complications (24–
26) and current recommendations suggest that the goal of
cytoreduction is to target the platelet count at <400 × 109/L
(27). Notwithstanding controversy regarding the role of high
platelet counts, there is unequivocal evidence supporting the
contribution of platelet activation to the procoagulant state. In
vivo platelet activation has been demonstrated in ET, PV and
also in PMF (17, 28–31), as revealed by the finding of platelet
activation markers, such as surface and soluble P-selectin and
CD40L (17, 28, 29), raised β-thromboglobulin, platelet factor 4
and PDGF in plasma (32, 33) and urinary TXB2 metabolite as a
reflection of thromboxane biosynthesis (30).

The mechanisms leading to platelet activation involve
both intrinsic platelet abnormalities derived from disturbed
hematopoietic stem cell function and linked to driver mutations
that lead to hyperactive JAK2-dependent signaling (34), and
extrinsic factors, such as cellular interaction with activated
leukocytes, endothelial cells and soluble mediators, which may
trigger activation of platelets derived not only from clonal cells,
but also from megakaryocytes not involved in the malignant
clone (Figure 1). In addition, increased platelet turnover leading
to higher proportion of newly-formed platelets, which are known
to display enhanced platelet reactivity, may also contribute
to the hyperactivated state (29, 35). Previous data suggest
that changes in megakaryocyte gene expression profile might
give rise to circulating platelets with an altered hemostatic or
inflammatory function in infectious or inflammatory conditions
(36). Whether changes in megakaryocyte transcriptome may be
associated with a similar phenotype in MPN platelets remains an
intriguing possibility. In this regard, downregulation of several
genes involved in thrombin signaling and platelet activation has
been demonstrated in CALR- vs. JAK2V617F-positive patient
samples, correlating with lower thrombotic predisposition in the
former (37).

Among MPN disorders, platelet hemostatic abnormalities
have beenmost thoroughly studied in ET. Despite the presence of
basal platelet activation, conflicting results have been published
regarding the ex vivo response to classical agonists, such as
ADP and TRAP. Whereas, some studies showed normal or
enhanced response to stimuli (17), others described an impaired

hemostatic function, as shown by reduced P-selectin, CD63
expression and PAC-1 or fibrinogen binding triggered by classical
agonists (38, 39). Similarly, light transmission aggregometry may
reveal spontaneous platelet aggregation together with impaired
response to different agonists, particularly ADP and epinephrine
(40), although it has been suggested that the in vitro aggregation
defect may be partly due to a laboratory artifact (41) or depend
on analytical conditions (42). In vivo release of platelet granule
contents due to spontaneous activation and secondary storage
pool deficiency may explain the platelet function defect found
ex vivo. Coexistence of platelet activation and dysfunction may
contribute to the paradoxical occurrence of both thrombotic
and bleeding complications. In addition, adsorption of high
molecular weight multimers of von Willebrand factor (vWF)
to platelet GPIbα leading to loss of large vWF multimers and
acquired von Willebrand disease contributes to the bleeding
diathesis (43).

Activated platelets mediate several functional responses which
contribute to MPN prothrombotic state. In addition to the
classical platelet hemostatic properties, growing body of evidence
over the last decade highlights the relevance of alternative
platelet functions, such as their role as effectors of inflammation
and essential players in the innate immune response (44). The
contribution of platelets as mediators of thromboinflammatory
responses in MPN and their interplay with other components
of the prothrombotic and proinflammatory circuit is discussed
below and summarized in Figure 2.

Platelet-Leukocyte Cross-Talk
Platelet interaction with leukocytes is central to MPN
prothrombotic scenario. Platelets bind to both neutrophils
and monocytes through adhesion molecules such as P-selectin,
which recognizes the PSGL-1 counterreceptor, and through
GPIbα and GPIIbIIIa (via fibrinogen), both of which engage
CD11b/CD18 (Mac-1). In accordance to elevated P-selectin,
increased levels of platelet-neutrophil and platelet-monocyte
aggregates have been shown in circulation in ET (17, 28), PV
(28), and PMF (31). Crosstalk between platelets and leukocytes
triggers the reciprocal activation of both cell types, contributing
to the activated phenotype.

Several leukocyte functional responses are enhanced in MPN
neutrophils, including the release of intracellular proteases, such
as elastase and catepsin G, which activate platelets and trigger
the clotting cascade by inactivating coagulation inhibitors (16).
In addition, MPN neutrophils produce high levels of reactive
oxygen species (45, 46), which lead to endothelial injury and
modify coagulation factors. Besides these classical neutrophil
functions, more recently, neutrophils have been shown to
release extracellular traps (NETs), which are networks of DNA,
histones and granular components which promote thrombus
formation (47). Although deregulated NET formation underlies
several prothrombotic conditions (47), the role of NETs in
MPN remains controversial. Whereas, MPN neutrophils seldom
undergo spontaneous NETosis ex vivo (11, 46), their response to
stimuli was shown to vary according to the experimental setting.
In this regard, enhanced response to ionomycin was shown
in one study (11), while NETosis triggered by inflammatory
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FIGURE 1 | Triggers of platelet activation in chronic myeloproliferative neoplasms (MPN). Both intrinsic abnormalities derived from the MPN clone, such as

JAK2-dependent hyperactivation of signaling pathways and hyperreactive newly-formed platelets, as well as extrinsic signals driven by enhanced interaction with

activated leukocytes and endothelial cells and soluble mediators, including classical platelet agonists, such as thrombin generated by the hypercoagulable state and

inflammatory factors may all converge to trigger platelet activation in MPN.

cytokines and PMA was normal or impaired in another study
(46), suggesting differential response to diverse NET inducers.
Considering that activated platelets are a known trigger for
NET formation, it might be relevant to study platelet-induced
NETosis in these conditions. Likewise, platelet cross-talk with
monocytes may prime monocyte functions, including tissue
factor expression (48), which is increased at baseline in MPN
(17), and cytokine synthesis (49), which has been found to
be constitutively upregulated in PMF monocytes (50), thus
perpetuating MPN prothrombotic and proinflammatory loop.

Platelet-Endothelial Interaction
The functional interplay between activated platelets and
endothelial dysfunction plays an important role in the
prothrombotic state. Evidence for endothelial activation
in MPN is well-established, as reflected by elevated vWF
antigen, soluble thrombomodulin and E-selectin (16, 29).
Activated endothelial cells exhibit a pro-thrombotic phenotype
which fosters platelet and leukocyte recruitment. Release
of vWF from Weibel-Palade bodies tethers and activates
platelets, leading to the surface translocation of platelet CD40
ligand (CD40L), which binds endothelial CD40. Cleavage of
membrane CD40L generates a soluble fragment (sCD40L),
which is increased in MPN plasma (29). Several factors
contribute to endothelial activation in MPN, including
interaction with blood cells, reactive oxygen species and
inflammatory cytokines. Intriguingly, the JAK2V617F mutation
has been detected in mature endothelial cells from selected

organs, such as the spleen of PMF patients and the liver
of PV patients with Budd-Chiari syndrome, suggesting the
potential involvement of endothelial cells in the malignant
clone (51, 52). Endothelial-like cells differentiated from
MPN patient-derived induced pluripotent stem cells (53)
and JAK2V617F-transduced HUVECs exhibit pro-adherent
properties in vitro (54). Moreover, increased thrombus formation
has been demonstrated in mouse models expressing JAK2V617F
only in the endothelial compartment (54), overall suggesting
that JAK2-mutant endothelial cells could contribute to the
prothrombotic phenotype.

Procoagulant Potential of Platelets
MPN patients show several laboratory abnormalities indicative
of chronic low-grade activation of the clotting system, such
as elevated thrombin–antithrombin complexes, prothrombin
fragment 1 + 2 and D-dimer levels (16, 29). Platelets are
endowed with coagulation factors and activated platelets
expose phosphatidylserine on their membrane, providing a
catalytic substrate for the assembly of coagulation complexes
and thrombin generation. Indeed, increased baseline
phosphatidylserine expression on the platelet membrane
has been shown in some MPN patients and overall platelet
procoagulant potential was increased, as revealed by the finding
of elevated platelet-induced thrombin generation (55). In
addition, MPN platelets express higher surface levels of tissue
factor, which represents the main initiator of blood coagulation,
further enhancing the procoagulant activity (56).

Frontiers in Immunology | www.frontiersin.org 4 June 2019 | Volume 10 | Article 1373

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Marin Oyarzún and Heller Platelets in Chronic Myeloproliferative Neoplasms

FIGURE 2 | Role of platelets as mediators of hemostatic and proinflammatory responses in chronic myeloproliferative neoplasms (MPN). Platelet activation leads to

increased GPIIbIIIa activation and platelet aggregate formation, platelet procoagulant response promotes thrombin generation on the platelet surface and

platelet-derived microparticles futher fuel coagulation. Release of a miriad of α- and dense granule hemostatic and inflammatory mediators may contribute to the

prothrombotic and proinflammatory loop. Enhanced interaction with leukocytes mediated by P-selectin leads to leukocyte-platelet heterotypic aggregates and may

trigger several leukocyte responses, such as release of proteases, production of reactive oxygen species, and expression of tissue factor. Exposure of CD40L favors

platelet recruitment and adhesion to the endothelium which, in turn, elicits endothelial cell activation, featured by vWF release from Weibel-Palade bodies. Elevated

cytokines in the MPN milieu may promote platelet activation and, reciprocally, platelets may represent a potential source of inflammatory cytokines and chemokines.

TXA2, thromboxane A2; Fg, fibrinogen; TF, tissue factor, PS phosphatidylserine; NE, neutrophil elastase; ROS, reactive oxygen species; NETs, neutrophil extracellular

traps; vWF, von Willebrand factor, EC, endothelial cell.

Platelet-Derived Microparticles
Patients with ET harbor higher numbers of circulating
microparticles of platelet, endothelial and leukocyte origin,
with the former comprising the vast majority of the
microparticle population (57). Remarkably, a subset of
microparticles co-expressing platelet and endothelial markers
were also detected in ET, suggesting their bilineage origin.
Platelet-derived microparticles are rich in tissue factor and
phospholipid-dependent procoagulant activity and may deliver
platelet-derived cytokines and chemokines, thus amplifying
platelet proinflammatory and procoagulant signals.

Platelets as Immune Cells
Platelets play a key role in innate immunity and inflammation
through their interaction with other immune cells and the release
of proinflammatory mediators (44) and thereby participate in
several disease conditions characterized by acute or chronic
inflammation, such as infection, autoimmune disorders, and
atherosclerosis. MPN patients display raised levels of a broad
array of cytokines and chemokines in circulation, which are
aberrantly secreted by multiple cell populations, including
monocytes, neutrophils and hematopoietic stem cells (58).
Activated platelets release pro-inflammatory chemokines stored

in their α-granules, such as RANTES (CCL5) and platelet
factor 4 (PF4) (CXCL4) and may undergo de novo cytokine
synthesis following agonist-triggered RNA splicing, as shown
for IL-1β. The potential contribution of platelets as a source of
cyto/chemokines and inflammatory mediators in MPN has not
been explored. Alternatively, platelet interaction with monocytes
could deliver signals that upregulate monocyte proinflammatory
gene expression, thus contributing to elevated cytokine secretion
(50). Reciprocally, elevated proinflammatory cytokines might
contribute to platelet activation in MPN. In this regard, IL-
1β has been shown to foster hemostatic responses in normal
platelets (59).

Patients with MPN carry a significant risk of second
malignancies, including both solid tumors and lymphomas (60).
Platelets promote tumor growth and invasiveness through several
mechanisms, including the release of growth factors, cytokines,
and regulators of angiogenesis. Moreover, thrombocytosis in
solid tumors is associated with inferior survival supporting
the role of platelets in tumor progression. On this basis, it
is tempting to consider the possibility that elevated platelet
counts could contribute to tumorigenesis in the setting of MPN
second cancers (61). Furthermore, although the contribution of
platelets to innate immunity has been more extensively studied,
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platelets also influence adaptative immune responses through
their interaction with T-cells, NK-cells and dendritic cells (44).
Platelet-coated tumors may evade NK destruction by inhibiting
NK cytotoxicity (62). In this setting, elevated platelet counts
might also have implications in tumor immune surveillance
and immunoregulation.

Relationship Between Platelet Activation
and Clinical Features
Several factors account for the higher frequency of thrombosis
observed in JAK2-positive ET patients, including higher
hemoglobin and leukocyte counts, lower platelet counts and
older age compared to CALR-positive and triple-negative
patients. In addition, JAK2-positive patients display higher levels
of platelet activation markers (17, 29, 56, 63), as well as leukocyte
and endothelial activation and circulating microparticles (29,
56, 64), which may represent additional elements favoring
thrombosis development in this subset. In addition, although sP-
selectin and sCD40L were shown to correlate with a previous
history of thrombosis in one study (29), currently, the value of
platelet activation markers to estimate the vascular risk remains
uncertain. Prospective studies assessing the role of platelet,
together with leukocyte, endothelial and coagulation activation
parameters in the same MPN cohort would be required to
adequately address this issue and to establish whether one or
more of these parameters might be useful to predict the risk of
thrombosis in this setting.

On the other hand, despite the usefulness of cytoreductive
therapy in preventing thrombosis development (24–26),
controversy exists regarding its influence on platelet reactivity.
Whereas, no difference in platelet activation was shown between
patients with and without cytoreductive treatment in two
different studies (16, 17), analysis of sequential samples of
patients treated with hydroxyurea demonstrated a decrease in
platelet-neutrophil aggregates (65) and this drug was shown
to block P-selectin-triggered platelet-aggregate formation in
vitro (65). Similarly, despite the relevance of JAK2-dependent
signaling in MPN cellular abnormalities and the fact that
the JAK1/2 inhibitor ruxolitinib reduces the thrombotic risk
(66), no decrease in platelet activation markers was shown
in patients treated with this drug (67). In another study,
normalization of circulating platelet-derived microvesicles was
noted in ruxolitinib spleen-responders (68), pointing out that
the impact of JAK2 inhibitors in hemostatic parameters deserves
further evaluation.

ANTIPLATELET THERAPY

The efficacy of low-dose aspirin for the prevention of thrombotic
complications in MPN highlights the key role of platelets in
this setting (69). Patients with extreme thrombocytosis (>1,000
× 109/L) are at higher risk of bleeding under aspirin, mainly
attributed to acquired von Willebrand disease. Screening for
ristocetin cofactor activity and withholding aspirin therapy if
<30% is suggested in this scenario (70). Current guidelines

recommend aspirin for primary prevention in PV, high-risk
ET and low-risk JAK2-mutated ET patients who have no
contraindications for antiplatelet therapy (70). On the other
hand, considering that aspirin treatment of CALR-positive
low-risk ET patients does not reduce thrombosis and may
actually increase bleeding, it is not routinely recommended
for primary prophylaxis in this subgroup (71). Aspirin has
also been shown to reduce thrombosis recurrence after both a
first arterial or venous event (72). However, this risk remains
high even after combined cytoreductive plus anticoagulant
or antiplatelet therapy (73), highlighting the need for novel
therapeutic antithrombotic strategies. Persistent thromboxane
biosynthesis due to accelerated platelet production may lead
to aspirin resistance in MPN (74). On this basis, a twice-daily
schedule has been proposed for optimal platelet inhibition in
patients with very high-risk features (70).

Statins have been shown to decrease the risk of both
atherothrombotic events and venous thromboembolism. Among
their pleiotropic actions, statins exert potent anti-inflammatory
effects on the vascular wall and suppress platelet, endothelial
and leukocyte activation (75). Due to these properties, statins
might be relevant agents in MPN, although their role to prevent
thrombotic events in this setting remains to be established (76).

CONCLUDING REMARKS

Thrombosis remains the main complication of MPN patients,
with a high risk of recurrence despite adequate cytoreductive and
antithrombotic treatment (73). Multiple and concomitant factors
converge to increase the thrombotic risk in MPN, although the
relative role of each factor may vary in the individual patient.
Although progress has been made in unraveling the mechanisms
underlying the thrombotic predisposition, the role of platelet and
cellular activation markers in identifying patients at increased
risk of thrombosis has not been established and prospective
studies are needed to address this issue. Finally, the impact of
new therapies on platelet and cellular activation and the potential
development of novel therapeutic approaches to manage MPN
coagulopathy could contribute to thrombosis prevention and
result in improved patient outcome. Considering the critical role
of inflammation in the vascular risk, simultaneous targeting of
inflammatory pathways could potentially impact on primary or
secondary prevention strategies.
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