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Abstract 6 

Background: Brain glucose hypometabolism has consistently been found in neurodegenerative disorders, 7 

including Alzheimer’s disease (AD). High blood glucose and HDL cholesterol (HDL-C) levels have also been 8 

linked to neurodegeneration and AD. However, there is limited understanding of the relationships 9 

between dementia-related risk factors in the brain and blood.   10 

Methods: A linear mixed model was used to examine the relationship between blood glucose and HDL-C 11 

levels and the progression of brain hypometabolism, adjusting for APOE4 and other clinical covariates. 12 

The hypometabolic convergence index (HCI) was measured by fluorodeoxyglucose-18 (FDG) positron 13 

emission tomography (PET) in participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). 14 

Data visualizations were generated to understand the joint effects of plasma glucose, HDL-C, and APOE4 15 

on HCI.  16 

Results: There were 336 individuals (781 observations), of whom 22.62% had AD. The majority were male 17 

(63.98%) and of white race, and 48.51% were carriers of APOE4.  Over time, high blood glucose level was 18 

associated with the progression of brain glucose hypometabolism (β=0.33, 95% CI: 0.02, 0.64, p<0.05). A 19 

high plasma HDL-C level (β=1.22, 95% CI: 0.09, 2.35, p<0.05), more study visits (β=1.67, 95% CI: 1.37, 1.98, 20 

p<0.001), and being an APOE4 allele carrier (β=1.29, 95% CI: 0.15, 2.42, p<0.05) were also significant 21 

predictors of brain hypometabolism progression. APOE4 carrier status and number of visits account for 22 

the largest proportion of the variance from the fixed effects model. Random effects due to participant 23 
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characteristics and fixed effects together accounted for 95.2% of the model variance. Subgroup analysis 24 

revealed that these effects were observed only in those without AD. 25 

Conclusion:  26 

High plasma glucose levels facilitated the progression of brain hypometabolism. The effect was more 27 

prominent in the APOE4 double-carriers with elevated HDL-C. Elevated blood glucose may reflect systemic 28 

insulin resistance, which could impair brain glucose uptake, resulting in brain hypometabolism. 29 

Controlling blood glucose and HDL-C levels in APOE4 carriers may improve brain metabolism, potentially 30 

delaying the onset of dementia.   31 

Keywords 32 

Brain hypometabolism, Blood glucose, HDL cholesterol, APOE4, Alzheimer’s disease, Hypometabolic 33 

Convergence Index 34 

 35 

Background 36 

Glucose usage in the brain has been finely tuned throughout evolution.1 Brain cells are highly energy- 37 

dependent and require a constant supply of glucose for optimal functioning.2 Glucose meets the energy 38 

demands for a diverse range of activities, including brain signaling, neurotransmitter production, and 39 

maintaining homeostasis.3 Due to this, multilayered mechanisms, including sensors, glucose transporters, 40 

enzymes, and specific cell pathways, work together to ensure the availability of glucose.2  Complex 41 

learning processes in neurons and astrocytes are correlated with brain metabolism, which is directly 42 

dependent on glucose usage.4 Exposure to insufficient glucose supply can harm memory and learning, and 43 

prolonged insufficiency can potentially cause permanent brain alterations.3 Thus, any deviation from the 44 

normal glucose uptake pattern in the brain might indicate a serious medical illness.5  45 
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Earlier neuroimaging studies have considerably expanded our knowledge of metabolic alterations in 46 

dementia.6,7 Neuroimaging outcomes are superior to traditional cognitive assessments in detecting 47 

related changes and correlate well with neuropathological changes in individuals with dementia.8 A 48 

pattern of glucose deficit in the brain is noted for several neurodegenerative disorders, which can be 49 

distinguished among the relevant conditions.9 In the case of  Alzheimer’s disease (AD), hypometabolism 50 

begins much earlier than the actual onset of clinical symptoms and contributes to the further progression 51 

of the disease.10 The [18F]-2-fluoro-2-deoxy-2-glucose (FDG) tracer-based positron emission tomography 52 

(PET) is a widely used diagnostic method to ascertain the metabolic rate in different tissues. FDG mimics 53 

glucose absorption and remains in the body longer than glucose. Studying its buildup in tissues helps 54 

quantify the metabolic rate.11 The FDG PET-derived hypometabolic convergence index can accurately 55 

distinguish the AD signature brain hypometabolic pattern through automated brain image analysis. 56 

Dementia subtypes, such as AD, have a complex, multifactorial etiology, stemming from an interplay 57 

between aging, genetics, and the environment.12 In this context, among the risk factors, hyperglycemia, 58 

and particularly diabetes, are  major concerns due to its rising global prevalence.13 Clinical features of 59 

diabetes, such as abnormal insulin signaling and insulin resistance, are also pathological features of 60 

dementia.14 Lipids are another risk factor that deserves attention in the control of dementia.15 61 

Until recently, it was believed that elevated levels of HDL cholesterol were beneficial for health. 16 Indeed, 62 

numerous studies demonstrated protective associations between elevated HDL cholesterol levels and 63 

reduced risk of heart disease, inflammatory conditions, and even cognitive decline.17 The protective 64 

effects of HDL may be attributed to its antioxidant and anti-inflammatory properties, as well as its ability 65 

to remove excess 'bad' cholesterol.18 Based on  several such studies, it has even suggested that increasing 66 

HDL levels or restoring its functions could be explored as a therapeutic option to combat inflammation 67 

and AD.19,20  68 
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Emerging evidence, however, has now challenged this established understanding.21 Despite these 69 

findings, there is a lack of evidence regarding the connections between dementia risk factors in the brain 70 

and in the blood. The combination of risk factors might drive individual differences in dementia 71 

progression.10 Therefore, examining the combination of hypometabolism risk factors, such as blood 72 

glucose and HDL-C levels, may provide more insights into individual differences in dementia progression.  73 

The presence of the APOE4 allele significantly increases the risk of developing AD.22 Despite numerous 74 

research studies, many aspects of the role of APOE4 in AD remain unclear, including its interaction with 75 

dementia risk factors.23 Due to these reasons, we also sought to explore how the effects were modified 76 

when these risk factors were present in carriers of APOE4. 77 

 78 

Methods: 79 

Data Source 80 

We conducted this analysis using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The 81 

ADNI project was started in 2004 with Michael Weiner as the chief investigator. This project is a part of 82 

public-private collaboration that includes major institutions across North America. ADNI encourages the 83 

cost-free sharing of deep genotyped and phenotyped datasets with interested researchers worldwide. 84 

ADNI collects biomarkers, brain scans, clinical data, and cognitive assessments from volunteer participants 85 

based on a preset inclusion criteria. ADNI seeks to improve clinical prediction of AD and its treatment by 86 

leveraging the wide variety of available longitudinal neuroimages, biomarkers, and cognitive scales. 87 

 88 

Details of FDG PET Imaging 89 

FDG PET imaging was performed on a subset of participants based on a standard protocol. Data gathered 90 

within ADNI are allocated to different cores, each comprising experts specializing in corresponding 91 
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domains, tasked with efficiently managing the data.24 There are two imaging cores, with PET imaging 92 

falling under the jurisdiction of Banner Institute, which specifies parameters to maintain optimal imaging 93 

quality. To ensure comparability and quality across various scanners, a 3D correction is applied to the 94 

acquired images. For more information on PET measurements in the ADNI study, refer to Mueller et al.'s 95 

publication.8 96 

 97 

Generation and Interpretation of Hypometabolic Convergence Index Scores 98 

We investigated the longitudinal changes in hypometabolic convergence index (HCI) as the study 99 

outcome. HCI values were accessed from the BAIPETNMRCFDG dataset 100 

(https://adni.bitbucket.io/reference/baipetnmrc.html). The HCI was generated from comprehensive 101 

whole-brain image analysis rather than regional examination of FDG PET brain images, and summarizes 102 

the extent of brain hypometabolism in the form of z-scores.25 These scores were obtained through voxel-103 

wise analysis of the images using Statistical Parametric Mapping (SPM) software.26 An increasing HCI was 104 

interpreted as indicative of greater brain hypometabolism.25 105 

 106 

Covariate Extraction, Measurements, and Data linkage 107 

We extracted glucose and lipid biomarkers from the ADNINIGHTINGALELONG dataset.  In ADNI, APOE4 108 

was measured using DNA extracted by Cogenics from a 3 mL aliquot of EDTA blood collected during 109 

participant screening visits.27 Only rows containing values for all the variables were further considered for 110 

the analysis. Information on smoking and alcohol use was obtained from the medical history file. Data 111 

regarding systolic and diastolic blood pressure, sex, marital status, race, and education were derived from 112 

the vitals and demographics datasets. Age was calculated as the difference in years between the 113 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.20.24314082doi: medRxiv preprint 

https://adni.bitbucket.io/reference/baipetnmrc.html
https://doi.org/10.1101/2024.09.20.24314082
http://creativecommons.org/licenses/by-nd/4.0/


 

6 
 

examination date and the date of birth for each participant over time. Diabetes medications were 114 

extracted from the medication data using the Anatomical Therapeutic Classification (ATC) codes 115 

(https://www.who.int/tools/atc-ddd-toolkit/atc-classification). When applicable, we used the visit code 116 

and distinct participant identifier to link datasets. Once linked, a participant was considered to be taking 117 

diabetes medication for all subsequent data following the initial prescription. We utilized the tidyr 118 

package's fill function with the ‘direction=down’ option to propagate the diabetes medication use labels. 119 

 120 

Statistical Analysis 121 

We performed data analysis and visualizations using the R programming language (R version 4.3.2). 28 At 122 

first, variable summaries measured at baseline were computed. For this, continuous variables were 123 

presented as mean with standard deviation. Categorical variables were summarized as frequencies and 124 

percentages. To depict correlations between continuous covariates at the baseline, we employed a 125 

correlation heatmap. To assess longitudinal variations in plasma glucose and HDL-C levels, we pooled all 126 

observations from all visits and calculated the coefficient of variation percentage (CV%). CV% was 127 

computed by dividing the standard deviation by the mean and multiplying by 100. We generated a scatter 128 

plot of the CV% for glucose and HDL-C distributions to assess their relationship. Additionally, we plotted 129 

the CV% for these measures stratified by APOE4 allele status and determined if the differences were 130 

statistically significant using the Kruskal-Wallis test. 131 

To examine the relationship between blood glucose, HDL-C levels, APOE4 status, and the progression of 132 

brain hypometabolism, and to account for the correlated data structure, we conducted a linear mixed 133 

model analysis using the lme4 package.29 Variations between participants and visits were accounted for 134 

by specifying random intercepts and varying slopes in the random effects part of the model. We analysed 135 
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multiple models with different combinations of terms and then selected the best model with the lowest 136 

Akaike Information Criterion (AIC) values. This model was deemed the model with the minimum set of 137 

variables that best explains the data. Model comparisons were performed using the anova built-in 138 

function. For unbiased regression estimates in the optimal model, we employed restricted maximum 139 

likelihood estimation. The Nelder-Mead optimizer was used to ensure model convergence.  140 

To analyze the conditional and marginal variable contributions of the covariates in the parsimonious 141 

mixed model, we utilized the hierarchical partitioning method.30  This approach helps to understand how 142 

APOE4, HDL-C, and glucose modify the HCI. We computed marginal means and corresponding 95% 143 

confidence intervals (CI) to quantify the average change in HCI for these variables.  144 

We also checked the functional relationship between glucose and HDL-C with HCI using generalized 145 

additive mixed effect models (GAMM). The advantage of GAMM is that it is able to incorporate the 146 

benefits of generalized additive models, i.e., nonlinear effects modeling, while also accounting for 147 

correlations due to repeated measures.31 The AIC from both linear and nonlinear models were compared 148 

to determine the most suitable functional relationship between the variables. A two-tailed p-value <0.05 149 

was considered statistically significant. Additionally, we quantified and visualized individual heterogeneity 150 

for the random effects terms specified in the optimal mixed effects model. Lastly, to assess the HCI 151 

reduction associated with varying values of glucose and HDL-C, we generated a partial effect plot. 152 

Results 153 

Sample description 154 

Data on 336 individuals (781 observations) were available for analysis after data linkage, with 22.62% of 155 

participants diagnosed with AD (Supplementary Figure 1). Table 1 describes the baseline demographic 156 

and clinical characteristics of the participants in this study. The participants were, on average, 75.43 years 157 
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old and had 15.6 years of education. The majority were male (63.98%) and White (93.45%). Over a third 158 

(38%) had a smoking history, and 97.6% reported being ever married. The mean HbA1C and HDL-C levels 159 

were 5.42 and 1.52, respectively. The mean systolic blood pressure (SBP) was relatively high at 135 mm 160 

Hg, whereas the mean diastolic blood pressure (DBP) was below the normal reference level at 73.77 mm 161 

Hg. Almost half (48.51%) were carriers of the APOE4 allele. Figure 1 shows the distribution of longitudinal 162 

CV% for glucose and HDL-C, as well as their relationship. In Figure 2, the distributions of longitudinal CV% 163 

for glucose and HDL-C, stratified by APOE4 allele status, are shown. Non-linear modeling (spline fit) of the 164 

relationship between CV% for glucose and HDL-C supports a nonlinear relationship. P-values from the 165 

Kruskal-Wallis test to see the influence of APOE4 alleles on the CV% for glucose and HDL-C were non-166 

significant (0.78 and 0.56, respectively). Brain hypometabolism, measured by HCI, was higher in this 167 

sample, with a mean of 15.06 (range 4.34 - 47.40). Initially, only 2 participants (0.60%) were using anti-168 

diabetes medication, but by the end of the follow-up, this number had risen to 10 (2.97%). As regards to 169 

the baseline correlations, APOE4 was positively correlated to HCI (Supplementary Figure 2). APOE4 had 170 

no strong correlations with either lipid subgroups and blood glucose. In those with AD, blood glucose and 171 

HDL-C modelled using splines seems to favor a more non-linear relationship in comparison to those not 172 

diagnosed with AD (Supplementary Figures 3-4). 173 

 174 

Table 1. Characteristics of participants measured at baseline (781 observations, n=336) 175 

Variables Mean (Frequency) SD Range 

Age (Years) 75.43 6.69 55.24 -89.00 

Sex (Male) 215 (63.98%)   

Education (Years) 15.66 2.96 6-20 
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Blood Glucose (mmol/L) 5.42 0.87 2.99-10.47 

HDL-C (mmol/L) 1.52 0.39 0.73 – 3.29 

Race (White) 314 (93.45%)   

Married (Ever) 328 (97.61%)   

Smoking (Ever) 126 (37.50%)   

Alcohol (Ever) 11 (3.27%)   

AD 76 (22.61%)   

APOE4    

0 173 (51.48%)   

1 131 (38.98%)   

2 32 (9.52%)   

SBP (n=335) 135.12 16.59 90-201 

DBP (n=335) 73.77 9.23 43-98 

NonHDL-C 3.49 1.60 1.21-6.16 

LDL-C 2.01 0.46 0.61 – 3.47 

HCI 15.06 7.54 4.34 - 47.40 

Note. SBP = Systolic Blood Pressure; DBP = Diastolic Blood Pressure; NonHDL-C = Non-High-density 176 

lipoprotein cholesterol; LDL-C = Low-density lipoprotein cholesterol; HDL-C = High-density lipoprotein 177 

cholesterol; HCI = Hypometabolic Convergence Index. 178 

  179 
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 180 

Figure 1. Histogram of longitudinal CV% for glucose and HDL-C, and a scatterplot with smoothed regression 181 

line showing their relationship 182 

 183 

 184 

 185 

Figure 2.  Distribution of longitudinal CV% for glucose and HDL-C stratified by APOE4 allele status 186 
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Effect of Elevated Blood Glucose and HDL-C Variability on Brain Hypometabolism  187 

As shown in the Supplementary Table 1, Model 2 was selected for detailed analysis. Table 2 shows the 188 

adjusted regression estimates from the optimal linear mixed model. More number of clinical visits 189 

(β=1.67, 95% CI: 1.37, 1.98, p<0.001), and APOE4 carrier status were the strongest predictors for the 190 

decline in brain metabolism in ascending order respectively (Supplementary Figure 5). The contributions 191 

of these variables to variance from fixed effects in the best model were also the highest. Over time, an 192 

increase in plasma glucose was significantly associated with an increased area of brain hypometabolism 193 

(β=0.33, p<0.05). None of the cholesterol markers except HDL-C were statistically significant in the 194 

multivariate analysis (β=1.22, p<0.05). Additionally, age, sex, smoking, blood pressure, and race were not 195 

significant predictors. The percentage variance of the fixed effects (marginal R-squared) was estimated at 196 

4.5%. Supplementary Figure 6 elucidates the random effects represented by the clinical visits and 197 

individual variability. Variance, combining both the fixed and random effects (conditional R-squared), 198 

accounted for 95.2% of the model variance.  199 

 200 

Table 2. Adjusted model estimates corresponding to the optimal linear mixed model for the HCI trend 201 

outcome 202 

Variable Coefficient 95% CI p-value 

Glucose 0.33 0.02, 0.64 0.034* 

HDL-C 1.22 0.09, 2.35 0.032* 

APOE4 1.29 0.15,2.42 0.023* 

Race (White) 2.85 -0.09,5.79 0.060 

Visits 1.67 1.37,1.98 0.000*** 
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            Note. *p<0.05; ***p<0.001  203 

 204 

Functional Relationship Between Glycemic Variability, HDL-C Levels, and Their Interaction with APOE4 205 

on Brain Hypometabolism 206 

A comparison of effects plots (Supplementary Figure 7, Figure 3, and Figure 4) generated from linear and 207 

additive mixed models (GAMM) indicates that glucose has a linear relationship with HCI. Conversely, HDL-208 

C showed a nonlinear relationship, which was preferred over the linear model. Additive mixed models 209 

work similarly to linear mixed models, with the difference being that they allow for modeling complex 210 

non-linear relationships of variables by fitting smooth functions.31 Partial effects here refer to the mean 211 

effect in HCI due to the change in exposures while keeping the effects of other covariates held constant 212 

in the model. The dose-response relationship between HDL-C and HCI was observed to decrease slightly, 213 

stabilize and then decline after 2 mmol/L for higher values. According to Figure 4, elevated HDL-C reduces 214 

brain metabolism even when glucose levels are optimal. Hypometabolism increases with each unit rise in 215 

glucose, particularly above 7.5 mmol/L.  216 

At this threshold, risk is evident even for low HDL-C values. Hence, it could be deduced that elevated 217 

glucose values are an important risk factor for brain hypometabolism, and that its effects with HDL-C on 218 

brain metabolism are non-linear. Supplementary Figure 8 complements this finding, showing substantial 219 

differences in predicted HCI across stratified HDL-C categories of low, intermediate, and high levels. 220 

Similar trends were evident in the interaction effects of blood glucose levels, HDL-C, and the APOE4 allele 221 

on HCI (Figure 5). The plot shows a dramatically pronounced decline in brain metabolism for increased 222 

blood glucose levels and HDL-C in APOE4 homozygous carriers compared to non-carriers and 223 

heterozygous carriers. In addition, for better interpretation of the slopes, the marginal means for the HCI, 224 

computed for the different combinations of these risk factors, are shown in Supplementary Table 2. 225 
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Compared to non-carriers with low HDL-C and high glucose, there was a more than 10-point increase in 226 

predicted mean HCI for double APOE4 carriers with high HDL-C. 227 

 228 

 229 

Figure 3. Partial effects of Glucose and HDL-C levels on the HCI from the GAMM model. Note. TPRS (thin 230 

plate regression splines) are basis functions that allow for model fitting of local segments of the exposure-231 

outcome relationship, which are then connected to provide a complete picture of the overall relationship. 232 

Thin plate splines automatically determine the location and number of knots based on changes in the 233 

values of the covariate. 234 
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 235 

Figure 4. The partial effect plot illustrates the combined effects of HDL-C and glucose levels on HCI. The 236 

variable relationships are shown as a smoothed relationship as a function of these variables and are 237 

estimated from the additive mixed model. In the plot, the black lines and black dots represent the contour 238 

lines and observed data points, respectively. A change in color from green to orange reflects how the 239 

relationship changes, i.e., from a negative to a positive partial effect. A partial effect of -1 means that a 240 

one-unit increase in the predictor variable is associated with a one-unit decrease in the outcome variable, 241 

and vice versa. It is evident that the partial effects vary at different levels of the predictor variables.  242 

 243 

 244 
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Figure 5. Plot showing the synergistic effects of blood glucose levels, HDL-C, and APOE4 allele on HCI. The 245 

predictions were generated from a model containing interaction terms for blood glucose levels, HDL-C, 246 

and APOE4. Each window corresponds to the effects of the APOE4 allele (0, 1, 2) and is shown specifically 247 

for HDL-C categories (low, high, and intermediate, arbitrarily selected based on the data) 248 

 249 

Comparison of Subgroup Analysis to Identify Heterogeneity in Effects 250 

Given that the visualizations indicated a possible difference in the effects of the exposures in AD and non-251 

AD individuals, we prepared the data accordingly. Upon further investigation, we noted that the statistical 252 

associations were limited to the non-AD subgroup (Supplementary Tables 3-4). Remarkably, the strength 253 

of the associations for White race, HDL-C, and APOE4 with HCI was much stronger in the stratified analysis 254 

for this group. Overall, the effect size for glucose did not differ for the non-AD individuals compared to the 255 

main analysis, whereas the clinical visits exhibited a diluted effect. For the AD group, both APOE4 and visits 256 

were still significantly associated with HCI. While the impact of visits was considerably stronger than in the 257 

aggregated model, the effects of APOE4 were strongly reversed, indicating a protective association. 258 

 259 

Discussion 260 

In this study of older adults, plasma glucose and HDL-C variability were significantly associated with a 261 

reduction in brain metabolism, but only in individuals without AD. Importantly, these effects were 262 

independent of APOE4 and common confounders such as age, sex, and other lipids profiles. We also found 263 

that the relationship of plasma glucose and HDL-C with brain metabolism operates independently of each 264 

other. APOE4 status and measurement visit were the strongest predictors of brain metabolism at the 265 

population level. This is not surprising, as we demonstrated in our previous work using the ADNI data that 266 

measurement visits provide more information than age alone.32  Measurement visits may indirectly reflect 267 

patient characteristics, response, and observation time.33  268 
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A hyperglycemic milieu can cause widespread systemic effects, thereby modulating physiological 269 

responses.34 It is important to note that the diabetes burden was quite low in our data. However, diabetes 270 

is not an absolute requirement for the glucose to impact brain. Our findings are consistent with a previous 271 

study which demonstrated that even midlife increase in glucose can accelerate dementia.35 Although 272 

hyperglycemia contributes to the development of dementia, its role in certain types of dementia such as 273 

in AD remains to be established.36 In our case, one possible reason could be that participants had AD at 274 

baseline and, therefore, already had much lower brain metabolism. Therefore, it is much less likely that 275 

glucose and HDL-C variations would have any impact. Also, APOE4 is no more a risk factor since they had 276 

already developed AD. Hyperglycemia-induced physiological changes are quite complex and usually do not 277 

conform to the normal dose-response framework.37 However, in our study, an increase in blood glucose 278 

levels was linearly related to a decline in brain metabolism. This contradicted a previous study in which 279 

cognitive decline was observed with both high and low blood sugar levels, and it worsened with age.38 280 

Nevertheless, high blood sugar-driven outcomes at the individual level are highly heterogeneous and also 281 

depend on the combination of other risk factors and genes.39,40  282 

In our data, elevated HDL-C was stronger risk factor for brain hypometabolism than plasma glucose levels. 283 

The role of lipids in dementia remains controversial. A meta-analysis of multiple studies published on lipid 284 

subgroups shows that LDL-C could be a likely candidate risk factor for dementia, but there was no evidence 285 

of involvement of HDL-C or other lipids.41 On the other hand, it is worth noting that high HDL-C levels could 286 

negatively impact health and survival, including increased all-cause and cardiac-related mortality. 287 

However, individuals in the mid-range levels of HDL-C seem to be protected.42 This was observed in the 288 

'U-shaped' relationship between HDL-C levels and cognitive outcomes, with individuals having HDL-C 289 

values above 2.50 mmol/L experiencing more than a two-fold increased risk of poor cognitive outcomes.43  290 

Such a relationship was also reported in a large-scale survival analysis of health insurance data exploring 291 
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dementia outcome. Similar to our study, LDL-C in this study did not influence dementia risk, except for a 292 

minor increase in risk observed among statin users.44  293 

A study published in Lancet, that investigated whether HDL-C is a risk factor for incident dementia reported 294 

a risk above 3.3 mmol/L. 45  Consistent with the previous findings, individuals aged above 75 years with 295 

high HDL-C were at substantial risk for dementia. In stark contrast, lower HDL-C values were shown to be 296 

protective against dementia.45  This was in line with our finding. Based on the partial effects plots in our 297 

study, HDL-C associated risk appeared to diminish beyond 2.25 mmol/L. However, these findings require 298 

further validation, as there were only a few HDL-C values above this threshold in the data. It might be that 299 

the HDL-C effects seen were due to the presence of AD, co-morbidities, or other age-related factors. In 300 

such scenarios, high HDL would be merely reflective of these conditions rather than providing any real 301 

health benefits.20 302 

APOE4 carriage was associated with a greater metabolic decline compared to non-carriers for the 303 

concomitant values of glucose and HDL-C. Notably, this interaction was particularly strong in individuals 304 

with HDL-C levels above 2 mmol/L. It is intriguing that the direction of the predicted slope for brain 305 

hypometabolism with glucose elevation was similar at lower HDL values across all APOE4 isoforms, with 306 

carriers experiencing a slightly higher metabolic decline. The observed interaction effects appear plausible 307 

as APOE4 have a direct link with cholesterol metabolism and lower HDL synthesis.46–48 In addition it has 308 

been observed that mice with APOE4 risk alleles exhibit a poor response to glucose spikes and inadequate 309 

insulin production.49 Individuals with APOE4 risk alleles and high blood glucose were more likely to 310 

experience greater risk for severe dementia and features of AD in late life.35 First of all,  carrying two 311 

APOE4 alleles is now considered a genetic form of AD by itself.50 Our finding regarding the synergistic 312 

effect modulated by APOE4 double carriers is in firm agreement, showing a vastly different pattern of 313 

hypometabolism compared to its other isoforms. Therefore, the effects in those without AD might actually 314 

be congruent with preclinical AD.51  This should be kept in mind, especially in the context that the 315 
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diagnostic criteria for AD are still evolving.51 APOE4 carrier status favors AD and dementia mainly through 316 

promoting amyloid beta, increased phosphorylated tau, and contributing to neurodegeneration.27,52,53 It 317 

is also recognized that APOE4 variation can negatively impact mitochondrial respiration and energy 318 

production, consequently leading to brain hypometabolism.54 Other potential pathways include 319 

neuroinflammation, blood-brain barrier dysfunction, gliosis, brain structural and functional changes, 320 

demyelination and impaired clearance of toxic substances.55–60  321 

In relevance to our work, it has already been demonstrated that APOE4 variation adversely impacts the 322 

ability of HDL-C to effectively sequester cholesterol by modifying HDL-C structurally. Not only does the 323 

concentration of HDL matter, but also its size. For instance, individuals with AD and dementia tend to have 324 

relatively smaller HDL particle sizes.61 We presume that APOE4-induced changes in the brain may make it 325 

more vulnerable to the negative physiological effects of elevated glucose and other risk factors. As 326 

corroborating evidence, we found no indication that longitudinal variability in glucose and HDL-C can be 327 

attributed to APOE4 alleles. 328 

This study has several strengths including the availability of serial participant data and a well-characterized 329 

cohort. Our study is among the first to illuminate the joint contributions of glucose, HDL-C, and APOE4 330 

allele variations on brain hypometabolism. We were able to clearly demonstrate the change in relative 331 

importance of these major risk factors through visualizations. This approach provides a more 332 

comprehensive understanding of the potential pathophysiology, which may not be fully revealed when 333 

examining these factors individually.  334 

Our study had limitations. Blood glucose and HDL-C collection was not timed according to disease 335 

pathology. The study did not account for comorbidity status or medication use as covariates, with the 336 

exception of blood pressure, and diabetes. We have not specifically investigated the possibility of sexual 337 

dimorphism in our results, nor have we considered the involvement of potential mechanisms such as 338 
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amyloid pathways or other inflammatory markers. Another constraint was the limited representation of 339 

non-white samples, which restricted our ability to compare and explore differences across racial groups. 340 

This, combined with the smaller sample size and selective recruitment in the cohort, may further limit the 341 

generalizability of the findings. Lastly, there could be unmeasured confounding. Therefore, we 342 

recommend replicating our findings in large cohorts and across multiple ethnicities to ascertain the 343 

benefits of glucose and HDL reduction in diverse populations. Further studies may be conducted using 344 

genetic variants that influence these exposures to gather causal evidence. 345 

 346 

Conclusion 347 

High blood glucose levels facilitated progression of cerebral hypometabolism in ADNI participants. The 348 

negative impact of blood glucose on brain hypometabolism was aggravated by elevated HDL-C levels and 349 

APOE4 carrying status. High blood glucose levels may reflect systemic insulin resistance, which, in turn, 350 

might impair brain glucose uptake, resulting in brain hypometabolism. While further validation is 351 

warranted, controlling for plasma glucose/insulin resistance and HDL-C levels in APOE4 carriers may 352 

attenuate the decline in brain metabolism, potentially delaying dementia clinical onset. 353 

 354 

Abbreviations 355 

AD    Alzheimer’s Disease 

ADNI     Alzheimer’s Disease Neuroimaging Initiative  

ATC        Anatomical Therapeutic Classification 

CV%        Coefficient of Variation Percentage  

DBP     Diastolic Blood Pressure (DBP) 
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FDG      Fluorodeoxyglucose-18 (FDG) 

GAMM    Generalized Additive Mixed Effect Models  

HCI       Hypometabolic Convergence Index 

HDL-C     High-density lipoprotein cholesterol 

LDL-C    Low-density lipoprotein cholesterol 

NonHDL-C Non-High-density lipoprotein cholesterol 

PET      Positron Emission Tomography 

SBP           Systolic Blood Pressure (SBP) 

SPM       Statistical Parametric Mapping  

TPRS Thin Plate Regression Splines 
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