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Abstract

Objective: To investigate the underlying functional network brain-activity changes in patients with

adult comitant exotropia strabismus (CES) and the relationship with clinical features using the

voxel-wise degree centrality (DC) method.

Methods: A total of 30 patients with CES (17 men, 13 women), and 30 healthy controls (HCs;

17 men, 13 women) matched in age, sex, and education level participated in the study. DC was used

to evaluate spontaneous brain activity. Receiver operating characteristic (ROC) curve analysis was

conducted to distinguish CESs from HCs. The relationship between mean DC values in various

brain regions and behavioral performance was examined with correlation analysis.

Results: Compared with HCs, CES patients exhibited decreased DC values in the right

cerebellum posterior lobe, right inferior frontal gyrus, right middle frontal gyrus and right superior

parietal lobule/primary somatosensory cortex (S1), and increased DC values in the right superior

temporal gyrus, bilateral anterior cingulate, right superior temporal gyrus, and left inferior parietal

lobule. However, there was no correlation between mean DC values and behavioral performance

in any brain regions.

Conclusions: Adult comitant exotropia strabismus is associated with abnormal brain network

activity in various brain regions, possibly reflecting the pathological mechanisms of ocular motility

disorders in CES.
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Introduction

Strabismus is a common ocular motility
disorder, with a prevalence at birth of
3.55% in Asian children.1 Exotropia is the
major type of strabismus in Iran.2 Exotropia
is often accompanied by amblyopia, and
can lead to the impairment of binocu-
lar vision.3,4 Clinically, strabismus can be
loosely classified into comitant and incomi-
tant strabismus, and surgery is currently the
most common treatment for the disorder.5,6

Ocular muscle abnormality is a common
cause of strabismus. Defects of extraocular
muscle pulleys (EOM) contribute to the onset
of incomitant strabismus.7 In addition, inco-
mitant strabismus is often concurrent with
the instability of rectus pulleys.8 Anomalous
extraocular muscles may also lead to vertical
strabismus.9 Neuronal activity within the
oculomotor brain regions plays an important
role in eye movement. The frontal eye field
(FEF) is involved in eye movement control.10

Moreover, the FEF may also be involved in
conjugating eye movements.11 A previous
study reported that the gray matter volume
of the FEF was increased in adult strabis-
mus.12 Thus, strabismus is not only accom-
panied by abnormal eye muscle function, but
is also associated with dysfunction of oculo-
motor centers in the brain.

Functional magnetic resonance imaging
(fMRI) has been successfully used for study-
ing strabismus. One previous study reported
that metabolic activity in ocular dominance
columns was reduced in infantile monkeys
with strabismus.13 Another study reported
that primary visual cortex activity was sup-
pressed in patients with strabismus.14

Moreover, another group demonstrated
that there was lower fractional anisotropy

(FA) in the middle occipital gyrus in strabis-
mus patients. Although these studies showed
morphological changes in the neurons of
patients with strabismus, neuro-mechanical
changes in comitant strabismus are still
unclear.15

Many previous studies have demon-
strated that the brain consists of complex
large-scale networks characterized by inter-
regional interactions16,17 Voxel-wise degree
centrality (DC) measures the network archi-
tecture of functional connectivity (FC)
within the human brain connectome at the
voxel level.18 Unlike amplitude of low-
frequency fluctuation (ALFF)19–23 and
regional homogeneity (ReHo) techniques,24

the DC method does not require the defin-
ition of regions of interest (ROIs). Thus, DC
is a better network metric than other meas-
urements because it counts the number of
direct connections for a given voxel in a
network and reflects its functional connect-
ivity within the brain network without
requiring a priori selection. The DC
method has been successfully used to exam-
ine the neural pathological mechanisms of
many diseases, including autism17 and
Parkinson’s disease.25 In the current study,
we examined functional network brain-
activity changes in patients with CES and
their relationship with clinical features.

Materials and methods

Subjects

A total of 30 adult patients (17 men,
13 women) with CES were recruited from
the Ophthalmology Department of the First
Affiliated Hospital of Nanchang University
Hospital in Jiang Xi province of China. The
criteria for CES included: 1) exotropia with
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uncorrected or corrected visual acuity
(VA)> 1.0; and 2) the deflection angles of
the strabismus group were equal. The exclu-
sion criteria included: 1) acquired strabis-
mus, incomitant strabismus; 2) conditions
of eye diseases, trauma, or eye surgery; 3)
conditions of psychiatric disorders (depres-
sive disorder, delusional disorder), diabetes,
cardiovascular disease, cerebral disease
(cerebral hemorrhage, cerebral infarction,
cerebral vascular malformation). In add-
ition, we recruited 30 volunteers from
Nanchang in Jiangxi province in China as
healthy controls (HCs; 17 men, 13 women)
with a similar age range, sex ratio, and
education status. All HCs met the following
criteria: 1) no ocular disease; 2) no psychi-
atric disease (depressive disorder, delusional
disorder); and 3) ability to undergo MRI
scanning (e.g., no metal devices in the body).

All research methods complied with the
declaration of Helsinki. All subjects partici-
pated voluntarily, and were informed about
the purpose, content, and risks of the study
before providing written consent.

MRI data acquisition

All MRI data were collected on a Siemens
Trio 3.0 T scanner with an 8-channel
phased-array head coil. All subjects under-
went MRI scanning. The MRI scanning
parameters were based on those reported in
a previous study.26

fMRI data preprocessing

All functional data were pre-filtered with
MRIcro (www.MRIcro.com) and prepro-
cessed using SPM8 (http://www.fil.ion.ucl.
ac.uk/spm), DPARSFA (http://rfmri.org/
DPARSF) and the Resting-state Data
Analysis Toolkit (REST; http://www.rest-
fmri.net). More details of the data prepro-
cessing were described in a previous study.23

Using the DPARSF toolbox, the values
of voxel-specific frame-wise displacement

(FDvox) and voxel-specific total displace-
ment (TDvox) values for each subject were
calculated. Group differences of the mean
FDvox were compared with a two-sample
t-test.

Degree centrality

Based on the individual voxel-wise func-
tional network, DC was calculated by
counting the number of significant supra-
threshold correlations (or the degree of the
binary adjacency matrix) for each subject.
The voxel-wise DC map for each individual
was converted into a z-score map using the
following equation:18

Zi¼DCi – mean (DC of all voxels in
brain mask)/std (DC of all voxels in brain
mask)

Statistical analysis

The difference in clinical manifestations
between the CES and HCs was assessed
with independent two-sample t-tests using
SPSS 19.0 software (IBM, Armonk, NY). A
general linear model (GLM) analysis was
performed with the SPM8 toolkit to inves-
tigate the group differences in DC values
between CES patients and HCs (significance
level of P< 0.05, Gaussian random field
[GRF] theory corrected). The relationship
between mean DC values and behavioral
performance was calculated using correl-
ation analysis.

Brain-behavior correlation analysis

Clinical data of CES patients were collected,
including the duration of CES and best-
corrected VA of both eyes in all subjects
using a logarithmic visual acuity chart.
A correlation analysis was performed to
evaluate the relationship between the mean
DC values in different brain regions and the
related clinical features in the CES group
(significance level of P< 0.05).
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Clinical data analysis

For behavioral performance, two-sample
Student’s t-tests were used to analyze con-
tinuous data (significance level of P< 0.05).
IBM SPSS for Windows, version 20.0 (IBM
Corp.; Armonk, NY, USA) was used for the
statistical analysis.

Results

Demographics and visual measurements

There were no significant differences in
weight (P¼ 0.497), age (P¼ 0.078), best-
corrected VA-Right (P¼ 0.203) or best-
corrected VA-Left (P¼ 0.484) between the
two groups (Table 1).

DC differences

Using spatial distribution maps, similar
spatial distributions of the functional hubs
(high DC) were identified in the two groups.
Compared with HCs, CES patients exhib-
ited significantly decreased DC values in the
in the right cerebellum posterior lobe, right
inferior frontal gyrus, right middle frontal
gyrus and right superior parietal lobule/S1,
and significantly increased DC values in the
right superior temporal gyrus, bilateral
anterior cingulate, right superior tem-
poral gyrus, and left inferior parietal lobule
(voxel P< 0.01 and cluster-level P< 0.05,

GRF correction) (Figure 1 and Table 2).
Figure 2 shows the mean values of altered
DC between CES patients and HCs (voxel
P< 0.01 and cluster-level P< 0.05, GRF
correction). In the CES group, there was
no significant correlation between mean DC
values in any brain region and behavioral
performance (P> 0.05).

Receiver operating characteristic curve

We identified brain regions with different
DC values between the CES and HC groups,
which could be utilized as markers to sep-
arate CES from HCs. The areas under
the curve (AUCs) were as follows: right
superior temporal gyrus1 (0.711), bilateral
anterior cingulate (0.728) (CESs>HCs)
(Figure 3(a)), and primary somatosensory
cortex/S1 (0.704) (CESs<HCs) (Figure 3(b)).

Discussion

To our knowledge, the current study is the
first investigation of the effects of adult
CES on functional network brain-activity
changes using the DC method. Compared
with HCs, adult CES patients exhibited
significantly decreased DC values in the
right cerebellum posterior lobe, right infer-
ior frontal gyrus, right middle frontal gyrus
and right superior parietal lobule/S1; and
significantly increased DC values in the right

Table 1. Demographics and clinical measures by group.

Condition CES HC t P-value*

Sex (men/women) 13/17 13/17 N/A > 0.99

Age (years) 25.60� 8.64 29.20� 6.81 �1.792 0.078

Weight (kg) 61.63� 5.92 60.60� 5.80 0.683 0.497

Handedness 30R 30R N/A >0.99

Exotropia 30 N/A N/A N/A

Duration of strabismus (years) 25.60� 8.64 N/A N/A N/A

Best-corrected VA-Right 1.07� 0.14 1.12� 0.16 �1.287 0.203

Best-corrected VA-Left 1.12� 0.16 1.15� 0.17 0.675 0.484

Notes: * Independent t-tests comparing two groups (P< 0.05 significant differences).

Abbreviations: CES, comitant exotropia strabismus; HCs, healthy controls; N/A, not applicable; VA, visual acuity.
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superior temporal gyrus, bilateral anterior
cingulate, right superior temporal gyrus,
and left inferior parietal lobule.

Analysis of the decreased DC values
in adult CES

The cerebellum posterior lobe is involved in
motor coordination, and is reported to be
responsible for the execution of accurate eye

movements.27 One previous study reported
that the oculomotor vermis of the cerebellar
cortex plays an important role in saccadic
eye movements in monkeys.28 Another
study reported that the posterior interposed
nucleus (PIN) in the cerebellum is involved
in conjugating eye movements in strabismic
monkeys.29 A previous study in our lab
revealed that patients with comitant strabis-
mus exhibited increased amplitude of

Figure 1. Voxel-wise comparison of DC in the CES and HC groups. Significant differences in DC were

observed in the right cerebellum posterior lobe, right inferior frontal gyrus, right middle frontal gyrus, right

superior parietal lobule/S1, right superior temporal gyrus1, bilateral anterior cingulate, right superior

temporal gyrus2 and left inferior parietal lobule. The red areas denote higher DC values, the blue indicates

lower DC values. (P< 0.05 for multiple comparisons using Gaussian Random Field (GRF) theory (z> 2.3,

cluster-wise P< 0.05 corrected).

Abbreviations: DC, Degree centrality; CES, comitant exotropia strabismus; HC, healthy controls; S1,

primary somatosensory cortex.
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low-frequency fluctuation and regional
homogeneity values in the bilateral cerebel-
lum posterior lobe.30,31 Consistent with
these findings, in the current study we

observed lower DC values in the cerebellum
posterior lobe of patients with CES. This
suggests that CES may lead to dysfunction
in the cerebellum posterior lobe, and that

Figure 2. The mean of altered DC values between the CES patients and HCs.

Abbreviations: DC, degree centrality; CES, comitant exotropia strabismus; HCs, health controls; RCPL,

right cerebellum posterior lobe; RIFG, right inferior frontal gyrus; RMFG, right middle frontal gyrus; RSTG,

right superior temporal gyrus1; BAC, bilateral anterior cingulate; LIPL, left inferior parietal lobule; S1, primary

somatosensory cortex; RSPL, right superior parietal lobule.

Table 2. Brain regions with significant differences in DC between CES patients and HCs.

Brain areas

MNI coordinates

voxels BA L/R

Peak T

valuesx y z

CES<HC

Cerebellum posterior lobe 33 �60 �45 94 R �4.692

Inferior frontal gyrus 27 33 3 56 46,9 R �4.029

Middle frontal gyrus 33 54 9 64 10 R �4.696

Superior parietal lobule/S1 30 �36 45 117 7 R �4.209

CES>HC

Superior temporal gyrus1 24 12 �27 44 28 R 4.212

Anterior cingulate 0 27 �3 102 24 B 4.407

Superior temporal gyrus2 66 �24 12 50 42 R 5.697

Inferior parietal lobule �39 �39 21 40 13 L 3.612

Notes: The statistical threshold was set at voxel level with P< 0.05 for multiple comparisons using Gaussian Random Field

(GRF) theory (z> 2.3, cluster-wise P< 0.05 corrected).

Abbreviations: DC, Degree centrality; BA, Brodmann area; CES, comitant exotropia strabismus; HCs, healthy controls;

MNI, Montreal Neurological Institute; S1, primary somatosensory cortex; R, right; L, left.
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the impairment of ocular movement may
correlate with abnormalities of the cerebel-
lum posterior lobe in CES patients.

The frontal eye field (FEF) is located in
the posterior part of the middle frontal
gyrus,32 which is mainly involved in the exe-
cution of eye movements.33 Previous studies
demonstrated that the FEF controls saccade
modulation34 and triggers the generation of
saccade movements.35 Additionally, FEF
activity has been observed during visual
search.36 One previous study showed that
the FEF, together with area V4, was active
during visual search in monkeys.37

Meanwhile, FEF lesions can lead to ocular
movement disorders.38 Yang reported that
white matter volume in the right frontal
gyrus was reduced in patients with infantile
esotropia.39 Moreover, our previous study
showed that patients with comitant strabis-
mus had significantly decreased amplitude
of low-frequency fluctuation values in the

bilateral medial frontal gyrus.30 In accord
with these previous findings, the current
results showed that CES patients had sig-
nificantly decreased DC values in the right
middle frontal gyrus, which may reflect
the dysfunction of the middle frontal gyrus
in CES. We speculatively suggest that
decreased DC values in the middle frontal
gyrus may explain eye movement dysfunc-
tion in CES patients.

The superior parietal lobule is located in
front of the postcentral sulcus, which
includes Brodmann areas 5 and 7. Previous
studies demonstrated that the SPL is respon-
sible for transmitting visual information to
the frontal lobe,40 which controls visuo-
motor integration.41 Additionally, the SPL
encodes visual and proprioceptive targets,42

and plays a vital role in body position.43 The
SPL may be involved in redirected saccades
and guided saccades.44 In the current study,
we found that CES patients exhibited

Figure 3. ROC curve analysis of the mean DC values for altered brain regions.

Notes: The area under the ROC curve was 0.711 (P¼ 0.05; 95%CI: 0.580–0.842) for the RSTG1, 0.728

(P¼ 0.002; 95%CI 0.601–0.855) for the BAC (CESs>HCs)(A), and 0.704(P¼ 0.007; 95%CI 0.569–0.840) for

the RSPL/S1(CESs<HCs)(B).

Abbreviations: ROC, receiver operating characteristic; DC, Degree centrality; CI, confidence interval;

RSTG, right superior temporal gyrus; BAC, bilateral anterior cingulate; RSPL, right superior parietal lobule;

S1, primary somatosensory cortex; CES, comitant exotropia strabismus.
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significantly decreased DC values in the
SPL. CES may lead to the dysfunction of
the SPL, which may explain the dysfunction
of eye movement in CES patients.

The primary somatosensory cortex (S1) is
involved in the sensation of pain,45 and is
activated by the experience of touch.46

Additionally, a previous study reported
that the S1 contains neurons that transmit
the eye position signal in monkey.47 In the
current study, we found significantly
decreased DC values in the S1 in patients
with CES. We speculate that CES patients
may have exhibited dysfunction in the S1,
potentially reflecting an impairment of the
eye position sensory system in CES.

Analysis of the increased DC values
in adult CES

The anterior cingulate cortex (ACC) is
located in front of the cingulate cortex,
and is responsible for many functions, such
as mood regulation,48 pain sensation49 and
cognition.50 The ACC is also in charge of
eye movement control.51 Previous studies
have demonstrated that the ACC is involved
in saccadic movements.52 The current results
revealed significantly higher DC values in
the ACC in patients with CES compared
with HCs. These findings suggest that CES
might cause dysfunction of the ACC.

The superior temporal gyrus is located in
the temporal lobe, which is involved in the
comprehension of language,53 auditory-
visual processing54 and short-term
memory.55 In addition, previous studies
have suggested that STG dysfunction may
be related to a range of diseases such as
schizophrenia,56 psychosis57 and
Alzheimer’s disease.58 In the current study,
we found that the DC values in the STG
were significantly higher in patients with
CES, suggesting that CES may lead to the
abnormalities in the STG.

Conclusion

Overall, the current results showed abnormal
spontaneous activities in many brain regions
in CES patients, which may be involved in
the pathological mechanisms underlying
ocular motility dysfunction in CES.

Prospects and limitations

The DC method is a useful technique for
monitoring whole-brain activity in vivo.
Moreover, as a type of rs-fMRI, the DC
method can be performed in the resting
state. However, the current study involved
several limitations that should be con-
sidered. First, the time course of the disease
differed between CES patients, which may
have affected the accuracy of the results.
Second, minor head movements during
scanning in some subjects may have affected
the scanning results.
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