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Abstract
Background: Neuroblastoma is the most common pediatric solid tumor. MYCN-
amplification is an important negative prognostic indicator and inherited genetic 
contributions to risk are incompletely understood. Genetic determinants of stature 
increase risk of several adult and childhood cancers, but have not been studied in 
neuroblastoma despite elevated neuroblastoma incidence in children with congenital 
overgrowth syndromes.
Methods: We investigated the association between genetic determinants of height and 
neuroblastoma risk in 1538 neuroblastoma cases, stratified by MYCN-amplification 
status, and compared to 3390 European-ancestry controls using polygenic scores for 
birth length (five variants), childhood height (six variants), and adult height (413 
variants). We further examined the UK Biobank to evaluate the association of known 
neuroblastoma risk loci and stature.
Results: An increase in the polygenic score for childhood stature, corresponding 
to a ~0.5  cm increase in pre-pubertal height, was associated with greater risk of 
MYCN-amplified neuroblastoma (OR = 1.14, P =  .047). An increase in the poly-
genic score for adult stature, corresponding to a ~1.7  cm increase in adult height 
attainment, was associated with decreased risk of MYCN-amplified neuroblastoma 
(OR = 0.87, P = .047). These associations persisted in case-case analyses comparing 
MYCN-amplified to MYCN-unamplified neuroblastoma. No polygenic height scores 
were associated with MYCN-unamplified neuroblastoma risk. Previously identified 
genome-wide association study hits for neuroblastoma (N = 10) were significantly 
enriched for association with both childhood (P  =  4.0  ×  10−3) and adult height 
(P = 8.9 × 10−3) in >250 000 UK Biobank study participants.
Conclusions: Genetic propensity to taller childhood height and shorter adult height 
were associated with MYCN-amplified neuroblastoma risk, suggesting that biologi-
cal pathways affecting growth trajectories and pubertal timing may contribute to 
MYCN-amplified neuroblastoma etiology.
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1  |   INTRODUCTION

Neuroblastoma is the most common solid tumor of childhood,1 
accounting for 8%-10% of all pediatric cancers and responsible 
for up to 15% of cancer-related childhood mortality.2–4 Clinical 
patterns range across a wide spectrum, from spontaneous regres-
sion to poorly differentiated and aggressive phenotypes.5 One of 
the most well-known prognostic indicators for neuroblastoma is 
genomic amplification of MYCN (Homo sapiens v-myc myelo-
cytomatosis viral-related oncogene, neuroblastoma derived), 
present in ~20% of patients. MYCN-amplification is consis-
tently associated with an aggressive neuroblastoma phenotype 
and poorer clinical outcomes.2,3,6,7 MYCN is a member of the 
MYC family of transcription factors, important in survival, pro-
liferation, and differentiation processes related to tumor initia-
tion and progression.8,9

The genetic etiology of neuroblastoma has increasingly 
been revealed by genome-wide association studies (GWAS), 
which indicate that sporadic neuroblastoma is a polygenic 
disease with ten independent susceptibility loci identified 
to-date.10–14 Several alleles appear to specifically confer risk 
of MYCN-amplified neuroblastoma, indicating that genetic 
risk variants may be specific to certain molecular subtypes 
of neuroblastoma.15–17 The causative variants and biologic 
mechanisms linking these risk loci to neuroblastoma patho-
genesis, and MYCN-amplified tumorigenesis specifically, re-
main an active area of investigation.

Epidemiologic studies have observed strong relationships 
between height attainment and risk of various adult malig-
nancies (eg, breast, colorectal, thyroid, ovarian, endometrial, 
and prostate), and these associations have been supported 
by recent Mendelian randomization analyses.18–24 A recent 
case-control study that leveraged polygenic scores as instru-
mental variables observed significant associations between 
genetic determinants of childhood and adult height attainment 
and risk of childhood osteosarcoma.25 Associations between 
genetic determinants of stature and risk of other childhood 
cancers, including neuroblastoma, have not been evaluated.

It is possible that biological pathways underlying childhood 
growth and adult height attainment overlap those involved in 
neuroblastoma etiology. This is supported by a number of 
congenital overgrowth syndromes that are associated with 
increased risk for neuroblastoma (eg, Beckwith-Wiedemann, 
Costello, Simpson-Golabi-Behmel, Sotos, and Weaver).26–30 
To test this hypothesis, we investigated the association of 
genetic determinants of stature and risk of neuroblastoma, 
stratifying analyses by MYCN-amplification status given pre-
vious studies identifying non-overlapping genetic risk variants 

underlying MYCN-amplified vs MYCN-unamplified neuro-
blastoma risk. The association of previously published and 
externally validated polygenic scores for birth length, pre-pu-
bertal height attainment, and adult height attainment with 
risk of neuroblastoma was evaluated in 1538 cases and 3390 
controls of European ancestry. We also explored whether neu-
roblastoma risk loci identified in prior GWAS were enriched 
for association with childhood and adult stature among UK 
Biobank participants to further explore connections between 
genetic determinants of stature and subtype-specific neuro-
blastoma risk.

2  |   MATERIALS AND METHODS

2.1  |  Neuroblastoma cases and controls

A total of 1538 neuroblastoma cases and 3390 controls of 
European ancestry were included. Neuroblastoma cases 
were non-Hispanic white patients <19 years old at diagno-
sis who were recruited by the Children's Oncology Group 
and Children's Hospital of Philadelphia, as described previ-
ously.11 Genotyping data for cases were downloaded from 
dbGaP study accession phs000124.v2.p1, whereas genotyp-
ing data for the controls was retrieved from Illumina's iCon-
trolsDB database. Samples from both cases and controls were 
genotyped on the Illumina HumanHap550 genome-wide sin-
gle nucleotide polymorphism (SNP) array, a standard com-
mercially available platform.

Genotyping quality control measures were implemented 
for both cases and controls as described previously.31 Briefly, 
SNPs with genotyping call rates <98%, SNPs with Hardy-
Weinberg equilibrium P  <  .0001 among controls, subjects 
with genotyping call rates <97%, those with non-European 
ancestry as determined from principal components analysis 
(ie, subjects that fell more than three SDs from mean CEU 
values), evidence of cryptic relatedness (defined as identity by 
descent proportion >0.20) and those with discrepant sex be-
tween genotyping data and clinical report were removed from 
analyses.

2.2  |  Genotype imputation

Genome-wide association study data underwent genome-
wide imputation as previously described.25 Haplotype phas-
ing was performed with SHAPEIT (version 2.790), and 
whole-genome imputation was performed using Minimac3 
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with 64  976 human haplotypes from the 2016 Haplotype 
Reference Consortium used as the imputation reference 
panel.32–34 SNPs with imputation quality (info) scores <0.60 
or posterior probabilities <.90 were excluded.35

2.3  |  Polygenic score construction and single 
SNP analyses

We constructed polygenic scores for birth length, child-
hood height attainment, and adult height attainment using 
previously published genome-wide significant variants.36–39 
Childhood height was assessed prior to adult height attain-
ment and to the standard peak of pubertal growth accelera-
tion, measured at age 10 in girls and age 12 in boys. Weighted 
polygenic scores for case and control subjects were generated 
using PLINK,40 with the effect of individual SNPs weighted 
according to the beta value and direction of effect from prior 
GWAS. For the height scores, we used five variants for birth 
length, six variants for childhood height, and 413 variants 
for adult height attainment after selecting the most statisti-
cally significant SNP from each independent stature-associ-
ated locus (Table S1).25 We also created a reduced polygenic 
height score for adult height attainment that included only 
407 variants, excluding six SNPs in linkage disequilibrium 
(LD) with those contained in the childhood height score.37,38 
These polygenic scores were previously applied in other pub-
lished studies and have shown strong correlation with stat-
ure.25 We used US national height statistics to standardize 
the polygenic height scores in terms of centimeters of pre-
dicted height, as previously published.25,41 A 1 SD change in 
the polygenic scores correspond to approximately 0.14 cm in 
birth length, 0.5 cm in childhood height, and 1.7 cm in adult 
height.36

We performed logistic regression analyses to test for as-
sociation between the polygenic scores and neuroblastoma 
risk, adjusted for five ancestry-informative principal compo-
nents and stratified by MYCN-amplification status (MYCN-
amplified N = 257, MYCN-unamplified N = 1154, unknown 
MYCN status N = 127). We also examined all SNPs for sin-
gle-SNP associations with neuroblastoma case-control sta-
tus and MYCN-amplified neuroblastoma case-control status 
using logistic regression, adjusting for five principal compo-
nents. In single-SNP association analyses, we included one 
additional variant previously associated with late pubertal 
growth (rs7759938).37

2.4  |  Pathway analysis of height-
associated SNPs

For each of the 407 SNPs comprising our reduced poly-
genic score for adult height attainment, we identified the 

nearest protein-coding gene in the GRCh37 assembly.25,38 
RefSeq gene names were queried in two pathway-analysis 
databases: the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and the Protein ANalysis THrough Evolutionary 
Relationships (PANTHER) Classification System. After 
identifying highly represented biological pathways 
within the height-associated gene list (KEGG P  ≤  .001; 
PANTHER gene count  ≥  10), we recalculated the poly-
genic height scores, this time limiting the number of SNPs 
contributing to the model to only those residing within each 
respective pathway. In this manner, we sought to determine 
whether any specific biological processes contributing to 
height attainment were driving the association between the 
polygenic score and subtype-specific neuroblastoma risk 
(Table S2).

2.5  |  Identification of neuroblastoma risk 
loci from prior GWAS

We accessed the NHGRI-EBI Catalog of genome-wide 
association studies (GWAS catalog; https://www.ebi.
ac.uk/gwas/) to compile a curated list of GWAS loci asso-
ciated with neuroblastoma risk at genome-wide statistical 
significance (P < 5.0 × 10−8).42 We pruned the list of sig-
nificant variants for LD (R2 ≤  .15 in European-ancestry 
populations) using the NCI LDlink tool and cross-refer-
enced this list with published reviews on neuroblastoma 
GWAS.43

2.6  |  Control SNP sets

In addition to the set of neuroblastoma risk SNPs, we also 
created comparison SNP sets to serve as negative controls 
to test for enrichment of stature-associated SNPs among 
neuroblastoma GWAS hits. A set of unlinked control SNPs 
from the 1000 Genomes Project reference panel was gen-
erated using SNPsnap (Broad Institute).44 Control vari-
ants were matched to the 10 neuroblastoma risk SNPs on 
minor allele frequency (±5%), surrounding gene density 
(±50%), distance to nearest gene (±50%) and, as a proxy 
for haplotype block size, the number of other SNPs in LD 
at R2 ≥ .50 (±50%). Four control SNPs were identified for 
each input SNP, resulting in a total set of 40 SNPsnap con-
trol SNPs (Table S3).

Because neuroblastoma risk SNPs are trait-associated 
variants that may be likelier to associate with additional 
traits, we also identified a second set of control SNPs by que-
rying the GWAS catalog for glioma/glioblastoma SNPs using 
the same methodology as for neuroblastoma. This yielded 19 
unlinked glioma/glioblastoma-associated variants to be used 
as a second control SNP set (Table S3).

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/


      |  8219SEMMES et al.

2.7  |  eQTL and in silico SNP 
functional analyses

We further characterized neuroblastoma risk SNPs and con-
trol SNPs using the HaploReg database, which annotates 
chromatin state and regulatory motifs of specific variants 
and LD-block regions surrounding a given SNP.45 We exam-
ined whether variants were expression quantitative trait loci 
(eQTLs), protein-binding, located in DNAse hypersensitive 
sites, promoter or enhancer histone marks, or were predicted 
to change transcription factor binding motifs.

2.8  |  UK Biobank GeneATLAS analyses

The atlas of genetic associations from the UK Biobank 
(GeneATLAS; http://genea​tlas.roslin.ed.au.uk/) was con-
structed by genotyping ~450 000 European-ancestry individ-
uals for 805 426 genetic variants, performing genome-wide 
SNP imputation and quality-control, then linking genetic 
data to electronic health record data.47 GeneATLAS con-
tains data for 778 traits (118 quantitative, 660 binary) and 
their associations with 9 113 133 genetic variants (genotyped 
and imputed after quality control) across 452 264 individu-
als. GeneATLAS is a searchable database that can be queried 
for genetic data (eg, variant, gene, chromosome region) or 
phenotypic data (eg, traits such as height).46

We queried the GeneATLAS database for the 10 genetic 
variants previously associated with risk of neuroblastoma as 
well as our two control SNP sets to identify any associations 
of these SNPs with “adult standing height” and “comparative 
height size at age 10.” We then assessed how many neuro-
blastoma risk loci were associated with stature (at P < .01) 
and compared these loci to results for the two control SNP 
sets to determine if neuroblastoma risk SNPs were more 
likely to be associated with stature than control SNPs, using 
Fisher's exact tests.

3  |   RESULTS

Polygenic scores were constructed using previously pub-
lished genome-wide significant variants for birth length 
(N  =  5 SNPs), childhood height (N  =  6 SNPs), and adult 
height (N  =  413 SNPs) and examined for association in a 
case-control set of 1538 neuroblastoma cases (257 MYCN-
amplified, 1154 MYCN-unamplified) and 3390 controls of 
European ancestry with adjustment for five ancestry-inform-
ative principal components. The polygenic score for birth 
length was not associated with neuroblastoma risk overall 
(P = .78) or MYCN-amplified neuroblastoma risk (P = .39) 
in case-control analyses (Table  1). Childhood and adult 
height attainment polygenic scores were also not associated 

with neuroblastoma risk overall (P  =  .68 and P  =  .55 re-
spectively); however, both were associated with MYCN-
amplified neuroblastoma risk (Table 1). A 1 SD increase in 
the polygenic score for childhood height, corresponding to 
an approximately 0.5  cm increase in pre-pubertal stature, 
was associated with greater risk of MYCN-amplified neuro-
blastoma in case-control analyses (OR = 1.14, P = .047) and 
was suggestively associated when MYCN-amplified patients 
were compared to MYCN-unamplified patients in case-case 
analyses (OR = 1.13, P = .083). In contrast, a 1 SD increase 
in the polygenic score for adult height, corresponding to an 
approximately 1.7  cm increase in adult height attainment, 
was associated with decreased risk of MYCN-amplified neu-
roblastoma in both case-control (OR = 0.87, P = .047) and 
case-case (MYCN-amplified vs MYCN-unamplified) analyses 
(OR = 0.85, P = .028; Table 1). While the median polygenic 
height scores differed across neuroblastoma patients and con-
trols, the overall shapes of the distributions were very similar 
(Figure 1). We did not observe any case-control associations 
when polygenic score analyses were stratified by age of onset 
(<18 months, 18 months-12 years, 12-19 years), histologic 
grade, or ploidy, after controlling for MYCN status.

In a reduced model that removed 6 adult height SNPs 
in LD with childhood height SNPs, the association be-
tween the polygenic score for adult height and risk of 
MYCN-amplified neuroblastoma was strengthened (ORcase-

control = 0.83, Pcase-control = 8.8 × 10−3; and ORcase-case = 0.82; 
Pcase-case  =  5.7  ×  10−3). Results remained significant when 
including both the reduced polygenic score for adult height 
as well as the polygenic score for childhood height together 
in regression models (Table 1).

Single SNP analyses identified 28 SNPs that were nom-
inally associated with neuroblastoma risk at P <  .05, all of 
which were associated with adult height attainment (Table S4). 
No single height-associated SNPs were significantly associ-
ated with neuroblastoma risk after Bonferroni correction for 
multiple comparisons. Additionally, 24 variants were nomi-
nally associated with MYCN-amplified neuroblastoma risk at 
P < .05, 23 of which were associated with adult height attain-
ment and 1 of which was associated with childhood height 
attainment (Table S5), yet none were significantly associated 
with MYCN-amplified neuroblastoma risk after Bonferroni 
correction. Thus, individual genetic variants that influence 
stature appeared to contribute only modest risk of neuroblas-
toma or of the MYCN-amplified subtype of neuroblastoma.

To investigate possible biological pathways underlying 
these associations, SNPs associated with adult height attain-
ment were mapped to the nearest gene and the genes were 
mapped to associated biological pathways using the KEGG and 
PANTHER databases.25 Hedgehog signaling, WNT signaling, 
gonadotropin-releasing hormone receptor signaling, cholecys-
tokinin receptor signaling, inflammation, and integrin signaling 
pathways were enriched for height-associated genes and used to 

http://geneatlas.roslin.ed.au.uk/
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create pathway-specific polygenic scores. No pathway-specific 
polygenic scores were associated with MYCN-amplified neu-
roblastoma risk (Table S6). Due to the small number of SNPs 
available for constructing the birth length (N = 5) and child-
hood height (N = 6) polygenic scores, we could not complete 
pathway-specific analyses for these variants.

We sought to validate our case-control analyses sugges-
tive of an association between genetic contributions to stature 
and MYCN-amplified neuroblastoma risk using additional 
genotype-phenotype datasets. We could not perform a formal 
replication analysis in an independent case-control dataset 
due to the limited incidence of neuroblastoma, which greatly 

T A B L E  1   Multivariate logistic regression analyses for polygenic height scores and neuroblastoma risk in European-ancestry subjects, overall 
and by MYCN statusa

Polygenic score

Case-control MYCN-amplified case-control MYCN-amplified case-case

ORb  95% CI
P-
value ORc  95% CI P-value ORd  95% CI P-value

Birth length 1.01 (0.94-1.08) .78 1.06 (0.93-1.19) .39 1.05 (0.92-1.19) .47

Childhood height 1.01 (0.95-1.08) .68 1.14 (1.00-1.3) .047 1.13 (0.98-1.30) .083

Adult height 0.98 (0.91-1.05) .55 0.87 (0.76-1.0) .047 0.85 (0.74-0.98) .028

Adult height (reduced)e  0.97 (0.90-1.04) .44 0.83 (0.69-0.97) 8.8 × 10−3 0.82 (0.67-0.96) 5.7 × 10−3

Adult height (reduced), 
and Childhood heightf 

0.97 (0.90-1.04) .44 0.83 (0.69-0.97) 8.9 × 10−3 0.82 (0.68-0.96) 6.3 × 10−3

1.01 (0.95-1.08) .68 1.14 (1.01-1.28) .048 1.13 (0.99-1.28) .092

Note: P-values < 0.05 in bold.
Abbreviations: 95% CI, 95% confidence interval; MYCN, homo sapiens v-myc myelocytomatosis viral-related oncogene, neuroblastoma derived; OR, odds ratio.
aMultivariate logistic regression, adjusted for sex and top five ancestry-informative principal components in all analyses. 
bOR represents the neuroblastoma risk associated with a 1 SD increase in the polygenic height score, which corresponds to approximately 0.14 cm in birth length, 
0.5 cm in childhood height, and 1.7 cm in adult height. 
cOR represents the MYCN-amplified neuroblastoma risk associated with a 1 SD increase in the polygenic height score, which corresponds to approximately 0.14 cm in 
birth length, 0.5 cm in childhood height, and 1.7 cm in adult height. 
dOR represents the risk of having MYCN-amplification among neuroblastoma cases associated with a 1 SD increase in the polygenic height score, which corresponds 
to approximately 0.14 cm in birth length, 0.5 cm in childhood height, and 1.7 cm in adult height. 
ePolygenic score for adult height (reduced) excludes six SNPs in linkage disequilibrium with childhood height SNPs. 
fJointly modeled polygenic scores for adult height (reduced) and childhood height, with adjustment for five ancestry-informative principal components. 

F I G U R E  1   Distribution of polygenic height scores in neuroblastoma patients and controls. The distribution of the polygenic scores for (A) 
adult height, (B) childhood height and (C) birth length were compared across all neuroblastoma patients (N = 1538), MYCN-amplified patients 
(N = 257), MYCN-unamplified patients (N = 1154), and controls (N = 3390). Black bars indicate median and interquartile range
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limits sample sizes for genomic studies in pediatric malig-
nancies. Using the GWAS catalog, we identified 10 indepen-
dent genome-wide significant risk variants for neuroblastoma 
(Table 2) and two sets of comparison SNPs to serve as con-
trols to explore whether previously identified GWAS risk loci 
for neuroblastoma were associated with height phenotypes in 
publicly available datasets. The two control sets included (a) 
40 SNPs matched on minor allele frequency, gene density, 
distance to nearest gene, and haplotype structure, and (b) 19 
SNPs previously associated with glioma/glioblastoma risk, an 
adult-onset malignancy of nervous system tissue. Functional 
annotation and in silico analysis of the neuroblastoma SNP 
set and these two control SNP sets demonstrated similar char-
acteristics in terms of impact on chromatin structure and gene 
expression (Table S3). We tested these SNPs for association 
with “adult standing height” and “comparative height size 
at age 10” among >450 000 patients from the UK Biobank 
database (Table 2). Notably, 6/10 neuroblastoma risk SNPs 
were associated with height at age 10 years compared to only 
5/40 control SNPs (P = 4.0 × 10−3) and 2/19 glioma SNPs 
(P = 8.9 × 10−3), indicating that neuroblastoma risk loci are 
enriched for association with childhood height attainment. 
Additionally, 6/10 neuroblastoma risk SNPs were associ-
ated with adult height, compared to only 6/40 control SNPs 
(P = 7.3 × 10−3) and 3/19 glioma SNPs (P = .032), further 
highlighting the enrichment of neuroblastoma risk variants 
for associations with stature.

Although neuroblastoma risk loci were enriched for as-
sociation with both childhood and adult height phenotypes 
among UK Biobank participants, not all of these variants 
were associated with the same direction of effect on height. 
Three neuroblastoma risk alleles were associated with taller 
adult height and three were associated with shorter adult 

height (Table 2). Similarly, divergent directions of effect were 
observed for childhood height, suggesting that while neuro-
blastoma risk loci may be significantly more likely to impact 
growth phenotypes, stature itself is unlikely to mediate the 
association between these GWAS risk alleles and neuroblas-
toma pathogenesis. Notably, the UK Biobank data provides 
additional support for our case-control results, implicating 
genetic determinants of height in neuroblastoma etiology and 
a role for shared biological pathways influencing both height 
and neuroblastomagenesis.

4  |   DISCUSSION

Polygenic score analyses revealed that each 0.5  cm in-
crease in genetically predicted childhood height attainment 
prior to puberty was associated with a 1.14-fold increase in 
risk of MYCN-amplified neuroblastoma. Conversely, each 
1.7 cm increase in genetically predicted adult height attain-
ment was associated with a 0.86-fold decrease in MYCN-
amplified neuroblastoma risk. When considering the 
distribution of polygenic risk scores across and between 
groups, there was little evidence that the MYCN-amplified 
neuroblastoma patients were enriched for extreme outlier 
polygenic scores that would skew analyses. Instead, the 
differences in patients and controls seemed to be due to 
general shifts in the polygenic scores in MYCN-stratified 
analyses. When polygenic scores for childhood and adult 
height were modeled together, they were independently as-
sociated with neuroblastoma risk with effects in opposing 
directions. All logistic regression models were adjusted for 
sex and the top five ancestry-informative principal com-
ponents. Common biology underlying height attainment 

T A B L E  2   Summary of genome-wide significant neuroblastoma risk SNPs and associations with UK Biobank height phenotypes

Author (y) Locus Lead SNP
NB risk 
allele Gene

PHeight at age 10 

(childhood)

PStanding height 

(adulthood)

Capasso et al (2009) 2q35 rs6435862 G BARD1 .72 .12

McDaniel et al (2017) 3q25.32 rs6441201a  A RSRC1 4.5 × 10−4 1.5 × 10−22

McDaniel et al (2017) 4p16.1 rs3796727a  A CPZ 2.7 × 10−3 3.2 × 10−5

Diskin et al (2012) 6q16.3 rs72990858 A HACE1 .059 .43

Diskin et al (2012) 6q16.3 rs17065417b  C LIN28B .72 7.4 × 10−7

Wang et al (2010) 6p22.3 rs4712653b  C CASC15 3.4 × 10−3 2.3 × 10−9

Chang et al (2017) 11q22.2 rs10895322 G MMP20 .33 .75

Diskin et al (2012) 11p11.2 rs11037575b  C HSD17B12 4.9 × 10−14 .16029

McDaniel et al (2017) 11p15.4 rs2168101b  C LMO1 8.8 × 10−11 3.5 × 10−15

Diskin et al (2012) 17p13.1 rs35850753a  T TP53 5.1 × 10−7 1.7 × 10−22

Abbreviations: MYCN, homo sapiens v-myc myelocytomatosis viral-related oncogene, neuroblastoma derived; NB, neuroblastoma; SNPs, single-nucleotide 
polymorphism.
aNeuroblastoma risk allele associated with taller stature. Association data extracted from genome-wide association study (GWAS) of >250 000 UK Biobank 
participants. 
bNeuroblastoma risk allele associated with shorter stature. Association data extracted from GWAS of >250 000 UK Biobank participants. 
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and neuroblastoma development has not previously been 
examined in the context of shared genetic architecture, de-
spite a clinical association between overgrowth syndromes 
and neuroblastoma risk that has been known for decades; 
however, our results strongly suggest pleiotropy whereby 
common genes or biological pathways are important for 
both stature and neuroblastomagenesis.

Numerous congenital overgrowth syndromes are asso-
ciated with neuroblastoma occurence,47 including: EZH2-
related Weaver syndrome (online mendelian inheritance in 
man, OMIM #277590), Sotos syndrome48 (OMIM #117550), 
Beckwith-Wiedemann syndrome (BWS; OMIM # 130650), 
Simpson-Golabi-Behmel syndrome49 (OMIM #312870), and 
Costello syndrome50 (OMIM #218040). Some of these syn-
dromes, such as BWS, have accompanying tumor screening 
guidelines. There are numerous other overgrowth syndromes, 
not listed here, that increase tumor risk more generally, but 
which have not shown an increased occurrence of neuro-
blastoma specifically.47 The tumor epidemiology in Sotos 
syndrome is different from other overgrowth syndromes in 
that embryonal tumors, while occurring, do not comprise the 
majority of tumors in this syndrome.47 In patients with BWS, 
neuroblastoma accounts for 5% of tumors.47 Neuroblastoma 
has been noted in patients with BWS whose underlying mech-
anism of disease includes loss of CDKN1C gene expression, 
specifically imprinting control center 2 (IC2) loss of methyla-
tion, and paternal uniparental disomy at chromosome 11p15,51 
and has also been seen in those with intragenic variants in the 
maternal copy of CDKN1C.52 This clinical observation may 
be linked to the high embryonal expression of CDKN1C in 
the adrenal glands, from which most neuroblastomas arise.53 
Three patients with Weaver syndrome have been reported in 
the literature to have neuroblastoma, and while some have 
hypothesized the role of insulin-like growth factor I in the 
co-occurrence of high birth weight and neuroblastoma, 
these hypotheses have thus far not been confirmed through 
laboratory sampling of patient serum levels.54 Additionally, 
while insulin-like growth factor II (IGF2) is located in the 
BWS locus of chromosome 11p15, prior studies have shown 
that patients with BWS and tumors typically have IGF-I and 
IGF-II serum levels in the normal range.55 Few studies have 
reported MYCN-amplification status in neuroblastoma cases 
diagnosed in individuals with congenital overgrowth syn-
dromes, but the possible connection between this specific 
subtype and these syndromic conditions requires further 
study to guide screening and targeted therapy. Therefore, it 
appears reasonable that biological pathways underlying other 
growth phenotypes not previously explored, including height 
attainment, may play a role in neuroblastomagenesis given 
these known congenital overgrowth syndromes that confer 
increased risk of neuroblastoma.

Leg length, a marker of pre-pubertal growth, is the compo-
nent of stature that is most consistently associated with cancer 

risk.56 Our seemingly inconsistent result wherein increased 
height in childhood but decreased height in adulthood was 
associated with neuroblastoma risk may implicate a role for 
genetic determinants of pubertal timing in neuroblastoma eti-
ology. Early onset puberty is characterized by an early growth 
spurt leading to taller childhood height attainment, but results 
in shorter overall adult height attainment.57–59 One limitation 
to our study is that data on Tanner developmental stage and 
age of onset of growth acceleration was not available for our 
case-control sample, and since age of pubertal onset and 
growth acceleration can have high inter-individual variabil-
ity, we do not know whether our childhood height measure-
ment was measured at a pre-pubertal or post-pubertal onset 
time point. However, our observation that greater childhood 
height attainment increased risk of MYCN-amplified neu-
roblastoma while greater adult height attainment protected 
against MYCN-amplified neuroblastoma suggests that that 
pubertal timing may play a role in in neuroblastomagenesis 
and merits further attention.

Interestingly, a genetic variant influencing age at men-
arche13,60 was recently identified in a known MYCN-amplified 
neuroblastoma risk gene, LIN28B.61,62 This locus has previ-
ously been associated with late pubertal growth and with 
height attainment,37 providing further evidence for possible 
common pathways underlying pubertal timing, height attain-
ment, and neuroblastoma etiology. LIN28B is often overex-
pressed in high-risk neuroblastoma tumors. Suppression of 
let-7 family miRNA expression in neuroblastoma cells over-
expressing LIN28B increases MYCN expression, resulting in 
elevated MYCN protein levels in high-risk neuroblastomas, 
including those that lack MYCN amplification.61,62 High ex-
pression of LIN28B is, therefore, a poor prognostic factor, in-
dependent of MYCN-amplification status.61 Thus, regulation 
of childhood height and pubertal timing through the Lin28/
let-7 axis may influence risk of MYCN-dependent neuroblas-
toma in general, not necessarily only those tumors with ge-
nomic amplification of MYCN.

Although height attainment has been well studied as a 
risk factor for adult-onset cancers, the subject is signifi-
cantly understudied in the context of childhood cancers. 
One exception is a recent publication identifying signifi-
cant associations between genetic predisposition to taller 
childhood and adult height attainment and risk of child-
hood osteosarcoma.25 The use of polygenic score analyses 
has helped to resolve several challenges in the epidemi-
ologic investigation of height attainment and childhood 
cancer risk. As toxic therapeutic interventions such as 
chemotherapy and radiation therapy can stunt growth and 
delay pubertal onset in neuroblastoma survivors, relation-
ships between these anthropometric variables and neu-
roblastoma risk are typically confounded by the effects 
of treatment, which is particularly aggressive in cases of 
MYCN-amplified neuroblastoma. In the present study, 
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utilization of polygenic scores as instrumental variables 
for height attainment allowed us to study the association 
between stature and neuroblastoma risk in a case-control 
setting without susceptibility to reverse causality and con-
founding effects due to chemo-radiotherapy treatment.63,64

Our study is unique in its approach to dissecting a role 
for genetic determinants of height in contributing to neuro-
blastoma risk overall and MYCN-amplified neuroblastoma 
in particular. Polygenic score analyses are useful for study-
ing the genetic epidemiology of childhood cancer, where 
traditional GWAS approaches are often underpowered due 
to sample size limitations. Such polygenic scores are calcu-
lated from variant-effect-size weighted aggregations of the 
trait-associated alleles64 and can be used to encapsulate ef-
fects among a group of genetic variants that may not indi-
vidually achieve significance in single SNP analyses, thereby 
obscuring potentially important associations.65,66 The need 
to extend genetic epidemiology approaches beyond GWAS, 
such as through the use of polygenic scores, is increasingly 
essential in association studies.67

One limitation of our study is that we were unable to com-
plete a formal replication of our case-control results due to 
the limited incidence of neuroblastoma, which hinders the 
availability of independent datasets for validation; however, 
we sought to further validate our finding of an association 
between genetic determinants of height and neuroblastoma 
risk using rick genotype-phenotype data available from the 
UK Biobank.

Our findings from UK Biobank data examining asso-
ciations between height phenotypes and known neuro-
blastoma GWAS hits provides further validation of our 
case-control finding that height attainment and neuroblas-
toma may share genetic drivers. Although neuroblastoma 
risk loci were enriched for association with both child-
hood and adult height phenotypes among UK Biobank 
participants, the neuroblastoma risk alleles were not asso-
ciated with either childhood or adult stature in a consistent 
direction (eg, “risk alleles” associated with taller stature 
and “protective alleles” associated with shorter stature). 
Recently, we identified a similar relationship between the 
genetic determinants of platelet count and acute lympho-
blastic leukemia (ALL) using a hybrid approach integrat-
ing case-control and UK Biobank data.68 This study also 
did not reveal a directional relationship between genetic 
variants associated with platelet count and ALL risk, but 
rather indicated that pleiotropic genetic variants contrib-
uted to both phenotypes. Thus, while neuroblastoma risk 
loci are significantly enriched for association with height 
phenotypes compared to our control SNP sets, these as-
sociations do not suggest that stature itself is likely to act 
as an effect mediator (ie, “intermediate phenotype”)63 
on a causal pathway connecting these genetic variants 
to neuroblastoma pathogenesis. Instead, it is likely that 

there are common biological pathways influencing both 
height attainment and neuroblastomagenesis, although 
our analyses did not identify specific pathways (eg, WNT 
or Hedgehog) that seemed to drive the polygenic score 
associations.

Our observations that genetic determinants of both taller 
pre-pubertal height and shorter adult height were inde-
pendently associated with risk of MYCN-amplified neuro-
blastoma reinforce the idea that distinct genetic risk factors 
and biological pathways underlie risk of MYCN-amplified 
vs unamplified neuroblastoma. These findings reveal that 
there are likely pleotropic genetic determinants that influ-
ence both height/pubertal timing and neuroblastomagenesis. 
These shared biological pathways and the genetic architec-
ture underlying both growth trajectories and risk of MYCN-
amplified neuroblastoma require additional investigation. 
Further exploration of this novel association may potentially 
improve prognostication and risk stratification of children 
with neuroblastoma by leveraging germline genetic risk 
variants and may reveal therapeutic targets for aggressive 
MYCN-amplified neuroblastoma.
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