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Abstract: Cu nanowires (NWs) possess remarkable potential a slow-cost heat transfer material in
modern electronic devices. However, Cu NWs with high aspect ratios undergo surface oxidation,
resulting in performance degradation. A growth temperature of approximately <1000 ◦C is required
for preventing the changing of Cu NW morphology by the melting of Cu NWs at over 1000 ◦C.
In addition, nitrogen (N)-doped carbon materials coated on Cu NWs need the formation hindrance
of oxides and high thermal conductivity of Cu NWs. Therefore, we investigated the N-doped
graphene-coated Cu NWs (NG/Cu NWs) to enhance both the thermal conductivity and oxidation
stability of Cu NWs. The Cu NWs were synthesized through an aqueous method, and ethylenediamine
with an amine group induced the isotropic growth of Cu to produce Cu NWs. At that time, the amine
group could be used as a growth source for the N-doped graphene on Cu NWs. To grow an N-doped
graphene without changing the morphology of Cu NWs, we report a double-zone growth process at
a low growth temperature of approximately 600 ◦C. Thermal-interface material measurements were
conducted on the NG/Cu NWs to confirm their applicability as heat transfer materials. Our results
show that the synthesis technology of N-doped graphene on Cu NWs could promote future research
and applications of thermal interface materials in air-stable flexible electronic devices.

Keywords: copper nanowires; N-doped graphene; chemical vapor deposition; growth; double-zone
growth process; thermal interface materials

1. Introduction

The performance enhancement and long-term reliability of microelectronic devices are decidedly
key issues in a wide range of electronic applications. Non-efficient heat dissipation in such devices
leads to many problems, such as malfunction, decreased performance, and short-term stability as the
power densities are increased. Therefore, effective heat transfer from integrated circuit to heat sink
should contribute to the development of modern electronic devices [1–8].

Recently, various nanostructures, such as nanowires (NWs) [9–13] and nanoparticles [14–17], have
been successfully synthesized as heat-transfer materials. Among these, NWs are more suitable as
heat-transfer materials, owing to their natural continuity as well as high aspect ratio, which could lead
to lower percolation thresholds. Their characteristics, such as wire diameter, density of wires in the
network, and junction resistance substantially affect the physical properties [18,19]. Conventional metal
NWs, especially Cu NWs, have a number of advantages, such as low cost, abundance on Earth, and has
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a similar electrical conductivity to silver. Therefore, NWs possess remarkable potential as low-cost
heat-transfer materials in modern electronic devices. However, Cu NWs with high aspect ratios could
be intrinsically unstable under ambient conditions. The rapid surface oxidation of Cu NWs weakens
their physical properties [20,21]. Several efforts have been made to prevent the surface oxidation
of Cu NWs [22–30]. One approach is to provide a protection layer using graphene [28–30]. Carbon
materials, such as carbon nanotubes and graphene, have been widely studied as heat-transfer materials
based on their high intrinsic thermal conductivities, which range from 3000–6000 W/m·K [8]. Here,
to realize effective heat transfer materials, various types of graphene are needed. The high thermal
conductivity and formation hindrance of oxides on Cu NWs are also of great technological importance.
Doping Cu NWs with other elements is a promising way to achieve this goal. Especially, nitrogen
(N)-doped graphene promises many fascinating properties and widespread potential applications,
such as super conduction [31], ferromagnetism [32], and has high thermal conductivity and the
formation hindrance of oxides, such as CuO, Cu2O, and Cu(OH)2. Therefore, intensive theoretic
studies are focused on N-doped graphene, and many theoretic models of the substitutionary-doped
graphene have been established [33–37].However, these studies are only based on theory, and an
experimental example of the substitutionary N-doped graphene is still lacking, attributed to the
limitations of synthetic methods. For decades, chemical vapor deposition (CVD) has been used as
the general method for growing graphitic or doped graphitic [33–38] thin films. However, growing
graphene directly onto Cu NWs is very difficult because a conventional thermal CVD (T-CVD) process
requires a high process temperature of approximately 1000 ◦C.

In this study, we demonstrated N-doped graphene-coated Cu NWs (NG/Cu NWs) as the
heat-transfer materials synthesized using a conventional T-CVD. To achieve a low temperature growth
by using a conventional T-CVD, we used the double-zone growth process (DZGP) and succeeded in
growing graphene on Cu NWs at a low temperature. Here, the Cu NWs with an amine group was used
for the N-doped graphene. We realized the synthesis of the substitutionary NG/Cu NWs. Moreover,
the experimental measurements of the morphology and oxidation stability properties of the NG/Cu
NWs are provided in this study, and an efficient thermal conductivity of NG/Cu NWs was indicated
using the laser flash method. In this way, the applications of the thermal interface materials (TIMs)
and air-stable flexible electronic devices can be largely improved and expanded.

2. Materials and Methods

2.1. Materials

All the following chemicals were used as received without further purification: Sodium hydroxide
was purchased from Alfa Aesar (35,633). Copper nitrate (Alfa Aesar, Haverhill, MA, USA, 10,699) was
used as the copper precursor, ethylenediamine (EDA; Sigma Aldrich, St. Louis, MO, USA, E1521)
was used as the structure-directing agent, and hydrazine (35 wt%, Sigma Aldrich, St. Louis, MO,
USA, 309,400) was used as the reducing agent. The SiO2/Si wafer was purchased from LG Siltron Inc.
Gumi, South Korea. (Silicon wafer; P/<100>, Boron) and was used as the substrate when we grew the
N-doped graphene. The silicone elastomer (PDMS; Dow corning®, Midland, MI, USA, Sylgard 184
base & curing agent) was used as the polymer matrix when we fabricated TIMs.

2.2. Preparation of Cu NWs

The Cu NWs with diameters of 160–200 nm and length of ~25 µm were produced through an
aqueous route according to a redox reaction [10,11]. In this study, 200 mL of sodium hydroxide solution
(5 M), 10 mL of copper nitrate solution (0.1 M), and 1 mL EDA were added to a glass reactor, followed
by thorough mixing of all reagents for 3 min. The reactor was placed in a water bath (60 ◦C), and then
500 µL of hydrazine was added into the reactor. After 1 h, the synthesis of Cu NWs was completed,
and the Cu NWs were separated from the reaction solution by using a vacuum filtration system,
in which a polyethersulfone (PES) membrane filter paper (pore size: 0.45 µm) was used. The Cu
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NWs/PES membrane filter paper was dried at 80◦C in air. Here, the EDA with an amine group induces
anisotropic growth of Cu, and can produce Cu wires. Thus, the Cu NWs with an amine group could
be easily obtained from PES membrane filter paper.

2.3. Synthesis of the NG/Cu NWs

We used a T-CVD for fabricating NG/Cu NWs. Figure 1 shows the synthesis process of the NG/Cu
NWs. Figure 1a shows the growth temperature of double zone, and the growth mechanism of the
N-doped graphene in the quartz of the T-CVD. As shown Figure 1b, the as-grown Cu NWs were
placed in the T-CVD quartz tube, which was heated up to 350 ◦C, to remove impurities, for 15 min.
Here, we employed the DZGP in which the reactants heated at 900 ◦C in the first zone, flowed into the
second zone and were maintained at 600 ◦C for the growth of N-doped graphene at a low temperature.
In addition, the various partial pressures of CH4 to maintain the morphology of Cu NWs with amine
group were systematically examined. Next, we introduced the reaction gas mixture composed of Ar,
H2, and CH4 (4:1:1 and 10:2.5:1) into the quartz tube for 10 min. Here, the N-doped graphene was
synthesized using the different carbon source (CH4) conditions (CH4 flow; 20 and 50 sccm). After the
cooling step, we could easily obtain the NG/Cu NWs.
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Figure 1. Schematic illustrations for processes in present work: (a) double zone growth method and
(b) detailed method of graphene growth.

In addition, the heat-transfer materials were fabricated using as-grown Cu NWs, NG/Cu NWs
synthesized with 20 sccm CH4 (NG/Cu NWs;M20), and NG/Cu NWs synthesized with 50 sccm CH4

(NG/Cu NWs;M50) for thermal conductivity measurements. The three prepared materials, epoxy
matrix, and PDMS curing agent were mixed using a paste mixer for 10 min, and the pastes were then
placed in oven at 120–180◦C for 30 min. Finally, we obtained three heat-transfer materials.

2.4. Characterization

The sheet resistances of as-grown Cu NWs, NG/Cu NWs;M20, and NG/Cu NWs;M50 were
measured using a 4-point probe system (DASOL ENG, Chungcheongbuk-do, South Korea, FPP-HS 8).
Raman spectra of NG/Cu NWs;M20 and NG/Cu NWs;M50 were obtained using a 532 nm excitation
laser with spot diameter of 50 µm (JASCO, Tokyo, Japan, NRS-3300). An elemental composition
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analysis was conducted using X-ray photoelectron spectroscopy (XPS, Thermal Fisher Scientific,
Waltham, MA, USA, ESCALAB 250 XPS system, a monochromatic X-ray source, image resolution
<3 µm). Morphological properties of the three materials were investigated using a field emission
scanning electron microscope (FE-SEM, Hitachi, Tokyo, Japan, S-4300), and the thermal conductivities
were measured using a laser flash method (NETZSCH, Selb, Germany, LFA467, Temperature range
from −100◦C to 1250◦C, Xenon flash lamp; pulse energy: Up to 10 J/pulse, pulse width: 10 to 1500 µs).

3. Results and Discussion

In this work, an aqueous procedure was proposed to synthesize large-scale Cu NWs. We obtained
approximately 53.3 mg of Cu NWs from 64.04 mg of Cu solution at one time. This result shows
approximately 83.2% yield of Cu NWs. FE-SEM was used to observe the morphology of as-grown
Cu NWs, as shown in Figure 2. The average diameter of the Cu NWs immediately after growth was
about 400 nm and the average length was ~25 µm. Regrettably, the Cu NWs with high aspect ratio are
easily oxidized in air [28–30], and the physical properties of Cu NWs are weakened by oxidation [20].
Therefore, we synthesized NG/Cu NWs via DZGP to inhibit oxidation. The average diameter of
Cu NWs after graphene growth was reduced by the growth heat and the Cu NWs immediately
after growth were about 200 nm. To evaluate the morphologies of NG/Cu NWs;M20 and NG/Cu
NWs;M50 after DZGP, they were investigated using the FE-SEM. As shown in Figure 2c–f, Cu NWs
were physically intact following the DZGP at low temperature. We observed the growth of a graphene
shell on Cu NWs.
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Figure 2. SEM images of (a,b): As-grown Cu NWs, (c,d): NG/Cu NWs;M20, and (e,f): NG/Cu
NWs;M50.

The presence of graphene, the layer number, and degree of the defect level according to CH4 gas
flow were investigated through Raman spectroscopy. Figure 3 displays the Raman spectra of the NG/Cu
NWs;M20 and NG/Cu NWs;M50 measured at an excitation wavelength of 532 nm. We confirmed the
presence of the characteristic Raman spectral peaks of graphene at 1350, 1600, and 2700 cm−1 on the
NG/Cu NWs;M20 and NG/Cu NWs;M50 samples. The Raman intensities showed the defect-band
(D-band) of sp3 carbon bond and the graphite-bond (G-band) of the sp2 carbon bond. In general,
the D-band is caused by the breathing mode of the A1g-symmetry, and involving phonons near the
K-zone boundary. However, the G-band is caused by the zone center phonons of the E2g-symmetry [38].
There are many factors, such as doping, layer numbers, defects, strains, and substrate, which can
affect the position of the D band. Moreover, our observations are similar to those of N-doped carbon
nanotubes (CNTs), in which the degree of N doping causes an upshift of the D band and a downshift of
the G band [33,34]. The high intensity of the D peak indicates the doping of the graphitic sheets [33,34],
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as the D band only occurs in the sp2 C with defects [39], and N doping introduces large amounts of
topological defects [35–37]. To gain a better insight into the G/Cu NWs, the broad Raman spectrum in
the range 1100–2000 cm−1 was deconvoluted. In addition, four peaks, that is, D1, D2, D3, and D’ were
observed. The edge shows a special kind of disorder, and the nature of the edges could be probed
with respect to the intensity of the D peak. The D peak arises from the momentum conservation law
owing to the formation of edge states (zigzag and armchair). The many studies reported that the
intensity of the D peak is very sensitive to the nature of edge states in graphene. The additional peaks
D1, D2, and D3 may be associated with functional group defects. The D1 peaks of NG/Cu NWs;M20
and NG/Cu NWs;M50 at 1197 and 1182 cm−1 were assigned to the sp2–sp3 bonded carbon atoms at
the graphene edges [40–44]. The D2 peaks of NG/Cu NWs;M20 and NG/Cu NWs;M50 at 1245 and
1248 cm−1 were assigned to COOH or ring-type C–OH edge functional groups [40–42], while the
Raman D3 peaks at 1514 and 1496 cm−1 were attributed to C=O/C–O functional groups [42,43]. The D’
peak is attributed to the vacancies and/or pentagonal and octagonal defects, usually referred to as
zigzag 5–7 defects, and represents the crystalline defects in graphene [33,42–44]. The D’ peaks of
NG/Cu NWs;M20 and NG/Cu NWs;M50 were centered at 1607 and 1666 cm−1. In addition, the 2D
peak appeared when a non-elastic scattering phonon occurred after the second experiment, and the
position of the 2D peak was dependent on the number of graphene layers [41,45]. Generally, I2D/IG

ratio >2 indicates the growth of monolayer graphene, while a value <2 indicates the growth of bilayer
graphene. As observed from Figure 3, the ratios of the I2D/IG peak intensities were 0.11 and 0.09 for
the NG/Cu NWs;M20 and NG/Cu NWs;M50 samples, respectively. Therefore, based on the Raman
characterization, the obtained results showed that the NG/Cu NWs;M20 and NG/Cu NWs;M50 samples
resulted in N-doped graphene with multilayers on Cu NWs.
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The XPS spectra showed the doping of the graphene. Figure 4 displays the high-resolution
C 1s, N 1s, O 1s, and Cu 2p3/2 spectra of Cu NWs, NG/Cu NWs;M20, and NG/Cu NWs;M50 samples.
For as-grown Cu NWs, the C 1s spectra were observed because of the presence of EDA. As shown
in Figure 5a, C sp2 peaks of all samples were centered at 284.30, 284.53, and 284.53 eV, respectively.
The main peak corresponds to the graphite-like C sp2, indicating that most of the C atoms in the
N-doped graphene were arranged in a conjugated honeycomb lattice. The C sp2 peak of as-grown
Cu NWs was weaker than the C sp3 peak, whereas C sp2 peaks of NG/Cu NWs;M20 and NG/Cu
NWs;M50 were much stronger than their C sp3 peaks. This indicates that most of the carbon atoms in
NG/Cu NWs were arranged in a two-dimensional graphite-like honeycomb lattice [28,29]. The C sp3

peaks of all samples were located at 284.83, 285.39, and 285.39 eV, respectively. The C sp3 peak of
as-grown Cu NWs was stronger than the sp2 peak, suggesting that the EDA randomly bonded with
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each other. The C sp3 peaks of NG/Cu NWs;M20 had a relatively smaller intensity than those of the
NG/Cu NWs;M50. This was attributed to either crystalline or functional-group defects in G/Cu NWs,
and corresponds to the N-sp3 C bonds. In C 1s spectra of as-grown Cu NWs, the very small peaks at
286.23 and 288.95 eV were attributed to C–O and O–C=O, respectively. For C 1s spectra of NG/Cu
NWs;M20 and NG/Cu NWs;M50, the broad peaks were attributed to C–O/C=N, which were located at
285.44 and 285.46 eV, respectively. Other peaks at 288.92 and 289.18 eV were attributed to the C–N
functional group. The results indicated that the carbon atoms at the edge are reconstructed during
the removal of impurities [46]. In addition, the carbon atoms were bonded with amine groups to
maintain the stability of the carbon atoms at the graphene edges. As shown in Figure 5b, we confirmed
four peaks in the as-grown Cu NWs, namely, pyridinic N, pyrrolic N, amino N, and oxygenated N,
which are located at 398.07, 399.74, 400.70, and 404.14 eV, respectively. After DZGP, the N 1s spectra of
NG/Cu NWs;M20 and NG/Cu NWs;M50 also showed four peaks: Pyridinic N, amino N, graphitic N,
and oxygenated N. The pyridinic N peaks of NG/Cu NWs;M20 and NG/Cu NWs;M50 were centered at
398.65 and 398.03 eV, respectively.
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The amino-N peaks were notably changed after DZGP. The amino-N peaks of NG/Cu NWs;M20
and NG/Cu NWs;M50 were located at 400.30 and 400.69 eV, respectively. The pyrrolic-N peak
disappeared, while the graphitic-N peaks were newly generated. Here, the peaks refer to the N
atoms located in a π conjugated system and contribute to the π system with one or two p-electrons,
respectively [47,48]. The peak of graphitic N, which refers to the N atoms replacing the C atoms
inside of the graphene layers [48], was much higher; thus, the N atoms are substitutionally doped
into the graphene lattice and existed mainly in the form of graphitic N. The graphitic-N peaks in
NG/Cu NWs;M20 and NG/Cu NWs;M50 were centered at 402.09 and 402.38 eV, respectively. As the
amine groups on Cu NWs bonded with the carbon atoms, the amino N and pyrrolic N changed to
graphitic N [49,50]. As shown in Figure 4c, the as-grown Cu NWs displayed three peaks, namely,
Cu2O, Cu(OH)2, and C–O, which were located at 530.19, 531.95, and 532.63 eV, respectively. The Cu2O
peaks in NG/Cu NWs;M20 and NG/Cu NWs;M50 were centered at 530.44 and 530.51 eV, respectively.
After the DZGP, the Cu(OH)2 peaks were significantly changed, indicating that the Cu NWs were
reduced because of the DZGP. In addition, the O 1s peak results from the oxygen or water absorbed on
the surface of the N-doped graphene [47,51,52]. As shown in Figure 4d, the Cu 2p3/2 spectrum of all
samples showed a similar tendency; however, we observed that the peaks were shifted after the DZGP.
These results show that we successfully grew the NG/Cu NWs due to the amine groups onto as-grown
Cu NWs. Furthermore, the NG/Cu NWs;M50 sample showed a larger amount of N doping than the
NG/Cu NWs;M20 sample.
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Additionally, the NG/Cu NWs;M20 and NG/Cu NWs;M50 samples were exposed to atmospheric
conditions for several days to test their oxidation stability. The EDA with amine group on as-grown
Cu NWs was removed using de-ionized (DI) water for observing the oxidation stability of pure Cu
NWs. Figure 5a shows the sheet resistances of all samples. The pure Cu NWs were naturally oxidized
immediately after the EDA was removed. However, the sheet resistances of NG/CuNWs;M20 and
NG/Cu NWs;M50 were retained owing to the N-doped graphene-coated layer. Koo et al. [53] reported
on the relationship between the EDA and oxidation of Cu NWs and suggested that the EDA, which
is a growth source of N-doped graphene, could be suppressing the oxidation of Cu NWs. Figure 5b
results show that the NG/Cu NWs;M50 sample with higher doping than the NG/Cu NWs;M20 sample
shows characteristics of low sheet resistance and high oxidation prevention.

The as-grown Cu NWs, NG/Cu NWs;M20, and NG/Cu NWs;M50 were fabricated as the fillers in
TIMs at 23 wt% for measuring thermal conductivity through the laser flash method. Table 1 shows the
clear values of thermal conductivity and the TIMs sample name about sample number. Figure 6 displays
the thermal conductivity of the TIMs. The measured thermal conductivity of the polymer matrix was
0.22 W/m·K. The thermal conductivities of NG/Cu NWs with M20 and M50 were 0.39 and 0.51 W/m·K,
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respectively, showing an improvement by 75% and 130%, respectively. Moreover, the NG/Cu NWs;M50
sample showed good thermal conductivity than that of the previously studied TIMs.

Table 1. The thermal conductivity and the TIMs.

Sample No. TIMs Sample Name Thermal Conductivity [W/m·K] Reference

1 MWCNT 0.23 [3]
2 Ag NWs 0.42 [4]
3 Graphene nanoplates 0.465 [1]
4 SWCNT 0.5 [2]
5 Cu NWs 0.41 [54]
6 NG/Cu NWs;M20 0.387 In this study
7 NG/Cu NWs;M50 0.505 In this study
8 Polymer matrix (Epoxy) 0.221 In this study
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4. Conclusions

In this study, we synthesized Cu NWs with diameters of 160–200 nm and lengths of ~25 µm.
To avoid the rapid oxidation and changing of the morphology of the Cu NWs, we succeeded in
synthesizing NG/Cu NWs according to two CH4 gas flow methods by using DZGP at low growth
temperature of approximately 600 ◦C. The morphology of NG/Cu NWs was confirmed to be well
preserved. N doping for graphene was successfully conducted through amine groups on as-grown Cu
NWs and confirmed by Raman spectra and XPS measurement. The TIMs with three NG/Cu NWs;M20
and NG/Cu NWs;M50 as fillers were prepared using a paste mixer, and their thermal conductivity
values were measured using a laser flash method. The thermal conductivity values of the heat-transfer
materials (TIMs) with NG/Cu NWs;M20 and NG/Cu NWs;M50 are measured to be 0.39 and 0.51 W/m·K,
respectively, indicating an improvement of 75% and 130%, respectively, compared with the polymer
matrix (0.22 W/m·K). Especially, the NG/Cu NWs;M50 sample showed good thermal conductivity
than that of the previously studied TIMs [1–4,54]. The results showed that the synthesis technology of
the N-doped graphene on Cu NWs could promote future research and applications in the TIMs and
air-stable flexible electronic devices.
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