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Abstract

Background—To identify genetic variants contributing to preterm birth using a linkage 

candidate gene approach.

Methods—We studied 99 single nucleotide polymorphisms for 33 genes in 257 families with 

preterm births segregating. Nonparametric and parametric analyses were used. Premature infants 

and mothers of premature infants were defined as affected cases in independent analyses.

Results—Analyses with the infant as the case identified two genes with evidence of linkage: 

CRHR1 (p=0.0012) and CYP2E1 (p=0.0011). Analyses with the mother as the case identified four 

genes with evidence of linkage: ENPP1 (p=0.003), IGFBP3 (p=0.006), DHCR7 (p=0.009), and 

TRAF2 (p=0.01). DNA sequence analysis of the coding exons and splice sites for CRHR1 and 

TRAF2 identified no new likely etiologic variants.

Conclusion—These findings suggest the involvement of six genes acting through the infant 

and/or the mother in the etiology of preterm birth.

Introduction

Preterm birth (PTB) is a major public health issue accounting for three million deaths 

worldwide each year. Despite a slight decrease in the incidence recently, PTB has increased 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding Author: Jeffrey C Murray, MD, University of Iowa, Department of Pediatrics, 500 Newton Road, 2182 ML, Iowa City, 
IA 52242, Telephone: 319-335-6897, Fax: 319-335-6970: jeff-murray@uiowa.edu. 

HHS Public Access
Author manuscript
Pediatr Res. Author manuscript; available in PMC 2013 August 12.

Published in final edited form as:
Pediatr Res. 2013 February ; 73(2): 135–141. doi:10.1038/pr.2012.166.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


from about 10% to over 12.5% of births over the last two decades in the United States (1). 

Improvements in neonatal care have contributed to an increase in survival rates of preterm 

infants (2) in countries with optimal infant healthcare delivery. However, despite these 

advances, PTB is still associated with substantial rates of morbidities, especially in 

extremely preterm infants, including chronic lung disease, patent ductus arteriosus, 

retinopathy of prematurity, intracranial hemorrhage, and cerebral palsy (3). These 

complications, in addition to PTB itself, are the largest risk factors for infant mortality in the 

United States (4).

The majority (72%) of PTB is spontaneous (5) with unknown etiology (6). One substantial 

risk factor for PTB is genetic predisposition (7,8). An infant has an increased risk of being 

premature if the mother was born prematurely (9), if a maternal aunt had a premature infant 

(10), and especially if the mother had a prior PTB (11). Twin studies suggest that the 

heritability of PTB ranges from 15 to 40% (6). A few other maternal risk factors implicated 

in spontaneous PTB include low socioeconomic status, black race, younger age, intrauterine 

infection, inflammation (6), low pre-pregnancy weight (12), cholesterol levels (13,14), and 

substance abuse (15,16). Conditions, such as preeclampsia or fetal distress, may lead to 

induction of labor or cesarean delivery prior to 37 weeks gestation, resulting in an indicated 

PTB. Studies have shown the mother transmits much of the genetic risk for spontaneous 

PTB with smaller contributions from the father and fetus (17-19).

There are a variety of approaches to identify genes associated with a complex trait. A 

candidate gene approach takes advantage of the known biology associated with labor and 

delivery whereas a genome wide approach can implicate new physiologic pathways. In 

addition to known biology, conservation of evolutionary mechanisms can also be applied to 

human parturition timing to suggest additional genes (20). There are strong arguments for 

candidate gene studies to continue being used in the study of complex disease (21). Linkage 

studies have the ability to detect rare, higher risk variants and can identify causal genes 

when allelic heterogeneity prevents genome wide association from succeeding (22). We 

hypothesized that using a candidate gene linkage approach we would identify new genes 

containing variants that contribute to familial cases of PTB.

Results

A total of 257 extended families were chosen including 492 premature infants forming 297 

affected relative pairs (260 infant affected pairs and 37 mother affected pairs), see Table 1 

for a summary by study site. The mean family size for typed members was 10.9±3.4 

(median=10; range=6-27) with a mean of 2.0±0.9 for typed premature infants (median=2; 

range=1-5) and a mean of 1.2±0.4 for typed mothers of premature infants (median=1; 

range=1-3) per pedigree. An initial power analysis indicated the sample size for this study 

was adequate to detect evidence of linkage with modest locus heterogeneity and Mendelian 

models. The data for all genes looking for either a fetal or maternal effect using 

nonparametric linkage analysis is summarized in Figure 1 and using transmission 

disequilibrium test (TDT) is summarized in Figure 2. The full dataset along with parametric 

linkage results, which did not reveal any significant findings, is available in Supplemental 

Tables 1A and 1B, online. Two single nucleotide polymorphisms (SNPs) violated Hardy-
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Weinberg equilibrium and were not included in the analysis: rs1876831 (CRHR1, p=5E-11) 

and rs573549 (APOA1, p=0.0004).

With the preterm infant as the affected case, a nonparametric linkage analysis of all 

candidate genes revealed two linkage peaks. These multipoint linkage peaks were on 

chromosome 10 (CYP2E1, p=0.0011-0.002) and chromosome 17 (CRHR1, 

p=0.0012-0.002). CRHR1 also had significant singlepoint linkage peaks (p=0.05-0.0014). 

With the mother of a premature infant as the affected case, six linkage peaks were identified. 

Four were multipoint linkage peaks on chromosome 6 (ENPP1, p=0.003), chromosome 7 

(IGFBP3, p=0.006), chromosome 9 (TRAF2, p=0.01), and chromosome 11 (DHCR7, 

p=0.009). Three were singlepoint linkage peaks on chromosome 5 (HAVCR2, rs12654265, 

p=0.002), chromosome 10 (MBL2, rs2136892, p=0.001), and chromosome 11 (DHCR7, 

rs1790318, p=0.008).

Using TDT, we identified eight nominally significant associated SNPs (p=<0.05). However, 

none fell within the most significant linkage peaks based on affection status, and none were 

significant when accounting for multiple comparisons using a Bonferroni correction. With 

the mother as case, there was one suggested association with rs10878774 in INFG 

(p=0.047). With the infant as case, a suggested association was seen for rs2303152 in 

HMGCR (p=0.046); rs605203 (p=0.047), rs7746553 (p=0.019), and rs592229 (p=0.034) in 

C2; rs44589901 in DEFA6 (p=0.036); rs11003136 in MBL2 (p=0.003); and rs4760648 in 

VDR (p=0.010).

An analysis was performed that stratified premature individuals based on type of labor. 

There were 251 individuals with spontaneous, 40 with induced, 36 with no labor (cesarean 

section), and all others with unknown type of labor. The reason for induction was not known 

for all individuals in the dataset. There was no significant difference in mean (p=0.07) or 

median (p=0.19) gestational age between those with spontaneous, induced, and no labor. 

When the unknown group was added, a statistically significant difference was seen when 

compared with the no labor group (ANOVA mean p=0.02, median p=0.01), but no 

difference was seen comparing with the spontaneous and induced groups. Using the preterm 

infant with spontaneous labor as the affected case, a nonparametric linkage analysis revealed 

two multipoint peaks and six singlepoint peaks. The multipoint peaks were on chromosome 

9 (TRAF2, p=0.03) and chromosome 20 (BPI, p=0.03). The singlepoint peaks were in 

HMGCR (rs3931914, p=0.04), PTGS1 (rs10513401, p=0.03), TRAF2 (rs10781522, p=0.04), 

CRHR1 (rs7225082, p=0.014), and BPI (rs5743507, p=0.04, and rs4358188, p=0.04). TDT 

identified eight suggested associations: rs7746553 in C2 (p=0.02), rs4458901 in DEFA6 

(p=0.003), rs2515617 in ABCA1 (p=0.04), rs10781522 (p=0.04) and rs 4880166 (p=0.04) in 

TRAF2, rs11003136 in MBL2 (p=0.02), rs1630498 in DHCR7 (p=0.01), and rs1893505 in 

PGR (p=0.02).

Linkage haplotype analysis was performed for CRHR1 as it had the strongest linkage signal. 

The 3 SNPs in CRHR1 generated 7 of a possible 8 haplotypes. These genotypes were treated 

as “super alleles” numbered 1 through 8. Because haplotypes 6 and 7 had low frequencies, 

they were pooled and redefined. Both parametric and nonparametric analyses were 

performed. The nonparametric p=0.0024. The dominant model had LOD score 0.82 and 

Bream et al. Page 3

Pediatr Res. Author manuscript; available in PMC 2013 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



heterogeneity LOD score (HLOD) 1.32 (alpha=0.630). The recessive model was not 

significant (LOD=-18.1, HLOD=0.329 with alpha=0.121). With TDT haplotype association 

analysis, no individual haplotype was significant (p>0.28) with the global p=0.83.

An initial analysis of 33 SNPs in OXTR, PGR, VDR, CRHR1, PTGS1, KCNN3, TRAF2, 

IGF1R, and NR3C1 was performed on a subset of the population (412 premature infants 

forming 230 affected relative pairs) in which CRHR1 and TRAF2 showed evidence of 

linkage (p=<0.01). Because of strong evidence in the literature to support a causal genetic 

variant within these genes, we sequenced their coding regions rather than the 10-20 

centimorgan chromosomal region surrounding the linkage peaks identified. While 

previously reported SNPs were identified in the coding regions, no novel missense, frame-

shift, or nonsense mutations were detected.

Discussion

Identification of a genetic contribution to PTB would allow detection of at-risk pregnancies 

and might also suggest environmental contributors to PTB. This could provide tools to 

prolong gestation by tailoring obstetrical management to individual genetic susceptibilities. 

In the past, interventions for preventing PTB have proven largely unsuccessful (23), but by 

identifying specific individual pathophysiologic mechanisms of PTB new strategies can be 

developed. In this study, we used a linkage candidate gene and sequencing approach in an 

attempt to identify chromosomal regions that may contain genes involved in the etiology of 

PTB. Genome wide association studies have had enormous success recently in identifying 

genes associated with complex traits, but they have not been reported for PTB. In addition, 

association will not identify those genes where allelic heterogeneity is responsible for the 

heritability even while those alleles might have greater impact on the phenotype in a given 

family than common variants typically have. Linkage is the best approach to detect this class 

of variant. While previous studies have supported a stronger maternal contribution to PTB, it 

is also thought that PTB may be due to the role of genes present in the mother/uterus, baby/

placenta, or a combination of both (8,24). This is the first large linkage study looking at both 

the mother and the fetus as potential risk cases so the potential linkages identified will be 

signals to be examined in larger studies using more markers and a greater number of 

families then were available in this study. Our findings suggest the involvement of CRHR1 

or CYP2E1 mediated by the infant and/or ENPP1, IGFBP3, DHCR7, or TRAF2 mediated by 

the mother in the etiology of PTB. CRHR1, DHCR7, and TRAF2, in particular, are members 

of pathways identified in prior studies and have biologic plausibility for playing a role in 

PTB.

CRHR1 encodes one of the two receptors found in humans to which corticotropin-releasing 

hormone (CRH) binds (25). CRHR1 is expressed in the pituitary (26), endometrium (27), 

myometrium, and placenta (25), among other locations. The coding sequence of CRHR1 is 

highly conserved with only 6 missense variants reported in the NHLBI/GO database (http://

evs.gs.washington.edu/EVS/) of over 1000 sequenced Europeans. Placental CRH is part of a 

feed-forward loop in both mother and fetus. CRH stimulates the release of ACTH from the 

pituitary, which leads to the release of glucocorticoids from the adrenal glands promoting 

production of more CRH (26,27). Plasma CRH levels undergo an exponential increase 
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during pregnancy peaking at the time of delivery (26) due to increased placental production 

and decreased CRH binding protein concentrations (27). Women having a PTB undergo a 

more rapid increase (26) establishing different patterns of CRH levels as early as the end of 

the first trimester, suggesting that the length of gestation is predetermined and the onset of 

parturition is triggered when CRH levels peak (26). Genetic variants in CRHR1 have also 

been shown to have an association with susceptibility to bacterial vaginosis, which is a risk 

factor for PTB (28).

7-dehydrocholesterol reductase catalyzes the final step in the synthesis of cholesterol. 

Cholesterol is an important substrate in the synthesis of many hormones including placental 

progesterone (13), which is critical for successful reproduction. A physiologic 

hypercholesterolemia has been demonstrated to occur later in pregnancy that is thought to be 

a mechanism for pregnancy maintenance (29). A study by Steffen, et al. showed fetal 

polymorphisms in DHCR7, as well as other genes involved in cholesterol metabolism, to be 

associated with birth weight and PTB. In addition, a strong association was seen between 

low total cholesterol levels during pregnancy in Caucasian women and PTB (13).

TRAF2 plays a role in the TNF signal transduction pathway. In this pathway, TNF binds its 

receptor to recruit caspase 8, initiating apoptosis (30). Activation of this pathway via binding 

to TNF receptor 1 on fetal membranes has been implicated in the etiology of premature 

rupture of membranes (31). TNF also activates the transcription factor nuclear factor kappa 

B (NF-kappa B), which interacts with inhibitor-of-apoptosis proteins to block caspase 8 

(32). TNF binding to TNF receptor 2 on fetal membranes activates NF-kappa B via TNF 

receptor-associated factor 2 (TRAF2) leading to increased production of inflammatory 

cytokines. This subsequently increases production of prostaglandins, which can initiate 

preterm labor (31).

There is less evidence to support CYP2E1, ENPP1, and IGFBP3 in the etiology of PTB, but 

they may play a role based on known maternal risk factors. Members of the cytochrome 

P450 family are involved in the detoxification and metabolism of a variety of substrates as 

well as synthesis of cholesterol, steroids, and other lipids. CYP2E1, specifically, encodes a 

protein that is induced by ethanol and pathologic states like fasting, diabetes, obesity, and 

high fat diet (33). It also metabolizes specific substrates including ethanol and nitrosamines 

(34), premutagens found in cigarette smoke. ENPP1 encodes a protein responsible for 

cleaving pyrophosphate and phosphodiester bonds of nucleotides and nucleotide sugars, 

which are a source of chemical energy and play an important role in metabolism. Phosphate 

removal can interrupt the activity of nucleotides resulting in deranged metabolism. IGFBP3 

encodes a protein that binds the majority of circulating insulin-like growth factors, which are 

thought to play a role in fetal and postnatal growth (35). Increases in maternal serum levels 

have been associated with increasing gestational age (36), and decreased levels have been 

shown to be present in deliveries prior to 32 weeks gestation (35). An increase in 

inflammatory cytokines has been shown to decrease levels of insulin-like growth factor-

binding protein 3 (IGFBP3) (37), and inflammation is a well-known pathway implicated in 

PTB (6).
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For this study, the number of affected relative pairs was limiting, particularly for mothers of 

premature infants. Additional families could provide power to make a genome wide linkage 

analysis practical. A second limitation was that roughly one-third of our cohort had 

unknown type of labor. Therefore, even though a separate analysis was performed looking at 

spontaneous PTB only, the results should be interpreted keeping in mind that the sample size 

as well as the power of the study were both significantly reduced. In addition, there were 

only 40 infants with known induced PTB and the reason for augmentation was not known 

for all these infants preventing us from performing a separate analysis of these individuals. 

For future studies, it would be important to recruit families for which the type of labor and 

reasons of augmentation, if applicable, are known in order to have a more informative 

cohort to use for stratified analyses.

Additional sequencing could better characterize the significant linkage peaks identified in 

this study. It would be important to look at regulatory elements for CRHR1 and TRAF2 since 

only coding regions were examined. In addition, the coding regions and regulatory elements 

for the other genes with significant linkage peaks (CYP2E1, ENPP1, IGFBP3, and DHCR7) 

should be sequenced. An alternative approach would be to saturate the chromosomal regions 

surrounding these genes with additional markers and include additional samples for a fine-

mapping genetic association study with increased power. Whole exome sequencing using 

familial cases may also provide valuable insight. Once we have further defined genetic 

variants and likely environmental contributors analyses can be performed to look at the 

interactions and to adjust for confounding variables.

In summary, we have identified several candidate genes/regions that may harbor rare 

variants contributing to PTB, with one, CRHR1 having the strongest data and where the 

effect is modulated via the fetus.

Methods

DNA Sample Collection

Cases were defined as singleton preterm infants (delivery at <37 completed weeks of 

gestation) admitted to one of our centers in Iowa City IA, Pittsburgh PA, Rochester NY, 

Wake Forest NC, or the island of Funen in Denmark. We included both indicated and 

spontaneous deliveries. Gestational age was estimated by the first day of the last menstrual 

period and confirmed by obstetrical examination, including ultrasound when indicated. 

Signed informed consent, approved by the Institutional Review Board (#199911068) at the 

University of Iowa, was obtained from all families. DNA was extracted from cord blood or 

buccal swabs collected for the infants and venous blood, saliva samples, or buccal swabs 

collected for relatives. Demographic information and additional phenotype data was 

collected through an interview with the mother and medical chart review.

Family Selection

Families were included if samples were available for a minimum of two premature 

individuals or mothers of premature infants, excluding multiples, or one premature infant 

with at least one full term sibling or cousin. An infant affected relative pair was defined as 
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any pair of premature individuals, excluding infant/parent pairs, within a family. A mother 

affected relative pair was defined as a pair of sisters both having premature infants.

Genotyping

Candidate genes were selected based on biologic plausibility, a review of current literature 

(14,20,26,31,34-36,38-40), and previous association study findings from our lab. The group 

included 8 genes (BPI, C2, DEFA6, DEFA4, DEFA5, INFG, MBL2, TRAF2) in 

inflammatory pathways, 12 genes involved in hormonal regulation (ABCA1, APOA1, 

APOA5, CRHR1, CYP1B1, DHCR7, HMGCR, LNPEP, NR3C1, OXTR, PGR, PTGS1), and 

13 other genes (CYP24A1, CYP2E1, DACH2, ENPP1, EPHX1, HAVCR2, IGF1R, IGFBP3, 

KCNN3, TP53, UGT1A1, VDR, ZIC3). A list of all 33 genes and their respective SNPs, 99 

of 101 are reported after excluding two not in Hardy-Weinberg equilibrium, are in Table 2.

Genotyping of SNP markers was performed using Applied Biosystems (Foster City, CA) 

TaqMan chemistry. Within each gene, 2-4 on-demand SNP genotyping assays were chosen 

based on linkage disequilibrium data available from the International Hapmap project 

(www.hapmap.org) as well as for their haplotype characteristics, such as high 

heterozygosity and low correlation coefficient, to maximize heterozygosity. The average 

heterozygosity per locus was 0.85. Applied Biosystems provided standard conditions under 

which reactions were run. Thermocycling was performed with conditions of 95°C for 10 

minutes followed by 50 cycles alternating between 92°C for 15 seconds and 60°C for 1 

minute. Allele determination was done in the endpoint analysis mode on an Applied 

Biosystems 7900 HT Sequence Detection System machine with SDS 2.3 software. 

Mendelian errors were checked and individuals with greater than 10% error rates were 

excluded from analyses. Genotypes were entered into Progeny (South Bend, IN), a 

laboratory database, and files were generated in linkage format for analysis.

Data Analysis

Two different phenotypic outcomes, premature individuals and mothers of premature 

individuals, were defined in independent analyses. Singlepoint and multipoint nonparametric 

and parametric linkage analyses as well as linkage haplotype analysis were performed using 

the Merlin 1.1.2 software package (http://www.sph.umich.edu/csg/abecasis/Merlin/

index.html). Two parametric linkage analysis models, autosomal recessive and autosomal 

dominant, were used assuming a disease allele frequency of 0.11 for both. We used 

penetrances of 0.80, 0.02, and 0.02 for the recessive model and 0.20, 0.20, and 0.02 for the 

dominant model for the wild-type homozygotes, heterozygotes, and homozygotes, 

respectively. The values selected were based on the rates of preterm birth in US Caucasian 

populations during the time frame of this study and the penetrances as arbitrary, but 

midrange choices based on other complex trait models. Changes in penetrances did not 

greatly affect results.

Association testing was performed on the families with DNA samples available to form 

case-parent triads using the preterm infant or the mother of a preterm infant as case. We 

used the Family Based Association Test (http://www.biostat.harvard.edu/∼fbat/fbat.htm), a 

family-based TDT, to look for nonrandom allele transmission from parents to offspring.
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Sequencing

Primers were designed from public sequence to amplify coding regions of CRHR1 and 

TRAF2, and are available upon request. We sequenced 190 preterm infants from the linkage 

cohort and 105 mothers of preterm infants from a population-matched cohort in Helsinki, 

Finland. In addition, 162 parents of term infants from Iowa City, 29 CEPH parents, and 85 

mothers of term infants from Helsinki, Finland were used as controls. PCR products were 

sent to Functional Biosciences (Madison, WI) for sequencing. Chromatograms were 

transferred to a UNIX workstation, base called with PHRED (v.0.961028), assembled with 

PHRAP (v. 0.960731), scanned by POLYPHRED (v. 0.970312), and viewed with CONSED 

(v. 4.0).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Nonparametric linkage (NPL) singlepoint (SP) and multipoint (MP) analysis results using 

either the infant or mother as the affected case are graphed by SNP centimorgan position 

starting with chromosome 1. Diamond line, infant NPL SP results; Triangle line, infant NPL 

MP results; Square line, mother NPL SP results; Circle line, mother NPL MP results. *p < 

0.01.
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Figure 2. 
Transmission disequilibrium test (TDT) analysis results using either the infant or the mother 

as the affected case are graphed by SNP centimorgan position starting with chromosome 1. 

Diamond line represents infant results. Square line represents mother results. *p < 0.05; **p 

< 0.01.
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