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Abstract

A gas-phase Advanced Oxidation Process (gAOP) was evaluated for decontaminating N95

and surgical masks. The continuous process was based on the generation of hydroxyl-radi-

cals via the UV-C (254 nm) photo-degradation of hydrogen peroxide and ozone. The decon-

tamination efficacy of the gAOP was dependent on the orientation of the N95 mask passing

through the gAOP unit with those positioned horizontally enabling greater exposure to

hydroxyl-radicals compared to when arranged vertically. The lethality of gAOP was indepen-

dent of the applied hydrogen peroxide concentration (2–6% v/v) but was significantly

(P<0.05) higher when H2O2 was introduced into the unit at 40 ml/min compared to 20 ml/

min. A suitable treatment for N95 masks was identified as 3% v/v hydrogen peroxide deliv-

ered into the gAOP reactor at 40 ml/min with continuous introduction of ozone gas and a

UV-C dose of 113 mJ/cm2 (30 s processing time). The treatment supported >6 log CFU

decrease in Geobacillus stearothermophilus endospores, > 8 log reduction of human coro-

navirus 229E, and no detection of Escherichia coli K12 on the interior and exterior of masks.

There was no negative effect on the N95 mask fitting or particulate efficacy after 20 passes

through the gAOP system. No visual changes or hydrogen peroxide residues were detected

(<1 ppm) in gAOP treated masks. The optimized gAOP treatment could also support >6 log

CFU reduction of endospores inoculated on the interior or exterior of surgical masks. G.

stearothermophilus Apex spore strips could be applied as a biological indicator to verify the

performance of gAOP treatment. Also, a chemical indicator based on the oxidative polymeri-

zation of pyrrole was found suitable for reporting the generation of hydroxyl-radicals. In con-

clusion, gAOP is a verifiable treatment that can be applied to decontaminate N95 and

surgical masks without any negative effects on functionality.

Introduction

In the CoVid-19 pandemic, caused by the spread of SARS-Cov-2, there was a shortage of per-

sonal protective equipment (PPE) such as N95 masks and surgical (procedure) masks [1–3].

The N95 mask consists of multiple filter layers that can filter 95% of particulates and provides
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satisfactory respiratory protection against the virus [1,4]. Although surgical masks have a

looser fit it has been reported that the filter layers also provide adequate protection against the

virus within moderate-risk environments [4].

Given the shortage of N95 masks, the general use of surgical masks has been widely adopted

for general use. Although surgical masks are intended for single use in moderate-risk environ-

ments there has been little attention on how to extend working life or recycle. This becomes

relevant considering the demand for surgical masks coupled with the need to avoid non-

compostable waste reaching landfills [5]. Consequently, there is a demand for mask decontam-

ination methods that can be applied to enable recycling or extended use without an increased

risk of contracting or disseminating infectious agents [6,7]. To this end, criteria have been

developed to define the requirements of a suitable mask decontamination treatment that

ensure adequate microbial inactivation while not negatively affecting functionality [8]. Specifi-

cally, there is a requirement that the process should support 6 log CFU reduction of Geobacil-
lus stearothermophilus endospores and 4 log reduction of coronavirus or suitable surrogate.

No chemical residues should be present on masks or change in functionality in fitting and par-

ticulate filtration.

There have been several successful N95 mask decontamination methods described based

on microwave heating, ethylene oxide, hydrogen peroxide vapor, and Ultraviolet Germicidal

irradiation (UVGI) [9–11]. Each method have advantages and disadvantages with regards to

application, the effect on mask integrity, and antimicrobial efficacy [12]. For example, thermal

treatments exhibit anti-viral activity although mask integrity can be compromised [13]. Simi-

larly, UVGI has been shown to inactivate viruses such as H1N1 without compromising mask

functionality [14]. However, the poor penetration of UV-C photons into the filter layers of the

N95 masks requires high doses (>270 kJ/ m2) to be applied that can result in 20–51% loss in

strap strength [15,16]. Hydrogen peroxide vapor is the most widely used N95 mask decontami-

nation method and has been demonstrated to support endospore reduction with negligible

effects on mask functionality [17]. However, the process is a batch system that requires the

application of>480 ppm hydrogen peroxide over an extended period resulting in a process

that takes around 3 h.

A surgical mask decontamination method based on applying dry heat (60–70˚C) for 1 has

been reported [18]. Here, the researchers inoculated surgical masks with different bacteria

(Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Acin-
tobacter spp, Corybacterium spp) yeast (Candida albicans) or virus (H1N1). The inoculation

level per mask was 3 log CFU with the virus loading being estimated at 320 virons. No survi-

vors were recovered from masks heated for 1 h at either 60 or 70˚C although filtration efficacy

was lost after 2–3 cycles [18]. However, the inactivation of bacterial endospores was not con-

sidered in the study.

A further study compared the decontamination efficacy of dry heat (90˚C for 70 mins) and

microwave generated steam to inactivate S. aureus on surgical masks [19]. Although both pro-

cesses supported a>6 log reduction of S. aureus the microwave treatment resulted in a loss of

surgical mask integrity after a single cycle. By using the dry heat method, the masks could tol-

erate 3 cycles without loss of function [19]. Again, the researchers did not determine efficacy

against endospores given the thermal treatment was below that to support inactivation. In an

alternative method, Quaternary ammonium salt surfactant has been applied to masks that sup-

ported a 2–3 log reduction of S. aureus although the health implication of chemical residues

was not determined [20].

In the following, a process based on gas-phase Advanced Oxidation Process (gAOP) for

N95 and surgical mask disinfection was evaluated. The gAOP process is derived from Fenton-

like reactions that generate hydroxyl-radicals from the degradation of hydrogen peroxide and/
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or ozone [21]. The Advanced Oxidation process has previously been applied for degrading pol-

lutants in water treatment [22] with the gas-phase treatment (gAOP) receiving less attention.

Yet, a gAOP process has a history of use in carton packaging decontamination whereby UV-C

(254 nm) mediated degradation of 1% v/v hydrogen peroxide can support >5 log CFU inacti-

vation of Bacillus endospores [23–25]. More recently, gAOP has been applied to inactivate

pathogens such as Listeria monocytogenes on fresh fruit and vegetables [21,26]. Here, the fresh

produce to be decontaminated is passed through a hydrogen peroxide spray into a reactor

where ozone gas is continuously applied under the illumination of UV-C lamps. The key

advantages of the gAOP process is the high anti-microbial efficacy with the ability to inactivate

microbes on the surface and sub-surface without negatively affecting the item being sanitized

[21,26]. In this respect, the gAOP process can be envisioned to combine the advantages of

hydrogen peroxide vapor and UVGI in delivering a rapid method for decontaminating N95

masks without compromising functionality.

A further requirement of an N95 mask decontamination method is the need to verify treat-

ment performance via a biological and/or chemical indicator. The former is satisfied with the

inactivation of endospores such as Bacillus pumilus (in the case of irradiation-based treat-

ments) or G. stearothermophilus (for thermal treatments). It has been reported that B. pumilus
and G. stearothermophilus have comparable sensitivity to hydroxyl-radicals when applied in

solution thereby suggesting that either would be suitable index organisms [23].

With regards to chemical indicators, the AOP process for water disinfection is based on

actinometry such as methylene blue [27]. The main advantage of methylene blue is that it

exhibits semi-selectivity towards hydroxyl-radicals but relatively insensitive to hydrogen per-

oxide or UV-C alone [27]. Yet as a chemical indicator, methylene blue is degraded to colorless

via the AOP reaction when a positive color change would make it easier to identify decontami-

nated items. In the following study, pyrrole was evaluated as a chemical indicator to report on

the gAOP treatment. Pyrrole can undergo oxidative polymerization to form a conducting

polymer with the degree of conjugation being reflective by darkening [28]. In the course of the

polymerization process an anionic dopant is incorporated into the film to counter the positive

charge on the polypyrrole backbone. Nafion was used as the doping ion in the current study as

the surfactant has been reported to support a homogenous polymerization process and adher-

ent polypyrrole film [29].

It has been reported that hydroxyl-radicals, along with other strong oxidants such as persul-

fate, can support the oxidative polymerization of pyrrole thereby leading to an irreversible

transition from colorless to brown-black [29]. Hence, it is conceivable that the oxidative poly-

merization of pyrrole can be applied to report on the gAOP decontamination process.

Materials and methods

Microbial cultivation and enumeration

Escherichia coli K12 was obtained from ATCC (Atlanta, US) and was stored at -80˚C in tryptic

soy broth (TSB; Thermo Fisher, Whitby, Canada) containing 20% w/v glycerol. The bacteria

were recovered by streaking out onto a tryptic soy agar (TSA; Thermo Fisher) plate that was

incubated at 37˚C for up to 48 h. A colony was transferred to TSB that was incubated overnight

at 37˚C and used to inoculate TSB that was incubated overnight. The cells were harvested by

centrifugation (5000g for 10 min) and the cell pellet resuspended in saline to give a final cell

density of 9 log CFU/ml (OD600 2.0 measured using a spectrophotometer; BioRad, Missis-

sauga, Canada). The suspension of E. coli K12 was stored at 4˚C until required but used within

a week.
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Geobacillus stearothermophilus ATCC 7963 was cultivated on a TSA slant that was incu-

bated at 55˚C for 72 h. The growth was scraped off the agar layer and transferred to 10 ml ster-

ilized distilled water and used to inoculate tissue culture flasks (100 cm2 area) containing a

layer of TSA. The flasks were closed and incubated at 55˚C for 10 days. The subsequent spores

were recovered by flooding the plate with sterilized distilled water and scraping with a

spreader. The spore suspension was transferred to a centrifuge tube and the pellet resuspended

in sterile water then re-centrifuged (5000g for 10 min). The spores were washed in sterile

water three times and the final spore pellet resuspended in 15 ml of sterile water then heat-

treated at 70˚C for 15 min to inactivate vegetative cells. A dilution series was prepared in sterile

water and aliquots (0.1 ml) plated onto TSA that was incubated at 55˚C for up to 3 days to

determine the spore density of the preparation. The spore suspension was then adjusted to a

density of 7 log CFU/ml and stored at 4˚C until required.

Human coronavirus 229E (HCoV-229E) was obtained from the culture collection of the

Institute of Infectious Research within McMaster University (Ontario, Canada) and main-

tained in Opti-PRO SFM media (Thermo-Fisher). MRC-5 cells were seeded at 2 x 106 cells/ml

into T75 flasks in DMEM supplemented with 10% w/v FBS, 1% w/v L-glutamine, and 1% w/v

pen/strep. When the cells were 90–95% confluent, the cells were washed twice with pre-

warmed Opti-PRO SFM media and then infected with 5 ml of HCoV-229E in Opti-PRO SFM

media at a multiplicity of infection of 0.1. Cells were incubated with virus for 80 min at 34˚C

with 5% CO2. The cells were then washed twice with Opti-PRO SFM media and incubated

with 15 ml of 3% w/v FBS DMEM containing 1% w/v sodium pyruvate, 1% w/v L-glutamine,

and 1% w/v pen/strep for 5 days. On the fifth day, the supernatant was removed and clarified

by centrifugation, and the virus preparation frozen at -80˚C.

The TCIS50 infectivity assay was performed by seeding Huh7.5 cells into a 96-well plate at

1.5 x 104 cells/well. When the cells were 80–90% confluent they were washed twice with Opti-

PRO SFM and 50 μl of a serially diluted virus was added to the cells. The cells were incubated

at 34˚C with 5% CO2 for 5 days. On the fifth day, cell viability was assessed using Cell Titer

Glo 2.0 reagent (Promega; Madison, United States). Aliquots (100 μl) Cell Titer Glo was added

directly to the media, the plates were shaken for 2 minutes and then incubated for 10 min at

room temperature. The luminescence was read on a Neo2 plate reader (Biotek; Winooski,

United States) using luminescence fiber. The TCID50 was calculated using log 50% endpoint

dilution = log dilution showing mortality above 50%—(difference of logarithms x logarithm of

dilution factor) [30].

Gas-phase Advanced Oxidation Process reactor

The gAOP unit was provided by Clean Works Inc (Beamsville, Canada) (S1 Fig). In brief, the

unit is constructed from stainless steel with the reactor housing ten UV-C lamps (23 W; 254

nm) positioned over a conveyor. The hydrogen peroxide solution was pumped to a spray head

positioned at the entrance of the reactor. Ozone gas was generated by UV-184 nm lamps (12

W) positioned at either side of the unit with the gas being introduced at the conveyer level (S1

Fig). The residence time within the reactor was 30 s and controlled by the speed of the con-

veyor. The temperature within the reactor was maintained at 27–29˚C by heated air with the

UV-C, ozone and hydrogen peroxide flow-rate being monitored via sensors (S1 Fig).

Inoculation and recovery of microbes from N95 masks

A 3 x 3 cm area was drawn on either the outer or inner surface of the N95 masks. Aliquots (0.1

ml of ca. 7 log CFU/ml) of the test microbe was deposited on the inner or outer surface of the

mask and allowed to dry for at least 1 h prior to treatment. The masks were loaded onto
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holding trays vertically or horizontally then passed through the gAOP unit that was operating

with a hydrogen peroxide solution (2–6% v/v) delivered at a flow rate of 20–40 ml/min (S2

Fig). The UV-C lamps and ozone was continuously applied as the masks transitioned through

the unit with a total treatment time of 30 s. The flatbed orientation was when the masks were

passed through the gAOP unit twice and inverted between passes.

The inoculated masks were left for 15 min before the inoculated area was excised using a

sterile blade then transferred to sterile tube containing 20 ml saline. The cells/endospores were

released from the mask sections by vortexing for 60 s and a dilution series prepared in saline

or sterilized water. E. coli was enumerated on E. coli/coliform Petri Films (3M, London, Can-

ada) that were incubated at 37˚C for 24 h. For G. stearothermphilus enumeration, the rinse

solution was heated at 70˚C for 10 min to activate the endospores. A dilution series was pre-

pared in sterile water and plated onto TSA that was then incubated at 55˚C for up to 7 days.

The remaining rinse solution and excised mask section were added to an equal volume of TSB

that was subsequently incubated at 55˚C for 7 days with daily checks for growth.

HCoV-229E was inoculated onto 1 cm x 1 cm square sections drawn on masks and left to

attach at room temperature for 5–30 min. The mask sections were transferred to 1 ml extrac-

tion buffer and vortexed every 5 min for 20 min at room temperature to extract the virus. The

extracted virus was quantified using the TCID50 assay pre- or post-gAOP treatment.

Toxicity testing was performed by taking 1 cm x 1 cm sections of N95 masks with one set

being used directly and the other passed through the gAOP process. The mask sections were

transferred to extraction buffer at a ratio of 1 ml per 1 cm2 mask section then incubated for 20

min at room temperature with intermittent vortexing. Samples were then serially diluted using

media and incubated with cells for 5 days before assessing viability using Cell Titer Glo 2.0.

Fate of E. coli on the interior or exterior of N95 masks during inoculation

and holding prior to clean flow treatment

E. coli K12 was cultivated in TSB overnight at 37˚C and cells harvested by centrifugation with

the pellet being resuspended in saline to a final OD600 0.2 (8 log CFU/ml). A dilution series

was prepared in saline and plated onto MacConkey agar that was incubated for 24 h at 37˚C.

The cell suspension was held at 4˚C then adjusted to 7 log CFU/ml once the plate count had

been determined.

Coupons (2 cm x 2 cm) were cut from 8210 N95 masks and used directly. The coupons

were sub-divided into two groups. In the first group of coupons, the external surface was inoc-

ulated, while in the second group, the inner surface was inoculated. Each coupon was inocu-

lated with 0.1 ml of inoculum and samples (N = 3) withdrawn at time 0, 15 min, 30 min, 45

min and 60 min. The individual coupons were placed in 10 ml of saline then vortexed for 30 s.

A dilution series was prepared in saline then plated onto MacConkey agar that was incubated

at 37˚C for 24 h.

Geobacillus stearothermophilus inactivation by hydrogen peroxide, ozone

or UV-C alone

Sections (3 cm x 3 cm) were excised from N95 masks and inoculated with 0.1 ml of 7 log CFU/

ml G. stearothermophilus spore suspension. The sections (N = 3 per treatment) were dried at

room temperature for 1 h before passing through the gAOP reactor with the hydrogen perox-

ide spray (3% v/v delivered at 40 ml/min), ozone (30 s), or UV-C (113 mJ/cm2) switched on.

Endospores were recovered from the treated samples and non-treated controls by suspending

the sections in 20 ml saline and vortexing for 60 s. A dilution series was prepared and plated

onto TSA that was subsequently incubated at 55˚C for 7 days.
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Hydrogen peroxide residue testing

Hydrogen peroxide residues on N95 masks treated with the optimized gAOP treatment were

determined using MQuant Peroxide test kit (Millipore Sigma, Oakville, ON, Canada). Here,

N95 masks (N = 3) were passed through the gAOP unit operating at 3% v/v hydrogen peroxide

at 40 ml/min with ozone being continuously introduced and a UV-C dose of 113 mJ/cm2. A 3

x 3 cm section of the N95 mask was excised and transferred to a tube containing 25 mL of dis-

tilled water then left for 1h at room temperature. The residual water was then decanted into a

tube and hydrogen peroxide was determined using test strips with a low detection limit of 1.0

mg/l.

Evaluation of filtration performance and integrity of N95 masks treated

with multiple passages through the gAOP reactor

N95 masks (N = 10) that were passed through the gAOP treatment 10 or 20 times were tested

for filtration and integrity by 3M Personal Safety Division Laboratory (3M, Brockville,

Ontario, Canada). Filter penetration and pressure drop across the N95 masks was performed

using a TSI 8130 Automated Filter Tester (AFT) set at an airflow of 85 l/min with a 200 mg

NaCl challenge (Method: TEB-APR-STP-0059).

The fit-related evaluations of each mask were performed by measuring the headband

mechanical properties. Both upper and lower headbands from each N95 mask sample were

evaluated for mechanical properties on an Instron model 5966 Universal Test System with a 1

kN load cell. Three elongation cycles were applied to each sample in the following order and

magnitude: 200%, 50%, and 25%. These cycles simulate the donning and re-donning of a filter-

ing facepiece respirator with non-adjustable elastic straps. The gAOP treated masks were also

visually inspected for shrinkage, deformation of the nose-foam, and inner or outer shell.

Inoculation and recovery of microbes from surgical masks

Three inoculation areas (1.5 cm diameter) were drawn on the exterior and interior of N95

masks, ensuring no overlapping between the areas (S3 Fig). Aliquots (0.1 ml) of spore suspen-

sion (7 log CFU/ml) were inoculated onto the designated areas then left for 1h at room tem-

perature to attach. The masks were then passed through the gAOP unit and the inoculated

sections were transferred to tubes containing TSB (20 ml). The spores were released by vortex-

ing the tubes for 60 s and a dilution series prepared in saline that was subsequently plated onto

TSA that was then incubated at 55˚C for up to 7 days to account for the delayed germination

of super-dormant endospores.

Biological and chemical indicator for verification of gAOP mask

decontamination

Apex Biological Indicator strips (MesaLabs, Bozeman, MT, USA) were applied in the current

study. The stainless-steel strips are inoculated with Geobacillus stearothermophilus endospores

(6 log CFU) on one face and have previously been applied for verification of hydrogen perox-

ide- based decontamination processes. Apex ribbon biological indicator strips were mounted

onto N95 masks using two configurations (S4 Fig). In the first configuration, the Apex strips

were attached to the outer and inner surface of the masks using double-sided tape. In Configu-

ration 2, a window was cut from the center of the N95 masks with the Apex strip positioned

with the inoculated side facing up with the other inverted (S4 Fig). In both configurations, the

six masks were placed into the holder face-up and passed through the gAOP unit operating

under the optimized working parameters. The Apex strips were removed from the masks after
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treatment and transferred to sterile tubes into which 10 ml of TSB was added. The tubes were

incubated for 48h at 55˚C then checked for growth of residual survivors as per manufacture

instructions.

The chemical indicator strips were fabricated by depositing 10 μl of Nafion resin 1100W

(Sigma-Aldrich, ON, Canada) onto strips (1 cm x 3 cm) or disks (1 cm diameter) of thick blot-

ting (BioRad, ON, Canada). Aliquots (10 μl) of pyrrole (Sigma-Aldrich, ON, Canada) were

deposited over the Nafion and the strip/disk attached to the masks via double-sided tape then

used within 10 min. The indicator was positioned within the interior and exterior of the mask

with a positive reaction being recorded by a transition from pink to black.

Trials were also performed with chemical indicator strips passed through the gAOP reactor

when the individual components (hydrogen peroxide, UV-C or ozone) were applied alone and

then in combination. The color change of the chemical indicator was then recorded.

Experimental design and statistics

Values represent the average of 3–6 masks per treatment with log counts of bacteria or TCID50

values compared using one-way ANOVA in combination with the Tukey test. Statistical analy-

sis was performed using IBM SPSS statistics software (Armok, NY, USA). Analysis of variance

was used to test P� 0.05 was considered statistically significant. Fit and particulate testing rep-

resents results of 10 masks for control, ten or twenty passes through the gAOP reactor.

Results and discussion

Effect of gAOP operating parameters for N95 mask decontamination

The gAOP treatment was optimized in terms of mask orientation, hydrogen peroxide concen-

tration, and flow rate with the UV-C dose and concentration of ozone remaining constant

(Table 1; S2 Fig). The inactivation of E. coli was used as a metric to assess the different treat-

ments given that the bacterium exhibited higher tolerance to hydroxyl-radicals compared to

enveloped viruses [31]. E. coli was inoculated onto the exterior or interior of masks then orien-

tated in different positions during passage through the gAOP unit operating at different

hydrogen peroxide flow rates (Table 1).

With non-treated controls, the recovery of E. coli from the interior of the N95 masks were

significantly (P<0.05) lower compared to the exterior even though the same cell density was

inoculated (Table 1). To determine the underlying reasons for the lower cell density of E. coli
recovered from the internal surfaces of N95 masks trials were performed to determine the fate

Table 1. Log count reduction of Escherichia coli K12 inoculated onto the interior or exterior of N95 masks then passed through the gas phase Advanced Oxidation

Process unit operating at different hydrogen peroxide flow rates. The masks were passed through the gAOP unit flat, horizontally or vertically as depicted in S2 Fig and

S1 Table.

Treatment Orientation Hydrogen Peroxide Flow Rate (ml/min) Outside Inoculated Inside Inoculated

Log CFU Log Count Reduction Log CFU Log Count Reduction

Control Non-Treated 7.60±0.12Aa 4.86±0.13Ab

1 Flat bed 40 <1.70Ba >5.90 <1.70Ba >3.16

2 Vertical 40 3.07±0.09Ca 4.54 <1.70Bb >3.16

3 Vertical 20 3.51±0.05Da 4.10 1.94Cb 2.92

4 Horizontal 40 <1.70Ba >5.90 <1.70Ba >3.16

5 Horizontal 20 5.27±0.03Ca 2.33 <1.70Bb >3.16

Means followed by the same upper case letter within columns are not significantly (P>0.05) different.

Means followed by the same lower case letter within rows are not significantly (P>0.05) different.

https://doi.org/10.1371/journal.pone.0248487.t001
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of the bacterium when inoculated inner or outer surface then held for 60 min (Fig 1; S2 Table).

It was found that E. coli inoculated onto the outer surface of masks retained viability with no

significant change in counts over the 60 min holding period. However, E. coli inoculated into

the internal surface of N95 masks progressively declined over the 60 min holding period and

resulted in a 2.02 log CFU reduction (Fig 1). It has previously been reported that the viability

of E. coli and viruses decreases over time when introduced onto N95 masks presumably due to

the electrostatic filter layers [32].

It was found that the inactivation of E. coli on N95 masks by gAOP treatment was indepen-

dent of the hydrogen peroxide concentration (2–6% v/v) applied with no E. coli being recov-

ered treated masks. It has previously been reported that a combination of hydrogen peroxide

at 1–2% v/v combined with UV-C can support a 5 log CFU reduction of Bacillus endospores

illustrating the high antimicrobial activity of hydroxyl-radicals [23]. In subsequent studies, a

3% v/v hydrogen peroxide solution was applied for the gAOP treatment given that the concen-

tration is commercially widely available without the need for dilution.

The flow rate of hydrogen peroxide within the gAOP unit and orientation of the N95 masks

during treatment affected the decontamination efficacy (Table 1). Specifically, residual E. coli
survivors were recovered from N95 masks treated with gAOP operating at 20 ml/min

(Table 1). However, no E. coli was recovered from N95 masks treated with gAOP when the

hydrogen peroxide was introduced at 40 ml/min (Table 1). The results indicate that the effi-

cacy of the gAOP was dependent on the degree of misting by hydrogen peroxide to cover the

N95 masks and to generate sufficient hydroxyl radicals to inactivate E. coli. The importance of

misting was also highlighted by the effect on the orientation of the mask. N95 masks passed

through the gAOP unit horizontally (Treatment 4 and 5; Table 1) resulted in a higher decon-

tamination efficacy compared with those positioned vertically (Treatment 2 and 3; Table 1).

No E. coli were recovered from masks that had been double passed (flatbed) through the

gAOP being inverted after the first pass (Treatment 1; Table 1). The effect of position again

reflects the exposure to hydroxyl radicals to the surfaces on the outside and the internal surface

of masks.

Fig 1. Viability of Escherichia coli K12 on the interior or exterior of N95 masks. E. coli was inoculated onto 2 cm x 2

cm sections of 3M 1820 N95 masks with samples (N = 3) taken at different times during holding at room temperature.

The sections were suspended in saline and vortexed then levels of E. coli enumerated.

https://doi.org/10.1371/journal.pone.0248487.g001
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The orientation of masks is critical in UVGI treatments given that the surfaces are required

to be directly exposed to the UV-C photons [12]. With hydrogen peroxide vapor the orienta-

tion is less critical but there is a need to facilitate free-flow of the antimicrobial gas around the

masks [6]. In a similar manner, gAOP treatment requires the circulation of hydroxyl-radicals

to the surfaces of the mask but do not need to be directly exposed to UV as with gas plasma

treatment [33].

Decontamination of N95 masks inoculated with Geobacillus
stearothermophilus endospores and human coronavirus and treated using

the gAOP reactor

Unlike E. coli, the levels of endospores recovered from the internal surface of the N95 masks

were not significantly different (P>0.05) compared to the inner layers (Table 2). No surviving

endospores were recovered from N95 masks passed through the gAOP unit thereby verifying

the antimicrobial efficacy of the process (Table 2). The results are in agreement with studies

performed on the sporicidal activity of hydroxyl-radical activity in carton sterilization [25]. To

verify that endospore inactivation was via hydroxyl-radicals trials were performed to assess the

lethality of the individual components of the gAOP process. Here, mask sections were inocu-

lated with Geobacillus endospores were passed through the reactor with only the hydrogen per-

oxide spray (3% v/v at 40 ml/min), ozone or UV-C lamps (dose 113 mJ/cm2) turned on. The

log count reductions obtained were 0.97±0.07 log CFU for hydrogen peroxide, 0.10±0 log

CFU for ozone and 0.93±0.09 log CFU for UV-C alone. The results confirm that the genera-

tion of hydroxyl-radicals exhibited a synergistic lethality compared to the individual compo-

nent parts.

The initial TCID50 of CoV-229E inoculated onto N95 masks was determined to be>2 x 108

with no survivors being detected on samples treated with gAOP (S3 Table). The results con-

firm the susceptibility of coronavirus to hydroxyl-radicals [31]. There was no significant differ-

ence (P>0.05) in the viability of Huh7.5 cells exposed to the extract taken from mask sections

that had been treated with gAOP (0.939± 0.017 RLU) relative to non-treated controls (0.867

±0.012 RLU) (S4 Table). The result verifies that no toxic products were generated as a result of

the gAOP process.

Filtration performance testing of gAOP treated N95 masks

The penetration test illustrated that N95 masks treated with the gAOP process were not signifi-

cantly different (P>0.05) from non-treated controls and within the 0.1–2.0% tolerance limits

(Table 3). The insignificant difference in the pressure drop across gAOP treated masks com-

pared to controls also provided evidence that the N95 masks retained functionality.

The headband properties of the gAOP treated N95 masks were not significantly (P>0.05)

differ compared to the controls and no visual deformation, shrinkage, or change in texture was

found. Collectively the results confirmed the N95 masks treated up to 20 cycles in the gAOP

unit did not alter the performance or fit of masks.

Inactivation of Geobacillus stearothermophilus endospores inoculated on

the interior and exterior of surgical masks then treated using the gAOP

process

Surgical masks were inoculated at different positions on the interior and exterior of surgical

masks then passed through the gAOP reactor operating under optimized conditions (Table 4;
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Table 2. Inactivation of Geobacillus stearothermophilus endospores inoculated onto the internal and external surfaces of 8210 N95 masks then passed through the

gAOP process on a fully loaded tray (S5 Fig).

Samples Log CFU/ml

N95 Mask Inoculum 7.02±0.03

Control Log CFU/mask

External 6.08±0.12

Internal 6.04±0.16

Inside/Outside Mask Inoculation Area Log CFU/section (Negative/Positive by Enrichment) Log Reduction

Holder Position 1 Outside A Negative 6.08

B Negative 6.08

C Negative 6.08

Inside D Negative 6.04

E Negative 6.04

F Negative 6.04

Holder Position 2 Outside A Negative 6.08

B Negative 6.08

C Negative 6.08

Inside D Negative 6.04

E Negative 6.04

F Negative 6.04

Holder Position 3 Outside A Negative 6.08

B Negative 6.08

C Negative 6.08

Inside D Negative 6.04

E Negative 6.04

F Negative 6.04

Holder Position 4 Outside A Negative 6.08

B Negative 6.08

C Negative 6.08

Inside D Negative 6.04

E Negative 6.04

F Negative 6.04

Holder Position 5 Outside A Negative 6.08

B Negative 6.08

C Negative 6.08

Inside D Negative 6.04

E Negative 6.04

F Negative 6.04

Holder Position 6 Outside A Negative 6.08

B Negative 6.08

C Negative 6.08

Inside D Negative 6.04

E Negative 6.04

F Negative 6.04

Inoculation sites (A, B, C) are the exterior surface of the N95 mask with D, E and F being on the internal surface (S5 Fig).

https://doi.org/10.1371/journal.pone.0248487.t002
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Table 3. Evaluation of filter penetration, pressure drop and headband integrity of N95 masks passed through the gas phase-Advanced Oxidation Process decontam-

ination treatment 10 or 20 times compared to non-treated controls (S5 and S6 Tables).

Transitions through the gAOP unit Filter Penetration Test (%) Pressure Drop (mm Hg) Headband Force 3rd Cycle 50% Upper/Lower

No Treatment 0.15±0.05A 7.53±0.29A 0.38±0.01/0.38±0.01

10 0.17±0.09A 7.57±0.36A Not Determined

20 0.17±0.05A 7.68±0.22A 0.37±0.01/0.37±0.01

Means followed by the same letter within columns are not significantly different (P>0.05).

https://doi.org/10.1371/journal.pone.0248487.t003

Table 4. Geobacillus endospore loading inoculated onto surgical masks and passed through the gas phase Advanced Oxidation Process reactor. Non-treated controls

were used to determine the initial endospore levels.

Outside Log CFU (Enrichment) LCR Inside Log CFU (Enrichment) LCR

Control

Mask I Outside 6.44±0.12 Mask I Inside 6.16±0.08

Mask II Outside 6.58±0.34 Mask II Inside 6.35±0.11

Mask III Outside 6.41±0.29 Mask III Inside 6.31±0.21

Average 6.48±0.09 Average 6.27±0.07

Clean Flow

Mask 1 Mask 1

A� Negative 6.48 D Negative 6.27

B Negative 6.48 E Negative 6.27

C Negative 6.48 F Negative 6.27

Mask 2 Mask 2

A Negative 6.48 D Negative 6.27

B Negative 6.48 E Negative 6.27

C Negative 6.48 F Negative 6.27

Mask 3 Mask 3

A Negative 6.48 D Negative 6.27

B Negative 6.48 E Negative 6.27

C Negative 6.48 F Negative 6.27

Mask 4 Mask 4

A Negative 6.48 D Negative 6.27

B Negative 6.48 E Negative 6.27

C Negative 6.48 F Negative 6.27

Mask 5 Mask 5

A Negative 6.48 D Negative 6.27

B Negative 6.48 E Negative 6.27

C Negative 6.48 F Negative 6.27

Mask 6 Mask 6

A Negative 6.48 D Negative 6.27

B Negative 6.48 E Negative 6.27

C Negative 6.48 F Negative 6.27

https://doi.org/10.1371/journal.pone.0248487.t004
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S3 Fig). No spores were recovered from the treated surgical masks verifying that the gAOP

treatment could successfully decontaminate both the interior and exterior surfaces.

Biological and chemical indicator for verifying decontamination

performance of gAOP treatment

The biological indicator strips were affixed to the internal or external surface of N95 masks or

bridging a cut-out section (S4 Fig). The masks were then passed through the gAOP reactor

Fig 2. Color change in chemical indicator based on pyrrole-Nafion films. Nafion was deposited onto blotting paper

strips and overlaid with pyrrole. The strips were then passed through the Gas Phase Advanced Oxidation Process

reactor operating at 3% v/v hydrogen peroxide delivered at 40 ml/min, UV-C dose of 113 mJ/cm2 and ozone being

delivered through the 30 s treatment. Additional strops were passed through the gAOP unit with hydrogen peroxide,

UV-C or ozone alone. A non-treated control acted as a comparison.

https://doi.org/10.1371/journal.pone.0248487.g002
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operating under the developed working parameters (3% v/v hydrogen peroxide delivered at 40

ml/min with a UV-C dose of 113 mJ/cm2 with ozone being applied throughout the 30 s pro-

cess). None of the Apex biological indicator strips tested negative when passed through the

gAOP reactor irrespective of being position in Configuration 1 or 2 (S4 Fig). In contrast, the

non-treated Apex biological strips tested positive thereby confirming that the Geobacillus
endospores were viable. The results confirm that the Biological Indicator Geobacillus endo-

spore strips could be applied for routine verification of the gAOP process.

The chemical indicator serves to differentiate between those N95 masks that have been

treated using gAOP from those awaiting treatment. Besides, indicators also serve to verify that

the treatment has been adequately applied so can be viewed as a complement to biological

indicators. In the current study, the Nafion-Pyrrole indicator transitioned from pink to blue-

black when passed through the gAOP reactor operating under the aforementioned working

parameters. However, when each of the inputs to the gAOP process (i.e UV-C, hydrogen per-

oxide, or ozone) were applied alone the color change was less distinct and incomplete (Fig 2).

The results are in agreement with other reports demonstrating that the generation of

hydroxyl-radicals can support the oxidative polymerization of pyrrole [29,34].

Conclusions

The study was directed towards validating and verifying the efficacy of a gAOP to decontami-

nate N95 and surgical masks without resulting in detrimental changes in functionality. In addi-

tion, the utility of a biological and chemical indicator to verify decontamination performance

was also performed. It was found that the gAOP treatment could support the inactivation of

human coronavirus, vegetative bacterial cells, and endospores without causing negative effects

on mask functionality. Given the continuous, rapid, nature of the process, it could be envisaged

that the gAOP unit could be applied on-site (for example, hospital ward) for recycling or

extending the use of masks. The different operating parameters (hydrogen peroxide, ozone, and

UV-C dose) can be continuously monitored in real-time thereby resulting in a controlled pro-

cess. Yet, a biological and chemical indicator has been identified in the current study that can

be applied for process verification. The current study tested a limited number of masks due to

availability issues and future studies will be looking at a broader range of N95 mask types.

Supporting information

S1 Fig. Gas-phase Advanced Oxidation Process unit for N95 and surgical mask decontami-

nation. The masks were loaded onto holders then passed through a hydrogen peroxide mist

with ozone gas being introduced via side vents. The masks then pass under UV-C lamps with a

total transit time of 30s. The flow rate of hydrogen peroxide, ozone concentration and UV-C

intensity monitored via sensors.
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S2 Fig. Orientation of N95 masks inoculated with Escherichia coli K12 during passage

through the gas phase Advanced Oxidation Process unit. Treatment 1 was when the masks

were placed down for the first pass then inverted for the second pass. Treatment 2 and 3 was

when the N95 masks were held vertical and Treatment 4 and 5 when held horizontally during

passage through the reactor.
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S3 Fig. Surgical masks inoculated with Geobacillus stearothermophilus endospores prior to

passing through the gas phase Advanced Oxidation Process reactor. The Geobacillus endo-

spores (0.1 ml of 7 log CFU/ml) was inoculated into the marked areas on the outside (A, B, C)
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(DOCX)

S4 Fig. 1 Biological (Geobacillus stearothermophilus) indicator strips positioned on the

exterior or interior of N95 masks (Configuration 1) or bridged across a cut out section

(Configuration 2). In each configuration the N95 masks were run through the Clean Flow

unit positioned face-up.
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S5 Fig. N95 masks inoculated onto the marked areas on the interior (A, B, C) or exterior

(D, E, F) with Geobacillus spores (0.1 ml of 7 log CFU/ml) then passed through the gas

phase Advanced Oxidation Process reactor.

(DOCX)

S1 Table. Log count reduction of Escherichia coli K12 inoculated onto the interior or exte-

rior of N95 masks then passed through the gas phase Advanced Oxidation Process unit

operating at different hydrogen peroxide flow rates. The masks were passed through the

gAOP unit flat, horizontally or vertically as depicted in S2 Fig.

(DOCX)

S2 Table. Viability of Escherichia coli K12 on the interior or exterior of N95 masks. E. coli
was inoculated onto 2 cm x 2 cm sections of 3M 1820 N95 masks with samples (N = 3) taken

at different times during holding at room temperature. The sections were suspended in saline

and vortexed then levels of E. coli enumerated.

(DOCX)

S3 Table. TCID50/ml of human coronavirus E299 inoculated onto mask sections then

treated with gas phase Advanced Oxidation Process.

(DOCX)

S4 Table. Normalized cell viability before and after gas phase Advanced Oxidation Process.

(DOCX)

S5 Table. Evaluation of filter penetration and pressure drop of N95 masks passed through

the gas phase-Advanced Oxidation Process decontamination treatment 10 or 20 times

compared to non-treated controls.
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S6 Table. Evaluation of headband integrity of N95 masks passed through the gas phase-

Advanced Oxidation Process decontamination treatment 10 or 20 times compared to non-

treated controls.
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