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Abstract: TGF-β induces complicated and even opposite responses in numerous biological processes,
e.g., tumor suppression in pre-malignant cells and metastasis promotion in cancer cells. However,
the cellular contextual determinants of these different TGF-β roles remain elusive, and the driver
genes triggering the determinants’ changes have not been identified. Recently, however, several
findings have provided new insights on the contextual determinants of Smads in TGF-β’s biological
processes. These novel switches and their effectors may serve as prognostic biomarkers and
therapeutic targets of TGF-β-mediated cancer progression.
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1. Introduction

Transforming growth factor-β (TGF-β) plays key roles in many biological functions, such as
embryonic stem cell self-renewal and differentiation, homeostasis of differentiated cells, suppression
of the immune system, and promotion of cancer development [1]. The TGF-β signaling pathway has
been well characterized. TGF-β binds to its receptor on the cell membrane and induces a signaling
cascade by phosphorylating Smad2/3. Phosphorylated Smad2/3 binds to Smad4, and the complex
translocates from the cytoplasm to the nucleus to activate the transcription of end effectors such as
p15, p21, and PTHrP [2,3]. In normal epithelial cells, TGF-β induces the activation of cytostatic genes,
including p15 [4] and p21 [5–7]. TGF-β also inhibits a set of genes that promote cell growth, including
c-MYC [8–10]. In addition to the canonical TGF-β/Smad signaling pathway, TGF-β can activate several
non-canonical signaling pathways. For example, TGF-β regulates Erk, p38, MAPK, JNK, PI3K-Akt,
and small GTPases [11,12].

An emerging notion is that cellular contextual functionality, more than TGF-β itself, dictates the
complicated and even opposite natures of TGF-β-induced responses. In this review, we summarize
recent findings about the role switching of TGF-β in cancer development; these findings shed light
on potential therapeutic targets in the TGF-β signaling pathway and predictive biomarkers for
anti-TGF-β therapy.

2. The Context-Dependent Functions of TGF-β in Normal Tissues

Although the signaling cascade of TGF-β involves only a few Smad proteins and seems simpler
than other receptor-mediated signaling pathways, the cellular responses to TGF-β are complicated and
are highly dependent upon the cellular context [1]. Most of this context dependency can be explained
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by the interactions between Smads and a wide-ranging complement of DNA sequence-binding
transcription factors, including p53 and members of the bHLH, Forkhead box (Foxo), and Zinc finger
protein families [13]. For example, in neuroepithelial and glioblastoma cells, TGF-β induces Smad3/4
to form a complex with Foxo3a to activate p21 gene expression [5]. However, several other reports
showed that this complex does not exist in human mammary epithelial cells. Instead, an alternative
mechanism for p21 activation in response to TGF-β, involving p53 and Smad2/3/4, has been identified
in a mammary epithelial cell line MCF-10A [14–17]. Interestingly, TGF-β reportedly induces p21
through a p53-independent mechanism in the HaCaT cell line, which contains two mutant alleles
of p53 that cannot activate transcription of p21 [18]. Taken together, these data show that TGF-β’s
signaling program is highly dependent on cell context.

It has been known for decades that TGF-β induces complicated and even opposite responses in
many biological processes as a consequence of various contextual determinants for Smad. In particular,
Smads activate a lineage-specific transcriptional program in cooperation with lineage-specific
transcription factors during cell differentiation [19,20]. For example, TGF-β–activated or bone
morphogenetic protein–activated Smads collaborate with MYOD1 in myoblasts or with PU.1 in
pre-B cells [19]. Additionally, CCAAT-enhancer binding protein (C/EBP)–α recruits Smads in myeloid
precursors, while GATA1 works with Smads in erythroid precursors to initiate differentiation into these
two lineages [20]. In embryonic stem cells, the same Smad complexes bind to FOXH1, a mesendoderm
lineage factor, to initiate the expression of multiple differentiation genes [21,22]. However, bone
morphogenetic protein-activated Smad1 and the leukemia inhibitory factor mediator STAT3 form
a self-renewal network with the pluripotency core complex OCT4-SOX2-NANOG in embryonic
stem cells [23,24]. Moreover, TGF-β plays a role in regulating the expression of normal tissue
homeostasis genes such as SERPINE1, CDKN1A, MYC, and ID1 in differentiated cells with various
Smad co-transcription factors, including AP1, FOXO1, E2F4, and ATF3, respectively [5,25–29].

3. The Context-Dependent Functions of TGF-β in Cancer Development

TGF-β is primarily a tumor suppressor that inhibits proliferation or induces apoptosis of
premalignant epithelial cells [29]. In the later stages of cancer progression, however, TGF-β functions
as a metastasis promoter by inducing epithelial-mesenchymal transition (EMT), leading to increased
invasion of cancer cells, and by inducing genes that facilitate metastatic colonization of secondary
organ sites (e.g., lung, bone, liver, and brain) [29]. Although the opposing functions of TGF-β in early-
and late-stage cancer have been known for years, it is unclear how and when TGF-β switches from
tumor suppressor to metastasis promoter. An emerging notion is that cellular contextual functionality
dictates the divergent roles of TGF-β. However, the cellular contextual determinants for Smads
in response to TGF-β in different cells and the driver genes that trigger the changes of contextual
determinants for Smads have never been well understood.

Several studies have attempted to identify these determinants and drivers. For example, TMEPAI
knockdown attenuates TGF-β-induced growth and motility in breast cancer cells [30]. miR-106b was
identified as a molecular switch that determines TGF-β’s effects on cell proliferation, is elevated in
late-stage tumors, and correlates with tumor progression in breast cancer patients. TGF-β increases
the transcription of miR-106b by activating c-Jun to bind to its promoter. However, miR-106b
upregulation counterbalances the growth-inhibiting effects by abolishing activated retinoblastoma
protein, resulting in enhanced proliferation. Thus, as a downstream target of TGF-β, miR-106b could
direct the tumor-promoting functions of TGF-β in breast cancer [31]. In an established model of
TGF-β-induced EMT in mouse mammary gland epithelial cells, C/EBPβ is repressed by miR-155,
an oncomiR. Depletion of C/EBPβ enhances TGF-β-induced EMT by decreasing the transcription
of E-cadherin and of the coxsackie virus and adenovirus receptor, contributes to evasion of the
growth-inhibitory effect of TGF-β, and further enhances invasion and metastatic dissemination of
the mouse mammary tumor cells to the lungs after subcutaneous injection into mice [32]. The role
switching of TGF-β from tumor promoter to tumor suppressor is also shown in the reprogramming
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of MDA-MB-231 triple-negative breast cancer cells with the GATA3 transcription factor. GATA3
overexpression in these cells reduces TGF-β response, reverses EMT, and restores sensitivity to
TGF-β’s inhibitory effects on cell proliferation in MDA-MB-231 cells. In addition, overexpression of
GATA3 in MDA-MB-231 cells results in the reprogramming of these cells from a basal to a luminal
subtype, which has been associated with reduced metastasis and reduced tumorigenesis in a xenograft
model [12]. Latency-associated protein, an active isoform of transcription factor C/EBPβ, is essential
for TGF-β induction of the cell cycle inhibitor p15INK4b together with a Foxo-Smad complex and
repression of c-MYC with an E2F4/5-Smad complex in human mammary epithelial cells. However,
the cytostatic response is selectively missing in metastatic cancer cells and patient samples owing to an
excessive expression of LIP, which is the natural dominant negative inhibitory isoform of C/EBPβ.
These data suggest that C/EBPβ, especially the ratio of LIP to latency-associated protein, plays a key
role in the coordination of TGF-β cytostatic responses, and its malfunction may trigger evasion of
these responses in cancer [25].

It has been suggested that mutated p53 switches TGF-β from a tumor suppressor to a metastasis
promoter. p53 is the most frequently mutated gene as cancer evolves [33] and has been identified as a
Smad binding partner for TGF-β-induced p21 gene expression and cytostatic function [14,16,17,34,35].
Wild-type p53 inhibits TGFβ-induced EMT and EMT-associated stemness in a mammary epithelial
cell model [36,37]. A possible mechanism of this inhibition is that p53 regulates the expression of
EMT mediator-Zeb1/2 and stem cell executor-BMI1 through transcriptional activation of miR-200c [37],
which is also a downstream target of the TGF-β signaling pathway [38–40]. Meanwhile, expression of
mutant p53 (R273H) or loss of p53 inhibits the suppressive function of TGF-β in cell proliferation in an
ovarian cancer cell line [41]. An important study which was conducted in lung cancer cell line H1299
and ovarian cancer cell line SKOV3 showed that cells expressing mutant p53 lost their sensitivity to
TGF-β. This is because the mutant p53 attenuates TGF-β signaling and TGF-β-induced transcription
activity of Smad2/3 proteins by reducing the expression of TGF-β type II receptor [42]. These studies
provide insight into the molecular mechanisms of mutant p53 “gain of function” pertaining to the
TGF-β signaling pathway.

TGF-β plays a range of roles in various types of cancer. In prostate tumorigenesis, PPARδ is a
direct transcription target of TGF-β and plays a critical role in switching the function of TGF-β. PPARδ

induction inhibited TGF-β-mediated growth inhibition, while its activation promoted TGF-β-induced
tumor growth, migration, and invasion. Mechanistically, TGF-β activation of the PPARδ-ABCA1-Cav1
pathway facilitates degradation of TGF-β receptors and attenuates Smad activity and growth inhibitory
function but enhances the ERK signaling pathway in response to TGF-β [43].

Changes in the cellular microenvironment including tissue stiffness and matrix rigidity could also
affect the functional response to TGF-β. Low rigidity increases TGF-β-induced apoptosis, but high
rigidity results in EMT. Matrix rigidity does not change Smad signaling; instead it regulates the
PI3K/Akt signaling pathway, which also plays a critical role in the apoptotic and EMT responses.
These findings provide insight into how tissue mechanics might contribute to the cellular response
to TGF-β [44].

The above studies have partially revealed TGF-β’s functions and role switch in cancer
development. However, not all of these studies exactly explain how TGF-β loses its tumor suppressor
function during cancer initiation, as most of the data were obtained from cancer cell lines in which
TGF-β had already gained a tumor promoter function. Moreover, most of the TGF-β studies were
focused on cell proliferation and tumor growth, which are only part of TGF-β’s functions. More effort
is needed to comprehensively understand the mechanism of the role switch of TGF-β.
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4. Challenges in Current Cancer Therapy Targeting TGF-β and Implications for
Biomarker Studies

Since the TGF-β signaling pathway plays an important role in cancer development and a variety
of other diseases, much effort has gone toward developing cancer therapeutics to target TGF-β
signaling in both the tumor and its microenvironment [45–49]. Currently, several TGF-β signaling
antagonists, including antisense molecules, ligand traps for inhibition of the ligand-receptor interaction,
anti-receptor monoclonal antibodies, TGF-β receptor kinases inhibitors, and aptamers, have been
developed and applied to clinical practice [50].

The critical function of the TGF-β pathway in cancer, especially in the context of metastasis,
spurred the development of TGF-β antagonists, yet these showed limited clinical efficacy [51,52].
In limited phase I and II trials for treating cancers generally overexpressing TGF-β, some patients
with advanced cancers received a marginal benefit from TGF-β inhibitors [53,54]. However, more
antagonists were developed and passed the pre-clinical trials, and they are now tested in ongoing
Phase I/II clinical trials [55]. Considering the opposing roles of TGF-β in cancer, it is not surprising
that its general inhibition may have unexpected deleterious consequences. Inhibiting TGF-β may
accelerate the development of pre-neoplastic lesions in which TGF-β still acts as a tumor suppressor.
For example, conditional knockout of TGFBR2 in the mammary gland before tumors were established
resulted in shorter median tumor latency and more pulmonary metastases [56]. Moreover, attenuated
TGF-β signaling along with high VEGFA expression was correlated with shorter distant metastasis-free
survival in HER2+ breast cancer patients [57]. In contrast, a short induction of TGF-β expression after
tumors were established clearly accelerated metastatic progression [58].

As tumors evolve, TGF-β switches its role from tumor suppressor to tumor promoter. The complex
nature and dual roles of TGF-β in cancer have impeded the development of effective therapies
that target only the tumor-promoting activities of TGF-β. Thus, screening the individual genetic
background as well as the tumor microenvironment will be highly beneficial for predicting patients’
responses to a TGF-β antagonist. The key players of the TGF-β signaling pathway are previous
biomarkers such as TGFβR2, Smad2, and Smad4 by tumor biopsy or genetic analysis [59–63]. However,
several reports showed that loss of TGFβR2 expression is associated with more aggressive tumor
behavior and reduced survival in human lung adenocarcinoma and squamous cell carcinoma [64].
These contradicting reports suggest that these key players of the TGF-β signaling pathway are not
always reliable for predicting response to TGF-β inhibitory therapy and may have totally opposite,
misleading impacts. Significant advances have been made in understanding the molecular mechanisms
by which TGF-β switches from tumor suppressor to promoter, and several proteins that are changed
during the switch, such as Six1, Dab2, 14-3-3ζ, PEAK1, p53, and Gli2, could serve as new biomarkers
(Figure 1). Meanwhile, it is essential to develop circulating biomarkers to identify patients who are
sensitive to TGF-β-targeting therapy and to determine the timing of patients’ responses to TGF-β
antagonists to improve therapeutic efficacy. There could be additional noninvasive, blood-based
biomarkers for predicting individual patient response to TGF-β inhibitors. Since TGF-β inhibitors
may modulate the immune system, circulating autoantibodies could be used to monitor response [52].
Any of the following biomarkers alone or in combination could be used in the future to predict tumor
response to TGF-β inhibition.
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4.1. Six1

Six1 is a developmentally regulated homeoprotein that has frequent misexpression in various
types of cancer but shows limited expression in most normal adult tissues. Overexpression of human
Six1 in adult mouse mammary gland epithelium induces aggressive mammary tumor formation and
EMT in a dose-dependent manner [65]. Six1 is correlated with nuclear Smad3 and increases TGF-β
signaling, promoting metastasis and relapse in breast cancer [66]. Furthermore, the same group showed
more evidence that Six1-induced upregulation of TGF-β type I receptor is required to switch TGF-β
signaling to the prometastatic phenotype [67]. They also identified another mechanism by which Six1
upregulates the miR-106b-25 microRNA cluster to target inhibitory Smad7, resulting in increased levels
of TGF-β type I receptor and activation of TGF-β signaling later [11]. A similar function in which
Six1 coordinates with TGF-β signaling and promotes EMT was also observed in cervical cancer [68].
Together these findings suggest that Six1 can switch the role of TGF-β to tumor promoter, and it could
serve as a therapeutic target and prognostic biomarker.

4.2. Dab2

Disabled-2 (Dab2), a structural homologue of the Dab1 adaptor molecule, acts as a critical link
between the TGF-β receptors and Smads [69]. Previous studies showed that TGF-β-induced Dab2
expression levels block visceral endoderm differentiation, stimulate JNK activity, and promote cell
migration [70,71]. Moreover, via transcript-selective translational induction of Dab2, TGF-β-mediated
phosphorylation of hnRNP E1 can induce EMT [72]. However, recent studies have demonstrated
that the downregulation of Dab2 expression via promoter methylation is an independent predictor
of metastasis and poor prognosis in squamous carcinoma [73]. Downregulation of Dab2 abrogates
the TGF-β tumor suppressor function by blocking TGF-β-mediated inhibition of cell proliferation
and migration and facilitates TGF-β-stimulated EMT [74]. A study in which Dab2 was re-expressed
in SK-BR-3 cells found that TGF-β was depleted in the surrounding medium via normalization of
the trafficking of TGF-β receptors [75]. Moreover, low expression of Dab2 occurred in esophageal
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squamous cell carcinoma, associated with poor survival and high recurrence [76]. Together, these data
indicate that Dab2 is an important regulator of TGF-β signaling, which could aid in the inhibition of
cancer and the selection of patients for anti-TGF-β therapies.

4.3. 14-3-3ζ

Studies have shown that 14-3-3ζ overexpression occurs in early-stage breast cancer (atypical
ductal hyperplasia) [77] and has a high correlation with recurrence [78]. 14-3-3ζ overexpression
activated the TGF-β/Smad pathway, which led to ZFHX1B/SIP-1 upregulation, E-cadherin loss, and
EMT [79]. TGF-β induces p21 expression and cytostatic function in non-malignant HMECs through
the p53/Smad complex. Surprisingly, a recent study found direct evidence that overexpression of
14-3-3ζ inhibits TGF-β’s cell cytostatic program in non-transformed human mammary epithelial cells,
while overexpression of 14-3-3ζ promotes TGF-β-induced metastatic colonization of bone by breast
cancer. 14-3-3ζ overexpression reduces p53, a determinant for Smads in pre-malignant cells, and thus
disrupted the p53/Smad complex and inhibited TGF-β’s cytostatic function. Conversely, 14-3-3ζ
stabilizes Gli2, a determinant for Smads in late-stage cancer, forming a complex with Smads to promote
TGF-β-induced bone metastasis of breast cancer. Together, these results identify 14-3-3ζ as a novel
molecular switch of TGF-β’s function by alteration of contextual determinants for Smads, from p53
in pre-malignant cells to Gli2 in late-stage cancers [80]. This finding suggests that 14-3-3ζ can switch
TGF-β from tumor suppressor to tumor promoter, indicating that it could be a novel biomarker to aid
in the selection of the patients who and when will benefit from TGF-β antagonists [29,51].

4.4. PEAK1

Pseudopodium-enriched atypical kinase 1 (PEAK1), Sgk269, is a 190 kDa non-receptor tyrosine
kinase that controls cell spreading, migration, and proliferation [81,82]. Amplified PEAK1 levels
were found in colon cancer, pancreatic cancer, and breast cancer, suggesting that it is a potential
therapeutic target [82,83]. However, a study in gastric cancer showed 71.1% negative expression
of PEAK1 in the cancer tissues and indicated that loss of PEAK1 may activate EMT and promote
cancer development [84]. Recently, studies indicated that PEAK1 acts as a molecular switch that
regulates context-dependent TGF-β responses in breast cancer [85]. High expression levels of PEAK1
cause the loss of the anti-proliferative effects of TGF-β and initiate TGF-β-induced proliferation, EMT,
cell migration, and tumor metastasis with the presence of fibronectin by switching TGF-β signaling
from the canonical Smad2/3 pathway to Src and MAPK signaling. Moreover, PEAK1 is necessary
for TGF-β-induced ZEB1-mediated EMT in the presence of fibronectin/ITGB3 activation [86]. Thus,
PEAK1 can be used to determine when TGF-β blockade is viable in targeted therapy of breast cancer.

4.5. p53

Since p53 has been reported to be a critical Smad partner and to be responsible for TGF-β’s
cytostatic function, p53 can be used as a biomarker for selecting patients whose TGF-β has lost its
inhibitory effect on cell proliferation. In the late stages of cancer development, p53 is lost or mutated
in approximately 50% of cases [87]. In addition, p53 mutation could contribute to TGF-β’s function
switch. As shown in a previous study, an R280K mutation was found in p53 in MDA-MB-231 cells,
and this mutant p53 can still form a complex with Smads and enhance TGF-β-induced metastasis [15].
Furthermore, loss of p53 has been reported to induce EMT in HMECs [88], suggesting that p53
loss occurring downstream of 14-3-3ζ may be a switching point in the role of TGF-β, similar to p53
mutation [15]. Recently, a study in lung cancer showed that the radiosensitizing effect of inhibition of
TGF-β signaling by SB431542 in non-small cell lung cancer cells was p53-dependent, also suggesting
that p53 should be considered during anti-TGF-β treatment [89].
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4.6. Gli2

Gli2 is overexpressed in a variety of cancers and has a direct function in cell cycle progression,
apoptosis, invasion, and metastasis [90,91]. It has been reported that TGF-β treatment induced Gli2
mRNA transcription in MDA-MB-231 cells [92]. Additionally, studies have shown that TGF-β induced
an immediate increase in Gli2 protein via 14-3-3ζ-mediated stabilization of Gli2 in MDA-MB-231 cells,
suggesting that TGF-β induces Gli2 expression at multiple levels, not simply by transcriptional
upregulation. TGF-β is known to induce parathyroid hormone-related protein (PTHrP) expression
via Gli2, independently of the canonical Hedgehog pathway, enhancing bone metastasis [93].
It was reported that TGF-β-activated Smads transcriptionally unregulated Gli2, which subsequently
transcriptionally unregulated PTHrP [92]. Recently, it was found that TGF-β-activated Smads can
directly bind to Gli2 protein stabilized by 14-3-3ζ and that the Smad/Gli2 complex transcriptionally
upregulates PTHrP [80]. This indicates that TGF-β-activated Smads can induce PTHrP expression via
Gli2 by at least two mechanisms: (a) indirectly, via Gli2-induced PTHrP transcription; and (b) directly,
by forming a complex with Gli2 to turn on PTHrP transcription. These findings suggest that Gli2 could
serve as a biomarker for monitoring the role switch of TGF-β.

4.7. Circulating TGF-β and TGF-β-Associated Markers

The most direct biomarkers for patient selection for anti-TGF-β antagonists are circulating TGF-β in
blood [94] and p-Smad2 levels in peripheral mononuclear cells [95]. Circulating TGF-β was assessed in
previous studies in the blood samples of breast cancer patients [96]. The level of TGF-β in advanced-stage
breast cancer was much higher than in early-stage breast cancer and has been associated with poor
prognosis [97]. Another study, of an autoimmune disease, showed that the level of circulating TGF-β,
which could help suppress immune functions, was elevated while the level of autoantibodies was
decreased in blood [98]. Interestingly, our comprehensive proteomic profiling of pre-diagnostic plasma
collected from patients who were diagnosed with lung cancer within two years revealed that circulating
TGF-β levels were associated with the timing of the blood draw and levels of a set of circulating proteins
known to be immunogenic in lung cancer. Our data suggested that, with the increase of TGF-β and the
switch of its functions, the levels of tumor antigens increased, but the levels of autoantibodies against
tumor antigens decreased (unpublished data). Those findings suggest that circulating TGF-β levels
are associated with not only tumor biology but also systemic host response to tumors, which precedes
clinical diagnosis, and thus that TGF-β, antigens emanating from tumors, and autoantibodies against
tumor antigens are potential biomarkers for early detection of cancer.

5. Conclusions and Perspectives

The strategy of targeting TGF-β has been investigated in many different cancer types. However,
TGF-β has different functions during cancer initiation and development, which may cause a failure
of therapy targeted to TGF-β signaling. The switching roles of TGF-β have been studied for decades,
and much effort has gone into the development of this targeted therapy. Recently, a few important
proteins have been identified as the key switches, most of which were verified only in particular
types of cancer. There is an urgent need to develop novel therapeutic strategies to address TGF-β
signaling and to discover new biomarkers to optimize the timing of the therapy, which together could
significantly impact cancer patient care in the new era of personalized cancer medicine [99].
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