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Abstract

Electronic access to multiple data types, from generic information on biological systems at different functional and cellular levels
to high-throughput molecular data from human patients, is a prerequisite of successful systems medicine research. However, sci-
entists often encounter technical and conceptual difficulties that forestall the efficient and effective use of these resources. We
summarize and discuss some of these obstacles, and suggest ways to avoid or evade them.
The methodological gap between data capturing and data analysis is huge in human medical research. Primary data producers
often do not fully apprehend the scientific value of their data, whereas data analysts maybe ignorant of the circumstances under
which the data were collected. Therefore, the provision of easy-to-use data access tools not only helps to improve data quality on
the part of the data producers but also is likely to foster an informed dialogue with the data analysts.
We propose a means to integrate phenotypic data, questionnaire data and microbiome data with a user-friendly Systems
Medicine toolbox embedded into i2b2/tranSMART. Our approach is exemplified by the integration of a basic outlier detection
tool and a more advanced microbiome analysis (alpha diversity) script. Continuous discussion with clinicians, data man-
agers, biostatisticians and systems medicine experts should serve to enrich even further the functionality of toolboxes like
ours, being geared to be used by ‘informed non-experts’ but at the same time attuned to existing, more sophisticated ana-
lysis tools.

Key words: genomics; systems medicine; data analysis; data integration; microbiome; inflammation

Introduction

With high-throughput omics technologies becoming an integral
part of medical research, and with many collaborative efforts
made or still under way to collate large patient cohorts, the inte-
gration of clinical and experimental data has become a critical
step towards making personalized medicine [1], and its name-
sake precision medicine [2, 3] become a reality. Here, ‘integra-
tion’ means that (1) the different data types of interest are
accessible via a single platform, (2) the data are cross-referenced
(i.e. different types of patient-specific data, such as molecular
and clinical, can be linked) and (3) the data formats and plat-
form infrastructures facilitate systematic querying. Alternative
definitions of ‘integration’ have been suggested before [4, 5], but
they essentially highlight the same issues. In recent publica-
tions [6], the importance of combining resources and pursuing
collaborative research is emphasized in the context of searching
for rare disease-causing genetic variants. To exploit the full po-
tential of systems medicine, however, pooling of data is unlikely
to suffice, but must be complemented by computational tools to
handle the different classes of ‘omics’ data that are currently at
the centre of attention. A data integration tool with a strong em-
phasis on usability across a wide range of data formats has
been described before [7]. Notably, in the context of ‘omics’
data, a recent review [8] focusing on transcriptomic and metab-
olomics data distinguishes between conceptual integration,
statistical integration and model-based integration. This dis-
tinction clearly calls for an intense dialogue between data pro-
ducers and data analysts for the endeavour of data integration
to be meaningful and successful.

The ‘added value’ of integrating molecular with clinical data
lies in the systemic perspective; this may open up for studies of
disease progression and treatment response. In fact, linkage of
different data types is one of the cornerstones of systems medi-
cine, widely defined as the translation of systems biology into
human health research. In fact, whereas systems biology in
general aims at understanding biological systems through the
use of mathematical models, high-throughput molecular data
are often used to parameterize, calibrate and test these models.
Viewed from the opposite perspective, systems biology entails
the contextualization of individual observations by additional
biological information.

A necessity for professional data integration and data
management solutions

In addition to their actual integration, proper management of
data also includes methods and solutions for safeguarding good
scientific practice. In practice, many medical research institutions
still lack the means of professional research data management.
Instead of using proper database solutions to ensure low redun-
dancy, high consistence, proper versioning and parallel access,
experimental and clinical data are often stored separately in
Excel and/or flat files. Moreover, annotation with metadata such
as standardized annotation and metadata schemata such as the
minimum information about a genome sequence (MIGS) [9] or
minimum information about a marker gene sequence (MIMARKS)
[10] is usually missing. One of the reasons for these shortcomings
is the short-term character of many research projects. Scientists
are only committed to a given project as long as the project is
funded; many research data are only taken care of to a degree
that ensures their project-embedded use. Later, particularly when
the responsible scientists leave the group, the data become or-
phan and are neither properly stored nor annotated.

Professional data management solutions are thus urgently
required in biomedical research to ensure that the expensive
high-throughput molecular data alluded to above are preserved.
Clinicians should also be put in a position to handle their pa-
tient-related data in proportion to the scientific value of these
data, which clearly requires more sophisticated tools than mere
Excel tables. Moreover, as in Germany, scientific data underly-
ing research publications are required by funding organizations
to be publicly accessible for at least 10 years (as a commitment
to ‘good scientific practice’) [11]. Most international journals
also demand long-term data storage (including backups)
[12–15], but whether this is already common practice or even a
conditio sine qua non for publication appears questionable.

As publication policy is (mostly) beyond the sphere of influ-
ence of individual researchers, any attempt to turn things
around by the scientific community itself needs to focus upon
data management and the appurtenant computational tools.
This is particularly true in view of the common gap between
data generation and data analysis, even in many state-of-the-
art projects. Mature systems for data capturing, some even GCP-
validated (good clinical practice), often face hand-made data
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management solutions lacking adequate means of (automated)
data transfer. This suboptimality of pipelines is aggravated by
the fact that clinical researchers seldom bother about the qual-
ity of their data, which could be assessed easily referring to, for
example, outlier detection tools or heat maps.

Scope of this article

In this article, we will fathom the current gap between data cap-
turing and data integration in medical research. To this end, we
will address the role of different types of data sources, the
means of presenting and visualizing integrated data marts and
the importance of linkage to other curated and/or published
data. Whereas data integration and data visualization have
made considerable progress in the recent past, the prerequisites
for connecting data with external systems medicine resources
like pathway databases are not yet fully satisfied.

General requirements for systems medicine
applications

The integration of different data types as a prerequisite of sys-
tems medicine research faces several major challenges. The fol-
lowing is a list of immediately apparent problems, without any
claim to be exhaustive.

i. Standardization of internal data formats. A typical high-
throughput data set can be stored in many different ways. To
achieve high usage efficiency and interoperability of a systems
medicine toolbox, it is essential to avoid different nomencla-
tures, e.g. for genes or biological processes, or different nor-
malization and processing strategies for the data. This point is
non-trivial because such nomenclatures are often a matter of
individual preference, and mapping from one to the other is
not necessarily unique. Regarding data processing and nor-
malization, different statistical methods require slightly differ-
ent normalizations, which in turn require access to the raw
data, an approach that is impractical for standard use.

ii. Efficient access to external (data) resources. Translation
schemes are required relating internal data formats and no-
menclatures (e.g. for cellular processes and molecular com-
ponents) to the formats and nomenclatures used in
external resources.

iii. Capability of storing intermediate computational results (in
particular, for computationally demanding processes and
for information that is used in multiple analysis steps) as
well as synthetic or randomized data complementing the
actual clinical data.

iv. Ontologies are an important intermediate step towards
data integration and cross-referencing of knowledge [16].
As has been emphasized above, a wide range of practical
problems often needs to be solved in this context, however,
including the use of different nomenclatures for different
molecular species. The necessity of standardization at this
level has also led to a plethora of tools for such mappings,
thereby facilitating the integration of different omics data
and contributing to the interoperability of databases [17].

A systems medicine data management
solution with tranSMART

Integrative platforms facilitating the combined use of diverse
data types have become an important precondition for future-
proof medical research [18]. The platform solutions devised so

far vary in terms of the supported data formats and, more im-
portantly, with regard to both their distribution and ease of
extensibility. The tranSMART platform [19] is based on the i2b2
phenotype framework [20], which was initially funded by
the American National Institutes of Health and went through
its initial open-source release in 2007. It consists of a server
for communicating and storing medical data in an
entity–attribute–value store [20] and interfaces for flexible user
queries. In 2009, an i2b2 spin-off with the focus on incorporating
high dimensional data into the system was formed and a new
interface created. Since 2013, the open-source development of
tranSMART is led by the tranSMART Foundation (http://trans
martfoundation.org) with contributions by the pharma indus-
try, private companies and university institutions. The develop-
ment is also sponsored partly by the European Commissioner
for Research, Innovation and Science. The current release of
tranSMART, version 1.2.4, provides support of the handling of
omics data such as gene expression profiles and small genomic
variants. In addition to the features of i2b2, tranSMART also
supports a range of ad hoc data analysis tools. Both platforms
are extendible by various community-created plug-ins. Based
on previous experience [21–22], i2b2/tranSMART has been iden-
tified as the data exchange solution of choice by sysINFLAME, a
multi-centre consortium funded by the German Ministry of
Education and Research as part of their systems medicine ini-
tiative ‘e:Med’ (http://www.sys-med.de/de/). The members of
sysINFLAME aim at jointly investigating inflammatory diseases
from a systems perspective, with an emphasis on chronic in-
flammatory diseases of the gut, the joints and the skin.
Consequently, a consortium-wide minimal data set is currently
being defined that allows a standardized assessment of co-
morbidities and comparisons across disease entities.

The data sources available to the consortium were systemat-
ically explored, and prototypical ETL was created for loading
and managing the data in tranSMART. The abbreviation ETL
stands for the implementation of data integration workflows,
namely the process of data extraction from a source and trans-
formation of the data for loading into a target system. The first
project data to be integrated into the platform included (1) un-
documented CSV (comma-separated values) files from a clinical
system, (2) completed copies of an extensive food frequency
questionnaire that could be enriched with ontologies and (3)
additional non-standardized study questionnaire data. The
web-based questionnaire was developed previously by the
Department of Epidemiology of the German Institute of Human
Nutrition (Potsdam-Rehbr€ucke, Germany) to obtain information
on regular dietary intake [23].

Although tranSMART provides ETL and analysis tools for
some omics data formats, microbiome data had not been
included so far. However, the analysis of microbiome data e.g.
from the skin, gut and stool is critical for the research agendas of
sysINFLAME. Therefore, we devised a system to load such data
into tranSMART before starting the development of a microbiome
analysis [24–26] extension of the platform (Figure 1).

Here, we present a small case study showing how the afore-
mentioned requirements can be incorporated (via R packages) into
the tranSMART data sharing platform [19]. A recent summary of
similar approaches for pathway information is found in [28].

Providing tools to assess data quality and for initial data
analysis: inclusion of R scripts

To assess the quality and distribution of medical research data,
we implemented some basic quality checks in tranSMART
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[29, 30]. Specifically, we integrated tools to visualize the data by
scatter plots and to conduct formal outlier tests as recom-
mended by the TMF [31], an organization for networked medical
research in Germany.

The corresponding script not only allows different outlier
tests to be performed but also supports the choice of an appro-
priate test, depending on the respective sample size. Thus, a
Dixon test is recommended for n � 8, whereas a Grubbs test is
deemed appropriate for n � 25. Both tests were adapted from

R-package ‘outliers’ [32]. For n > 25, calculation of the standar-
dized extreme deviation [33] was implemented, thereby defin-
ing outliers as values that are >5.2 median absolute deviations
away from the median. A warning is given whenever an outlier
test is not deemed appropriate.

For the ad hoc analysis of microbiome data, we integrated the
computation of alpha diversity [34] in tranSMART, using the
VEGAN software package [35]. Alpha diversity measures the
richness of microbial species at a given location, in the case of

Figure 1. Summary statistics of the analyzed microbiome data [27]. Left panel: hierarchy of available data elements; right panel: basic statistics including distribution and overview

of the current query result (screenshot from tranSMART 1.2 with Rausch 2011 data [27]). A colour version of this figure is available at BIB online: https://academic.oup.com/bib.

482 | Bauer et al.

Deleted Text: 29
Deleted Text: 30
Deleted Text: 31
Deleted Text: up
Deleted Text: ilst
Deleted Text: '
Deleted Text: '
Deleted Text: 32
Deleted Text: 33
Deleted Text: more than 
Deleted Text: <italic>-</italic>
Deleted Text: 34
Deleted Text: 35
https://academic.oup.com/bib


sysINFLAME data, the human gut. The VEGAN package offers a
choice between different diversity indices, including Shannon
entropy and Simpson index, using the diversity() function. It
also supports calculation of the number of observed taxa in a
given sample and of the Chao1-Estimator, using the
estimateR() function. The R script allows statistical compari-
son of the alpha diversity estimates from different samples or
groups. The results are visualized by bar charts or boxplots
using the ggplot2() function.

Application example: tranSMART tools to analyse the
gut microbiome

Given the significance of microbiome analyses for the overall
research goal of the sysINFLAME consortium, we focused on
tools to visualize and analyse microbiome data in
tranSMART. Key phenotypes of interest to the consortium are
inflammatory bowel diseases [Crohn disease (CD) and ulcera-
tive colitis]. For these conditions, the gut microbiome is an
important research target [36]. To facilitate systems medicine
approaches to the study of these conditions, the gut micro-
biome needs to be jointly analysed with other clinical and
molecular data [37].

We will exemplify the functionalities of our tranSMART tool-
box by relating the gut microbiome to genotypic information
based on previously published data [27]. These data set fucosyl-
transferase 2 (FUT2) genotypes of the primary non-secretor al-
lele in Caucasian populations [TaqMan SNP genotyping of
exonic mutation G428A (rs601338), coding for FUT2 nonsense
mutation W143X] and the colonic mucosa-associated microbial
community, quantified by species-level operational taxonomic
units (OTUs at 97% sequence identity) as measured in 47 indi-
viduals. Some 29 of the probands were diagnosed with CD,
whereas 18 were controls. One control with spirochaetosis had
to be excluded from further analysis. Sequence libraries of the
bacterial 16S rRNA gene were generated. Individuals homozy-
gous for the functional G allele are denoted SeSe (9 CD, 7 con-
trols), those homozygous for loss-of-function allele A are
denoted sese (6 CD, 3 controls) and heterozygotes are denoted
Sese (14 CD, 8 controls; Figure 3).

Outlier

As it would be useful in both clinical routine and scientific re-
search to be able to identify outliers, we included single visual-
ization of the data into the R-script. Figure 2 is a plot of the age
distribution in the data set. The outlier is marked in red and
labelled by the respective sample ID, for ease of identification.
Table 1 shows exemplary output of tranSMART, summarizing
the results of the outlier analysis.

Alpha-diversity

In addition to checking for outliers, we also calculated the
Shannon index of the test data set. Figure 3A is a visualization
of the alpha diversity of 46 samples; Figure 3B contains the
Shannon indices stratified by disease status (CD cases versus
controls) and by FUT2 secretor genotype.

Alpha-diversity describes the (microbial) composition of a
particular sample or habitat (intra-individual differences),
whereas beta-diversity refers to the composition variability be-
tween different samples or habitats (inter-individual differ-
ences) [34]. Several indices exist to measure alpha-diversity,
including the observed number of taxa or the Shannon index,
which takes species abundance into account as well [38].

Both quality checks (e.g. identification of outliers) and de-
scriptive analysis (e.g. calculation of alpha-diversity) should
allow clinicians and researchers alike to get a first impression of
their own data. This might help to identify and correct input
errors at an early stage and stimulate ideas and hypotheses for
subsequent data analysis by the statistician. Table 2 summar-
izes how the requirements for systems medicine application
are met in our microbiome example.

Discussion

The classical inference process in medical sciences has been
characterized by temporal and logical patterns resounding
Popper’s scientific method. Starting from a certain research
question, investigators have to design a suitable experimental
strategy to answer this question well before any data acquisi-
tion, analysis or interpretation commences. With the advent of
large prospective cohort studies in the mid 20th century, the
Framingham Study leading the way, this practice was overtaken
by more opportunistic approaches to medical research. Instead
of serving a single purpose that was clearly defined from the
outset, data collections were increasingly seen as long-term re-
sources for researchers to turn to and use for studies that were
often not even conceivable by the time the data were first pro-
duced. More recently, not least owing to the development and
wide-spread diffusion of high-throughput molecular tech-
niques, this exploratory approach to scientific inference making
has become increasingly popular. Additionally, enshrined in the
current Big Data and Systems Medicine paradigms, it appears as
if the opportunistic use of existing data is on its way to attaining
a status of orthodoxy in many areas of medical science.

On the heels of this development came an increasing de-
mand for data analysis tools that provide a level of convenience

Figure 2. Visualization of outliers by means of an R-Script in tranSMART: An out-

lier of the age distribution is indicated with a label and red color on the right

(Table 1). Screenshot from tranSMART 1.2 with sysINFLAME extension.

Table 1. Output of sysINFLAME tranSMART extension by an R script
[32] to identify statistical outliers

Item Patients Outlier Method Remark

Age Pat13 60 Grubbs
Age at onset Pat05; Pat14 55.6; 27.7 Grubbs
Height No outlier Grubbs
Weight No outlier Grubbs

Note. This simple example comprises a patient (‘Pat13’) of maximum age, which

qualified them as an outlier. For age at onset, two outliers were identified,

whereas both height and weight did not show any outliers.
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Figure 3. Visualization of alpha-diversity in tranSMART. The current cohort selection can also be grouped according to a categorical variable. The CONTROL and CD

subcohorts were queried independently, and the resulting graphs were put next to each other manually. (A) Example of the individual Shannon indices of 46 samples.

(B) Group-wise comparison of Shannon indices. For genotype labels, see text. Screenshots are from tranSMART 1.2 with sysINFLAME extensions and Rausch 2011 data

[27]. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.

Table 2. Challenges of systems medicine toolboxes and problem-solving as exemplified by the microbiome showcase described in the main
text

Challenge Microbiome showcase

Internal standardization Quality control and statistical tests
External data sources Usage of RDP OTU identifiers as nomenclature for the microbial species
Storage of intermediate results Not required here
Ontologies and external

standardization
Use of accepted and standardized measures and compliance with the TMF recommenda-

tions [28, 39]
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and versatility matching the ease and comprehensiveness of
the data access. With a plethora of questions to address to a
given data resource, and with an even larger range of possible
answers, each raising one or more new questions, time seems
ripe for integrative computational platforms expediting the to-
and-fro of hypothesis generation and appraisal.

Towards a systems medicine toolbox in tranSMART

Turning a systems medicine approach to data analysis into real-
ity poses several challenges to its actual implementation.

i. New data analysis techniques should be made available in
a timely fashion and by way of a transparent and intuitive
interface—ideally with direct access to the data.

ii. For each analysis method, the user should be informed
about the requirements that need to be fulfilled before it
can be applied to a given data set. Ideally, a mechanism
should be in place that requires the user to confirm the ap-
plicability of a chosen method.

iii. External databases (e.g. metabolic pathways or annotation
tracks of genome browsers) should be integrated immedi-
ately into the analysis track. For example, it would be highly
efficient if simple enrichment computations would be pos-
sible right from the tranSMART environment.

iv. A typical step in the discovery phase of translational re-
search, particularly when undertaken on platforms like
tranSMART, would be the identification of patterns in data
and the subsequent clarification of their causation. In this
context, the possibility to derived synthetic data from pre-
installed models could greatly facilitate the transition from
patterns to mechanisms.

Potential pitfalls

Despite their obvious benefits, easy-to-use tools for integrative
and comprehensive data analysis also bear the risk of encourag-
ing hands down statistics. Therefore, such tools should always
come with a disclaimer clarifying that the proper technical use
of a piece of statistical software does not necessarily lead to a
valid scientific conclusion. Instead, the yield of ‘fishing exped-
itions’ adamantly should be subjected to rigorous quality con-
trol and expert judgement, preferably involving a non-partial
biometrician or statistician who has no high stakes in the pro-
ject success.

Large databases for systems medicine research likely com-
bine a broad range of data from different sources with different
quality standards, including data obtained from large cohort
studies, different omics data (e.g. high-throughput genetic and
epigenetic data, metabolomic data) and data obtained during
the clinical routine or for billing purposes. Before these data can
be used for research in integrated fashion, scientists should crit-
ically reflect on their validity and comparability bearing the dif-
ferent sources in mind. This is particularly important if the data
were not generated by the researchers themselves but were ob-
tained from other institutions. Detailed recommendations on
quality control in cohort studies and disease registries have
been published elsewhere [29, 40].

Finally, when combining multiple data from different data
sources into large databases, researchers have to ensure that
the use of the data complies with the individual informed con-
sent provided by the participants or patients. It is not uncom-
mon that participants provide their data for defined research
purposes and researchers have to critically reflect whether the

intended use in extended databases is still in line with the ori-
ginal consent.

Availability and sustainability of the sysINFLAME
tranSMART toolbox

The expansions of tranSMART developed in sysINFLAME are
available through the sysINFLAME GitHub page (https://github.
com/sysINFLAME) and are compatible with tranSMART version
1.2.4. With tranSMARTs roadmap heading towards version 2.0,
‘Glowing Bear’ [41], many structural changes to the codebase
and plug-in integration are due in 2016. As our expansions use
tranSMARTs basic clinical data store for the microbiome data,
and as the majority of the analysis is implemented in R scripts,
adjustments for future tranSMART releases should be possible
with minimal effort.

Outlook

As our biological knowledge base expands at all omics levels, as
is evidenced by the ever-increasing number of publications in
this field, it is becoming more and more difficult to curate and
access the wealth of available information (e.g. the manual cur-
ation process of the map of the Parkinson disease network [39]).

Although useable pipelines are already in place to tether
sequencing data to phenotype data, further data integration is
needed for including less standardized metabolomics data or
proteomics data. Notably, drawing links between sequencing or
single nucleotide variants (SNV) data and known pathways re-
quires the latter type of data to be included into the existing
analysis frameworks as well.

Finally, basic solutions regarding data provenance [42] are
still lacking. This problem gets highly relevant, for example,
when tools to map data to a genome browser are provided by a
toolbox without acknowledging the respective genome version.

In summary, we see an urgent need for additional consist-
ent, IT-based tools for filtering, analysing and visualizing data,
in the context of external knowledge, similar to the one we pre-
sented here.

Key Points

• Integrating data of different type and origin requires
stringent data management.

• The knowledge gap between patient recruitment and
data collection on the one hand, and data analysis on
the other, is huge. Data collectors usually have little
overview of their data and of potential analysis meth-
ods, whereas data analysts are often ignorant of im-
portant aspects of the data collection process.

• Integrating easy-to-use assessment and analysis tools
in a data warehouse structure may significantly im-
prove data quality through enabling an informed dia-
logue between data collectors and analysts.

• As an illustrative example, we describe a method to
integrate phenotype data, questionnaire data and
microbiome data in a Systems Medicine toolbox
within i2b2/tranSMART.

• Ongoing exchange with clinicians, data managers, bio-
statisticians and systems medicine experts will serve
to improve existing toolboxes even further, smoothly
putting the ‘informed researcher’ into contact with
more and more advanced analysis tools.
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