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The emergence and global impact of COVID-19 has focused the scientific and

medical community on the pivotal influential role of respiratory viruses as causes of

severe pneumonia, on the understanding of the underlying pathomechanisms, and on

potential treatment for COVID-19. The latter concentrates on four different strategies:

(i) antiviral treatments to limit the entry of the virus into the cell and its propagation, (ii)

anti-inflammatory treatment to reduce the impact of COVID-19 associated inflammation

and cytokine storm, (iii) treatment using cardiovascular medication to reduce COVID-19

associated thrombosis and vascular damage, and (iv) treatment to reduce the COVID-19

associated lung injury. Ideally, effective COVID-19 treatment should target as many

of these mechanisms as possible arguing for the search of common denominators

as potential drug targets. Leukotrienes and their receptors qualify as such targets:

they are lipid mediators of inflammation and tissue damage and well-established

targets in respiratory diseases like asthma. Besides their role in inflammation, they are

involved in various other aspects of lung pathologies like vascular damage, thrombosis,

and fibrotic response, in brain and retinal damages, and in cardiovascular disease.

In consequence, leukotriene receptor antagonists might be potential candidates for

COVID-19 therapeutics. This review summarizes the current knowledge on the potential

involvement of leukotrienes in COVID-19, and the rational for the use of the leukotriene

receptor antagonist montelukast as a COVID-19 therapeutic.
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SEVERE ACUTE RESPIRATORY
SYNDROME CORONAVIRUS 2
(SARS-COV-2) AND CORONAVIRUS
DISEASE-2019

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) is a novel enveloped RNA beta-coronavirus that emerged in
December 2019 in Wuhan, Hubei Province, China, resulting
in clusters of pneumonia outbreaks and human infections.
In February 2020 the World Health Organization (WHO)
announced the official name of the disease as “coronavirus
disease-2019” (COVID-19). Coronaviruses are enveloped RNA
viruses highly pathogenic to humans (Coleman and Frieman,
2014). In the past 20 years, two highly infectious coronaviruses
gave rise to epidemics on a global scale i.e., severe acute
respiratory syndrome coronavirus (SARS-CoV) (Ksiazek et al.,
2003) and Middle East respiratory syndrome coronavirus
(MERS-CoV) (de Groot et al., 2013). As of 11th Nov 2020, almost
52 million cases of COVID-19, including>1,200,000 deaths have
been reported in over 190 countries (https://coronavirus.jhu.edu/
map.html).

The incubation period for COVID-19 is estimated to be within
14 days following exposure, in most cases 4 to 5 days (Guan
et al., 2020; Li et al., 2020). The clinical spectrum of COVID-
19 syndrome ranges from asymptomatic infection to severe
pneumonia, acute respiratory distress syndrome (ARDS), and
death, based on 72,314 cases of COVID-19 from the Chinese
Center for Disease Control and Prevention (Wu and McGoogan,
2020). In this study, 81% of cases were reported to be mild,
14% severe, and 5% were critical. In 1,482 hospitalized patients
with laboratory-confirmed COVID-19 in the United States the
most common presenting symptoms were cough (86%), fever or
chills (85%), and shortness of breath (80%), diarrhea (27%), and
nausea (24%) (Garg et al., 2020). Laboratory findings commonly
reported in COVID-19 include leukopenia and lymphopenia,
and elevations in aminotransferase levels, C-reactive protein,
D-dimer, ferritin, and lactate dehydrogenase (Lovato A, 2020).

Abbreviations: ACE 2, angiotensin-converting enzyme; ALI, acute lung injury;

ARDS, acute respiratory distress syndrome; CCL2, CC-chemokine ligand 2;

CNS, central nervous system; COSMO, COvid-19 Symptom MOntelukast;

Covid19, corona virus disease 2019; CRP, c reactive protein; Cys-LTs, cysteinyl-

leukotrienes; CysLTR1, Cysteinyl-leukotriene receptor 1; CysLTR2, Cysteinyl-

leukotriene receptor 2; CXCL8, CXC motif chemokine ligand 8; CXCL9, CXC

motif chemokine ligand 9; CXCL10, CXC motif chemokine ligand 10; FDA,

Food and Drug administration; GPR99, G-protein coupled receptor 99; GPR-17,

G-protein coupled receptor 17; HIV, human immunodeficiency virus; ICAM-

1, intercellular adhesion molecule 1; ICU, intensive care unit; IFNγ, interferon

gamma; IL-1, interleukin 1; IL-6, interleukin 6; IL-8, interleukin 8; IL-12,

interleukin 12; IL-17, interleukin 17; LT, leukotrienes; LTC4, leukotriene C4;

LTD4, leukotriene D4; LTE4, leukotriene E4; MAPK, mitogen-activated protein

kinase; MCP-1, monocyte chemotactic protein 1; MTK, Montelukast; Mpro, main

protease; MERS-CoV, middle eastern respiratory syndrome corona virus; PCT,

procalcitonin; PICP-1, procollagen type I carboxy-terminal propeptide; RANTES,

regulated on activation, normal T cell expressed and secreted; ROS, reactive oxygen

species; Sars-Cov 2, severe acute respiratory syndrome corona virus 2; TMPRSS2,

Transmembrane Protease Serine 2; TNF-α, tumor necrosis factor alpha; TGFβ,

transforming growth factor-β; WHO, world health organization.

Patients with severe COVID-19 typically present with
hypoxemia and need hospitalization. In adults with COVID-19
and acute hypoxemic respiratory failure, conventional oxygen
therapy may be insufficient to meet the patient’s oxygen
demand. As such, further supportive options include high
flow nasal cannula oxygen, non-invasive positive pressure
ventilation, or invasive mechanical ventilation. In patients
with COVID-19 from Wuhan, China, it was observed that
over 20% of hospitalized patients with COVID-19 pneumonia
required intensive care with respiratory support (Huang et al.,
2020; Wang et al., 2020). Patients with COVID-19 pneumonia
requiring ICU compared to non-ICU patients were older
(median age= 66 years vs. 51 years) and more likely to be
burdened with underlying co-morbid conditions (72 vs. 37%)
(Wang et al., 2020).

SARS-COV-2 INFECTION AND COVID-19
PATHOGENESIS

In brief, SARS- CoV-2 infection and COVID-19 pathogenesis
can be summarized as follows: (i) entry of the virus into the
upper and lower respiratory tract, cellular infection, replication,
and propagation of the virus, (ii) inflammation, (iii) thrombosis
and endothelial damage, and (iii) end organ damage (Figure 1).
Finally, patients die because of respiratory failure due to
interstitial pneumonia, cardiogenic shock or ARDS, while
survivors recovering from COVID-19 often can develop fibrotic
lung lesions.

SARS-CoV-2 Infection and Propagation
Anti-viral treatment through inhibition of viral entry and/or
inhibition of its propagation is certainly an attractive approach
to reduce the risk of infection and to limit COVID-19 associated
symptoms. At present, anti-viral medications that had originally
been developed to treat HIV, Ebola, Hepatitis C, Influenza, SARS,
or MERS virus infections are tested in COVID-19 patients. A
fundamental understanding of the mechanisms of COVID-19
infection and propagationmight open new avenues for the design
of effective and specific treatments. Viral entry into target cells
is facilitated through binding of the virus’s spike (S) protein to
the cellular receptor angiotensin-converting enzyme 2 (ACE2)
as the entry receptor, similar to what has been described for
SARS-CoV (Li et al., 2003; Zhou, P., et al., 2020). It further
requires S protein cleavage/priming by the cellular protease
Transmembrane Protease Serine 2 (TMPRSS2), which allows
fusion of viral and cellular membranes. ACE2 and TMPRSS2 are
expressed by a variety of cells of different organs, remarkably
high expression is present in olfactory epithelium cells identifying
the olfactory mucosa cells as one possible route of infection. In
addition, ACE2 and TMPRSS2 expression is found in cells of the
cornea of the eye and in the intestine. This suggests alternative
routes of COVID-19 infections, for example through the eye, the
tear ducts, or through the gastrointestinal tract. Viral propagation
requires the main protease Mpro, also called 3CLpro, which is
essential for cleaving the polypeptides that are translated from
the viral RNA. Mpro is certainly a highly attractive drug target,

Frontiers in Molecular Biosciences | www.frontiersin.org 2 December 2020 | Volume 7 | Article 610132

https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Aigner et al. Montelukast as COVID-19 Medication

FIGURE 1 | Summary and Concept. In the center of current COVID-19 research and therapy development are viral entry and propagation, inflammation, lung

damage, as well as platelet activation/aggregation, thrombosis, and cardiovascular diseases. Emerging topics in COVID-19 are stroke, demyelination, and

neurodegeneration. The various aspects lead to loss of organ function in the lung, brain and eye, and eventually heart. Montelukast might be effective in addressing

the various detrimental processes and might promote functional recovery.

however, the development of Mpro inhibitors has only recently
started (Zhang et al., 2020).

COVID-19 Associated Inflammatory
Response
COVID-19 infections are associated with severe inflammation,
and various anti-inflammatory treatments are currently under
clinical investigations. Inflammation is partially triggered by
virus induced cell cytolysis in the lung, which in turn
results in enhanced production of inflammatory cytokines and
chemokines by infected cells. Additional mechanisms include
delayed induction of antiviral interferon response as a result of
virus-escape mechanisms, such as the production of interferon
inhibitory proteins (Channappanavar and Perlman, 2017; Merad
and Martin, 2020).

Post-mortem analysis illustrates the excessive inflammatory
response to SARS-CoV-2, which is thought to be the major
contributor to disease severity and mortality in patients with

COVID-19. This inflammatory response includes increased

levels of inflammatory markers in the blood (including
C-reactive protein, ferritin, and D-dimers), increased
neutrophil/lymphocyte ratio and increased serum levels of
several inflammatory cytokines, for example IL-1, IL-6, and
TNF-α, and chemokines, as well as extensive lymphopenia
and substantial infiltration of monocytes, macrophages and
neutrophils in the lungs, heart, spleen, lymph nodes, and kidney
(Huang et al., 2020; Mehta et al., 2020; Merad and Martin, 2020).

Dysregulated activation mechanisms of the mononuclear
phagocyte compartment are likely contributors to COVID-19
associated hyper-inflammation (Schulert and Grom, 2015; Mehta
et al., 2020). In various respiratory conditions including viral
pneumonias levels of pro-inflammatory cytokines are elevated
and various immune cells appear in lung tissue and contribute
to symptoms such as fever and to tissue reactions such as fibrosis
(Kritas et al., 2020). A similar situation appears in COVID-19,
where levels of pro-inflammatory cytokines are elevated in the
lung and in bronchial cells (Huang et al., 2020). In post-mortem
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lungs patients with coronavirus infections, there is extensive
cellular infiltration by macrophages as well as accumulation of
high levels of interferon-γ (IFNγ), IL-6, IL-12, transforming
growth factor-β (TGFβ), CCL2, CXCL10, CXCL9, and IL-8
(Channappanavar and Perlman, 2017).

Severe COVID-19 patients typically experience a “cytokine
storm syndrome” or now commonly coined as “cytokine storm,”
characterized by a severe and sudden onset of a cytokine cascade
or hypercytokinemia which in turn can result in ARDS, multi-
organ failure, and death (Coperchini et al., 2020). The cytokine
storm results from the cumulative effects of a combination of
several immune-active molecules. The release of large quantities
of interferons, interleukins, chemokines, colony-stimulating
factors, and TNF-alpha, which represent the main components
involved in the development of the cytokine storm, precipitate,
and sustain the aberrant systemic inflammatory response. The
“cytokine storm” is possibly the most dangerous and potentially
life-threatening aspect related to COVID-19, and can result in
ARDS, multi-organ failure, and death.

A common occurrence observed in many patients with severe
COVID-19 is the presence of T cell lymphopenia, which is
more pronounced in the CD8+ T cell compartment, although
CD4+ T cell counts were also observed to be low. T cell
counts were significantly reduced in COVID-19 patients, and
were negatively correlated with increased serum levels of TNF,
IL-6, and IL-10 (Diao et al., 2020). The surviving T cells
appeared to be functionally exhausted (Diao et al., 2020). The
potential mechanisms responsible for T cell depletion are still
unclear; however, the hypothesis that depletion is related to direct
infection of T cells by SARS-CoV-2 virus, at least in the case of
patients with COVID-19, has to date not been substantiated.

COVID-19 Patients Show Dysregulation of
Hemostasis and Vascular Damage
Among patients, hospitalized for severe SARS-CoV-2
infection, COVID-19 is frequently associated with coagulation
abnormalities (Al-Ani et al., 2020; Marietta et al., 2020). Several
hematological and coagulation parameters are altered, including
prolonged prothrombin and activated prothrombin times,
enhanced D-dimer levels, as well as reduced platelet counts
(Al-Ani et al., 2020; Becker, 2020; Terpos et al., 2020; Xu et al.,
2020), with patients critically ill showing the most prominent
alterations (Zhang, Y., et al., 2020). The hypercoagulative
state observed in COVID-19 patients might be related to
the strong pro-inflammatory response unleashed following
viral infection (Marietta et al., 2020). Inflammatory mediators
are known to promote platelet reactivity, activation of the
coagulation system, and down-regulation of anticoagulant
mechanisms favoring coagulation and thrombosis (Esmon,
2005). At the pulmonary level, cellular damage originating
from viral infection, but also due to mechanical ventilation,
may promote platelet activation and aggregation, leading
to thrombus formation (Xu, X., et al., 2020; Zhang, Y.,
et al., 2020). Increased thrombogenesis may also contribute
to thrombocytopenia observed in COVID-19 patients, a
condition associated with poor prognosis and high mortality

(Al-Ani et al., 2020; Liu et al., 2020). As highlighted in a
recent position paper by the European Society of Cardiology
(ESC) Working Group for Atherosclerosis and Vascular
Biology, and the ESC Council of Basic Cardiovascular Science
(Evans et al., 2020), SARS-CoV-2 virus infections affect
the cardiovascular system with the clincial consequences of
myocarditis, arrhythmias, and myocardial damage. Besides
that, the vasculature is affected in COVID-19 patients,
both directly by the SARS-CoV-2 virus, and indirectly
as a result of the systemic inflammatory cytokine storm
(Evans et al., 2020).

COVID-19 Patients Develop Severe Acute
and Chronic Lung Pathologies
On chest X-rays patients with COVID-19 show abnormalities
that vary from patient to patient; nevertheless, patients typically
demonstrate bilateral multi-focal opacities (Shi et al., 2020).
CT chest scans also vary in terms of abnormalities; however,
a common observation was peripheral ground-glass opacities
with the development of areas of consolidation later in the
clinical course. Also, imagingmay be normal early after infection,
and abnormalities may appear even in asymptomatic patients
with COVID-19.

Histopathological examination of COVID-19 lung tissue
shows cellular infiltrates indicating diffuse alveolar damage
with cellular fibromyxoid-organizing exudates, accompanied by
pneumocyte desquamation and hyaline membrane formation,
indicating features usually seen in ARDS (Xu, X., et al., 2020).
Also, pulmonary edema associated with hyaline membrane
formation suggestive of early-phase ARDS is typically evident.
Multinucleated syncytial cells, atypical enlarged pneumocytes
characterized by large nuclei, amphophilic granular cytoplasm,
and prominent nucleoli are observed in the intra-alveolar spaces,
indicating changes seen in viral infections.

In addition, COVID-19 patients show extensive mucus
secretion in both lungs, and signs of pulmonary interstitial
fibrosis are typically evident in post-mortem COVID-19 lungs
(Jain, 2020). The severity of pulmonary complications in
COVID-19 is closely linked to IL-6 peak levels (Russell
et al., 2020). The over-activation of mast cells and release of
cytokines might also have a crucial role in the development of
pulmonary fibrosis in COVID-19, particularly in populations
pre-disposed to develop diseases related to mast cell activation
(Theoharides, 2020). Chronic lung diseases like pulmonary
fibrosis may develop in COVID-19 patients who recovered
(Wang J., et al., 2020).

LEUKOTRIENES IN LUNG PATHOLOGIES
AND COVID-19

COVID-19 associated inflammatory responses involve the
participation of the innate and the adaptive immune system as
well as its associated cellular players and components. Besides
the inflammatory overload, thrombosis, vascular damage, and
fibrotic response are typical features of COVID-19 pathology.
In the search for a common denominator involved in the
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modulation of these various aspects of COVID-19 pathology
we identified leukotrienes (LTs), in particular the cysteinyl-
leukotrienes (Cys-LTs) and their receptors as potential drug
targets. Indeed, very recent literature hypothetically argues for
the use of LT receptor antagonists in the treatment of COVID-
19 patients (Almerie and Kerrigan, 2020; Fidan and Aydogdu,
2020), and a first Phase III randomized controlled double-blind
clinical trial testing the Cys-LT receptor antagonist montelukast
in COVID-19 patients has been announced (https://clinicaltrials.
gov/ct2/show/NCT04389411). The objective of COSMO (COvid-
19 Symptom MOntelukast) trial is to determine the efficacy of
montelukast in reducing the severity of COVID-19 symptoms.
The primary objective is to test the efficacy of the standard and
approved dose of 10 mg/day of montelukast compared to placebo
in reducing the risk of acute care visits and hospital admissions
for COVID-19 patients.

The next paragraphs elaborate on Cys-LTs and their role
in lung pathologies with a special focus on COVID-19 related
pathogenesis and summarize the rational and the current state of
preclinical and clinical development of montelukast as a potential
therapeutic for the treatment of COVID-19 patients.

Leukotrienes and Leukotriene Receptors
LTs are eicosanoids and inflammatory mediators produced
by various cell types including leukocytes. One subclass, i.e.,
cysteinyl-leukotrienes (CysLTs) are well-known in respiratory
medicine as they trigger bronchoconstriction in asthma and
cause inflammation in asthma and allergic rhinitis (Peters-
Golden and Henderson, 2007; Okunishi and Peters-Golden,
2011). CysLTs bind to specific CysLT receptors (CysLTRs)
namely, CysLTR1, CysLTR2, P2Y12, GPR99, and GPR-17.
These G protein-coupled receptors are expressed on the
outer membrane of a variety of cells including immune and
inflammatory cells (i.e., basophils, mast cells, dendritic cells,
eosinophils, monocytes/macrophages, B cells, CD4+ T cells,
and to a lesser degree on neutrophils and CD8+ cells),
endothelial cells and platelets (Peters-Golden and Henderson,
2007; Okunishi and Peters-Golden, 2011). CysLTR1 is mostly
expressed in lymphoid cells of the spleen and peripheral blood
leukocytes (Lynch et al., 1999) and also at lower levels in lung,
colon, small intestines, kidney, liver, heart, pancreas, and brain
(Nonaka et al., 2005). CysLTR2 is expressed in spleen, heart,
peripheral blood leukocytes, and lung (Takasaki et al., 2000)
and moderately expressed in the central nervous system with
higher expression levels within the spinal cord and pituitary
(Nothacker et al., 2000). P2Y12 is mainly expressed by platelets
but also in various other cell types including cells of the upper
and lower respiratory tract, where it mediates LT-induced effects
such as eosinophilic inflammation in asthma (Foster et al.,
2013; Suh et al., 2016). GPR99 is a high-affinity receptor for
LTE4 and involved in vascular damage, mucin production and
mucosal swelling (Bankova et al., 2016) [for review see Yokomizo
et al. (2018)]. GPR-17 has been described in various stem and
progenitor cells, and other somatic cells. It has affinity to two
families of ligands i.e., nucleotide sugars nucleotide sugars (UDP,
UDP-galactose, and UDP-glucose) and Cys-LTs (LTD4, LTC4,
and LTE4) (Ciana et al., 2006). In the context of respiratory

diseases, GPR17 might be involved in modulating pulmonary
immune-related inflammations (Zhan et al., 2018). Overall,
besides the clear involvement of CysLTR1 as a mediator of
eicosanoids in inflammation, the precise role of other leukotriene
receptors in inflammation is still under discussion. For example,
the oxoglutarate receptor GPR99 may be activated by CysLTs in
mice and in vitro, but its role in human CysLT-induced effects
remains to be established (Back et al., 2014).

Cysteinyl Leukotrienes in Lung and
Respiratory Disease Pathologies
LTs play a pivotal role in the acute phase of respiratory conditions
such as (i) asthma, (ii) viral pneumonia, (iii) acute lung injury
(ALI), (iv) systemic inflammatory response syndrome (SIRS),
(v) ARDS, and (vi) pulmonary fibrosis (Beller et al., 2004;
Caironi et al., 2005; Horiguchi et al., 2007; Okunishi and Peters-
Golden, 2011; Al-Amran et al., 2013). LTs mediate various
molecular and cellular pathologies in respiratory disease, and
LT inhibition alleviates respiratory pathology (Sorkness, 1997;
McMillan, 2001; Scott and Peters-Golden, 2013). Whether LTs
are involved in SARS-CoV-2 induced pneumonia and COVID-
19 pathology is unclear at present. Nevertheless, the similarities
of symptoms such as cough and fever, dyspnoea, pneumonia,
respiratory failure, and sepsis between COVID-19 associated
and not-associated respiratory conditions, and the similarities
in the various aspects of respiratory disease pathology such as
inflammation, thrombosis and vascular damage, and fibrotic
reactions strongly argue for a role of LTs in SARS-CoV-2
associated lung diseases.

The vast amount of knowledge on the role of CysLTs in lung
disease has been generated in the field of asthma, where CysLTs
mediate inflammation, induce bronchoconstriction, increase
microvascular permeability, and increase mucus production
(Peters-Golden, 2008). CysLTRs have been identified as
therapeutic targets, and CysLTR antagonists such as montelukast
are in clinical use in asthma for more than two decades. The fact
that CysLTs are involved in the various aspects of respiratory
disease pathologies such as inflammation, thrombosis and
vascular damage, and fibrotic remodeling provides a rationale
for inhibition of LTs and the use of montelukast in respiratory
diseases beyond asthma, for example in viral pneumonia related
to SARS-CoV-2 infections.

Besides the well-established role of CysLTs, leukotriene B4
and ist receptors might also be relevant targets in the context of
inflammation related to asthma (Ro et al., 2019). For example,
leukotriene B4 (LTB4) is present at higher concentrations in
sputum of patients with severe asthma compared to those with
mild asthma. Moreover, LTB4 receptors are involved in the
pathogenesis of neutrophil-dominant pulmonary inflammation
in an animal model. Nevertheless, due to the fact that the role
of CysLTs in the pathogenesis of asthma, in particular in the
inflammation that is related to asthma, is far more established
compared to the one of LTB4, the present review focuses
primarily on CysLTs and their receptors as putative targets in
lung diseases including COVID-19. Moreover, as the need of
a COVID-19 therapeutic is more than timely, we are focusing
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on compounds are already approved medications and ready to
be repurposed. Again, while Cys-LTR antagonists are approved
medications, LTB4 antagonists are available for preclinical studies
but not as approved medications.

MONTELUKAST AS A POTENTIAL
COVID-19 THERAPEUTIC

Montelukast was developed as a highly selective CysLTR1
antagonist, which is currently used and approved for the
treatment of asthma, allergic rhinitis, exercise-induced
bronchoconstriction, and acetylsalicylic acid-sensitive asthmatic
patients. Its primary mode of action is via prevented signaling
of LTs by blockage of CysLTR1. This prevents the production
of reactive oxygen species (ROS) and LTB4 and inhibits
inflammatory cytokine production through blocking the MAPK-
p38 and NF-kB pathways (Anderson et al., 2009), which has
been demonstrated in TNF-alpha-stimulated IL-8 expression in
U937 cells (Tahan et al., 2008), in human monocytic leukemia
cell line (Maeba et al., 2005), and in peripheral blood derived
macrophages (Lin et al., 2018). In addition to the inhibition of
CysLTR1, montelukast also antagonizes the GPR17 LT receptor
(Ciana et al., 2006).

Effects of Montelukast in Viral Infection
and Propagation
In 2017, Cardani et al. described an animal model of Influenza
A pneumonia demonstrating a role of alveolar macrophages
in preventing lethality (Cardani et al., 2017). In this study,
the preventive effect of the alveolar macrophages was causally
linked to a down-regulation of the LT pathway. Furthermore,
genetic and pharmacologic inhibition of LT synthesis as well
as blockade of CysLTRs using the LTR antagonist zafirlukast
reduced susceptibility to Influenza A infection and protected
these mice from lethal infections (Cardani et al., 2017). Based
on the similar molecular pharmacology montelukast might
have a similar anti-viral activity as zafirlukast. This, however,
requires experimental proof. Nevertheless, the anti-viral activity
of montelukast has been demonstrated in for the Zika virus, a
RNA virus similar to Sars-CoV-2. Here, montelukast disrupted
the integrity of the virions to release the viral genomic RNA and
thus irreversibly inhibited viral infectivity (Chen et al., 2019).

Propagation of the SARS-CoV-2 virus requires the main
protease Mpro, which is processing and cleaving the viral
polypeptides (Zhang et al., 2020). A study by Wu et al. generated
computational 3D homology models for 19 viral targets and
used molecular docking to predict drugs that could bind to
the respective binding sites. Montelukast was predicted to bind
Mpro with high affinity to its catalytic site of Mpro, presenting
montelukast as a potential Mpro inhibitor (Wu et al., 2020).
This may directly modulate and inhibit viral replication in
COVID-19. However, this computational prediction has still to
be experimentally tested.

Montelukast to Reduce Inflammation in
Lung and Respiratory Diseases
In human asthma, the anti-inflammatory effects of montelukast
in asthma are well-established [for review see Diamant et al.
(2009), Okunishi and Peters-Golden (2011), Paggiaro and Bacci
(2011)]. For example, in adults with asthma montelukast
treatment reduced serum CRP, decreased serum and sputum
eosinophil counts, levels of eosinophil cationic protein and of
IL-8; montelukast decreased sputum levels of myeloperoxidase,
and increased serum and sputum levels of the anti-inflammatory
cytokine IL-10 (Kanniess et al., 2002; Stelmach et al., 2005;
Allayee et al., 2007). Also, in asthmatic children montelukast
reduced the levels of exhaled nitric oxide (Straub et al., 2005).
In mycoplasma pneumonia, montelukast decreased serumMCP-
1, PCT, ICAM-1, CXCL8, CRP, IFN-γ, and IL-17 levels and
peripheral blood Th1 and Th17 numbers, while it increased
serum IL-4 and TGF-β levels and peripheral blood Treg and Th2
content (Wu et al., 2019).

In a number of animal models of respiratory diseases
montelukast demonstrated anti-inflammatory activities. For
example, in an animal model of respiratory syncytial virus
(RSV) induced bronchiolitis montelukast prevented airway
hyper-responsiveness and inflammation (Han et al., 2010).
Additionally, Wedde-Beer et al. (2002) reported that treatment
with montelukast suppresses vascular permeability of airway
mucosa in a rat model of RSV infection. In two studies on
haemorrhagic shock induced lung-injury montelukast reduced
IL-6 and TNF-α levels (Horiguchi et al., 2007), alleviated lung
injury and decreased serum levels of lung myositis associated
antibodies, as well as bronchoalveolar lavage fluid LTB(4),
LTC(4), and total protein (Al-Amran et al., 2013). Also,
montelukast attenuated LPS-induced lung inflammation in a
model of acute respiratory distress syndrome (Davino-Chiovatto
et al., 2019). On the cellular level montelukast suppressed the
release of pro-inflammatory mediators such as IL-8 and RANTES
in nasal airway epithelial cells in vitro (Scaife et al., 2013).

Montelukast Affects Platelets and
Alleviates Vascular Damages
Increasing evidence demonstrates platelet involvement in
different lung diseases, such as asthma (Kowal et al., 2006).
In asthmatic individuals, airway inflammation is associated
with intravascular platelet activation (Sullivan et al., 2000),
with platelets contributing to the activation and infiltration of
eosinophils and T cells to the bronchial wall (Sullivan et al.,
2000; Kowal et al., 2006; Benton et al., 2010; Trinh et al.,
2019). Interestingly, combination of clopidogrel, an antiplatelet
drug, and montelukast in the treatment of asthma seems to
alleviate airway inflammation in animal experiments (Trinh
et al., 2019). As previously discussed, platelet aggregation and
thrombosis are two important events triggered by SARS-CoV-
2 infection. It is, thus, expectable that COVID-19 patients have
elevated levels of activated platelets, which might contribute
to the host response to the virus. Besides being involved in
recruitment and transmigration of immune cells to inflamed
tissue (Leiter and Walker, 2019), activated platelets also
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release multiple inflammatory molecules, which support the
activation and recruitment of immune cells, increased of
vascular permeability and a pro-inflammatory environment
(Leiter and Walker, 2019).

Interestingly, in the context of allergen induced airway
inflammation, platelet function seems to be influenced by CysLTs
(Liu et al., 2015). Platelets express CysLT1R and CysLT2R
(Hasegawa et al., 2010), and platelet activation by LTC4 has
been shown in mouse platelets (Cummings et al., 2013). LTC4
platelet stimulation led to upregulation of plasma membrane P-
selectin expression, a molecule involved in leukocyte recruitment
and release of inflammatory mediators (i.e., thromboxane A2,
CXCL4, and RANTES) (Cummings et al., 2013). Furthermore,
in vitro stimulation of human platelets with LTC4, D4, and E4
also induced the release of RANTES (Hasegawa et al., 2010),
a chemokine involved in the recruitment and migration of
leukocytes to inflammatory sites (Marques et al., 2013). CysLTs-
mediated platelet release of RANTES could be partial abrogated
by Pranlukast, a CYSLT1R antagonist (Hasegawa et al., 2010).
These observations suggest that CysLTs might be involved in
platelet activation and that the use of CysLT1R antagonists
such as montelukast might be advantageous in the treatment of
inflammatory states, particularly in combination with antiplatelet
drugs, such as clopidogrel (Foster et al., 2013; Suh et al., 2016).

Montelukast and the Potential to Limit
Acute and Chronic Lung Tissue Damage in
COVID-19
Currently, there are no data yet available demonstrating that
montelukast prevents lung damage in COVID-19 patients. Also,
while montelukast inhibits pulmonary inflammatory circuits
in the asthmatic lung, its effects in COPD is less established.
Nevertheless, montelukast reduced the levels of procollagen
type I carboxy-terminal propeptide (PICP-1), a marker for
collagen-synthesis and airway remodeling in hypertonic saline
solution–induced sputum in children with asthma (Tenero
et al., 2016). In animal models of lung injury, montelukast
has been shown to ameliorate tissue damage. For example,
montelukast reduced sepsis-induced lung and renal injury in
rats, a model of systemic inflammatory response syndrome
(Khodir et al., 2014). In a model of hemorrhagic shock induced
lung injury, montelukast reduced the total lung injury score
(Al-Amran et al., 2013).

MONTELUKAST IN COVID-19—A
THERAPY BEYOND LUNG?

There is increasing evidence that COVID-19 pathology is
not limited to the lung but also affects other organs, in
particular brain and eye. A retrospective study from Mao
et al. of 214 hospitalized COVID-19 patients revealed that
36.4% of patients displayed neurologic symptoms, like dizziness,
headache and impaired consciousness (Mao et al., 2020).
Also gustatory and olfactory dysfunctions have been reported
(Wang, L., et al., 2020). Severe neurologic complications,

like encephalitis, demyelination and stroke have also been
described in association with COVID-19 in rare cases (Poyiadji
et al., 2020) [reviewed in (Asadi-Pooya and Simani, 2020;
Montalvan et al., 2020; Zanin et al., 2020)]. These neurological
symptoms point toward a potential of Sars-CoV-2 to damage
the central nervous system (CNS). Also, ophthalmological
changes such as conjunctivitis, conjunctival hyperemia, increased
secretion, chemosis, and epiphora have been described in
patients with COVID-19 (Wu, P., et al., 2020). In addition,
OCT based scans of the retina show evidence for pathologies
in the ganglion cell layer and the inner plexiform layer and
the inner plexiform layer in COVID-19 patients (Marinho
et al., 2020). Additional observations using color fundus
photography and red-free imaging showed cotton wool spots
and microhaemorrhages along the arcade vessels at the macular
border indicating ischemia, blockage of axoplasmatic transport
in the ganglion cells as well as breakdown of the blood
retina barrier (Marinho et al., 2020). Cases of temporal mild
and severe vision loss binocular and monocular have been
reported, and non-arteritic posterior ischemic optic neuropathies
were discussed as possible reasons for acute vision loss
(Selvaraj et al., 2020).

Direct entry of the Sars-CoV-2 into the brain and eye has
been postulated. A possible direct entry way of Sars-CoV-2 into
the brain is via the lamina cribrosa of the ethmoid bone, which
was shown for Sars-CoV infections (Netland et al., 2008). Sars-
CoV-2 might also enter the brain by infecting endothelial cells in
the cerebral circulation (Baig et al., 2020). The receptor ACE2 is
expressed on cells of the central nervous tissue, namely neurons
and glial cells (Harmer et al., 2002) making them potential
target cells of Sars-CoV-2 in the CNS (Baig et al., 2020). It is
known that other members of the coronavirus family are able
to enter the CNS and that an infection can lead to symptoms of
multiple sclerosis and encephalitis (Bohmwald et al., 2018; Natoli
et al., 2020). Presence of Sars-CoV-2 in the CNS has already
been documented (Zhou et al., 2020), which demonstrates a
neuroinvasive potential of this virus. It was suggested, that a
neuroinvasion of Sars-CoV-2 could be involved in respiratory
failure in severe COVID-19 patients (Li, Y. C., et al., 2020), which
of course needs further research.

There is controversy about the ocular surfaces being an entry
and production site for the Sars-CoV-2 Virus. At least in patients
with PCR positive tear fluid samples spread of the virus from
the nasopharynx through the nasolacrimal duct onto the ocular
need to be considered as a possible route for viral entry onto
the ocular surface. However, recent evidence suggests that ACE-
2 and TMPRSS2 are located on the conjunctival epithelium of
adult humans. This makes most of the outer ocular surface
susceptible to infections with Sars-CoV-2 (Collin et al., 2020).
In patients with Sars-CoV-2 positive tear fluid on the ocular
surface, the eye is a possible site of transmission of the virus.
Taking measurements of intraocular pressure with air-puff-
tonometry was discussed as a possible mechanism transmitting
the virus via aerosol propagation (Lai et al., 2020). Although no
infection with Sars-CoV-2 via this pathway was reported, as a
precaution, most societies have warned using this technique in
COVID-19 patients. Cauterization of infected conjunctiva also
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created aerosols and might as well be a possible mechanism for
virus transmission.

Neurological and visual impairments due to Sars-CoV-2
infections might directly and/or indirectly damage the CNS
including brain and retina, which could potentially have long-
term consequences. Naughton et al. has raised concerns that
COVID-19 might contribute to further cognitive decline in
patients with Alzheimer Disease (Naughton et al., 2020).
Given the relative short time that Sars-CoV-2 is present we
can by now only speculate on possible mid- and long-term
consequences for COVID-19 survivors. Given the potential
of Sars-CoV-2 to infect cells of the CNS concerns arise that
an infection might facilitate and fasten cognitive decline in
patients with mild cognitive impairment or dementia. These
effects could either be due to direct neuropathogenic capacity
of Sars-Cov-2 in the brain or an indirect consequence of the
systemic inflammation.

A huge body of preclinical experiments has demonstrated
that montelukast promotes CNS repair, regeneration,
and rejuvenation in animal models of aging, chronic
neurodegenerative disease and acute CNS lesions. For example,
in aged rats, montelukast re-activated neurogenesis, reduced
neuroinflammation, restored the blood-brain-barrier, and
improved learning and memory (Marschallinger et al., 2015).
Montelukast alleviated damage, restored fiber connectivity,
and improved neurological function in an animal model of
acute stroke (Gelosa et al., 2019). It reduced seizures and
restored blood-brain-barrier function in an animal model of
epilepsy (Lenz et al., 2014), and reduced the alpha-synuclein
load and restored memory in an animal model of Lewy-
Body dementias (Marschallinger et al., 2020), In an animal
model of multiple sclerosis, montelukast reduced T-cell
chemotaxis and restored integrity of the blood-brain-barrier
(Wang et al., 2011).

Although very speculative, it can be expected that Sars-CoV-2
infections damage the brain involving various cellular levels and
mechanisms including blood-brain-barrier, neuroinflammation,
neurons and glia, as well as progenitor cells. Montelukast has
been shown to act in a protective and regenerative mode of
action at these various cells and compartments, and might
therefore have a potential to protect and repair from Sars-CoV-
2 induced brain damages. The same might account for retinal
damages, as montelukast has been shown to prevent from retinal
capillary degeneration in an animal model of early diabetic
(Bapputty et al., 2019).

Increasing awareness exists on the role of endothelial
cells as a prime target for SARS-CoV-2 infections and on
cardiovascular symptoms in COVID-19 patients (Evans et al.,
2020). Again, here, montelukast might be protective and
alleviate cardiovascular symptoms. For example, it has been
demonstrated that montelukast suppressed the expression of
adhesion molecule such as VCAM-1 and E-selectin and reduces
monocyte adhesion to human umbilical vein endothelial cells in
vitro (Di et al., 2017). Importantly, a nationwide cohort study
in sweden demonstrated that montelukast intake was associated
with a reduced risk for recurrent cardiovascular diseases

(Ingelsson et al., 2012). Moreover, we recently demonstrated
that montelukast reduced brain damage in ischemic rodents
and promoted structural and functional recovery after stroke
(Gelosa et al., 2019). Therefore, in summary, montelukast might
exert a number of extra-pulmonary protective effects in the
context of COVID-19.

MONTELUAKST FOR COVID-19
PATIENTS—A DRUG DELIVERY CASE?

As suggested in this review, there is a strong scientific rational
for repurposing of montelukast as a COVD-19 therapeutic.
Currently, montelukast is marketed under the brand name
Singulair R© and in several generic products in oral tablet forms.
In adult patients, the recommended daily approved dose is a 10-
mg tablet. These tablet forms present a number of limitations
such as inconsistent solubility, uptake, and bioavailability.
Although montelukast is freely soluble in water, its solubility
is markedly and significantly increased above pH 7.5 and
drastically reduced under acidic conditions normally found in
the gastrointestinal tract, in particular in the stomach (Okumu
et al., 2008). This explains why absorption of montelukast
into the blood stream is relatively slow and inconsistent with
maximum concentrations occurring between 2–4 h following
consumption. Thereby, montelukast use is limited to chronic
conditions rather than for rapid acute treatment. Indeed, a major
obstacle limiting the absorption of montelukast is presented
by its insufficient solubility and the rate of dissolution from
the tablet form. Uptake and bioavailability of montelukast
is further determined by pharmacogenetics [for review see
(Thompson et al., 2016)]. For example, more than 20% of the
population is not responding to montelukast with a clinical
benefit (Noonan et al., 1998). Among the various genetic reasons
are variations in the SLCO2B1 gene coding for the organic anion
transporting OATP2B1, which has been associated with altered
absorption of montelukast (Mougey et al., 2009). Uptake of
montelukast was further modifed by the intake of citrus juice
(Mougey et al., 2011).

Besides the physico-chemical and genetic basis for the
insufficient uptake and bioavailability of montelukast in its
current tablet form, a further drawback is the inadequateness
of montelukast tablets for patients suffering from dysphagia
such as elderly patients. Most importantly, for patients that
are intubated or require ventilation, an oral montelukast tablet
wouldn’t be the application of choice. As the most critical
COVID-19 patients are elderly people, and in severe cases require
intubation and ventilation, alternative routes of application
might be favorable.

One alternative drug delivery mode, which would be
highly suitable for elderly patients, and in particular for
patients with intubation or ventilation, are mucoadhesive buccal
films. Indeed, we have developed a buccal mucoadhesive
film formulation of montelukast, which in a recent Phase
I study showed safe and tolerable in healthy subjects, and
provides a reduction in first-pass-effect and a 52% higher
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bioavailability compared to the regular montelukast tablet. Given
the potential mechanism of action of montelukast in COVID-
19 and the added benefit of the buccal film application, the
latter might be a meaningful and effective therapeutic in patients
with COVID-19.

RECENT CONCERNS ON SAFETY OF
MONTELUKAST

As of 2017, there were over 30 million prescriptions of
montelukast in the United States (https://clincalc.com/
DrugStats/Drugs/Montelukast). The clinical efficacy of
montelukast in the approved indications has been well-
established in randomized clinical trials and the safety has
been proven in numerous years of use on the global market
(Schoors et al., 1995; Noonan et al., 1998; Storms et al., 2001).
Despite the vast clinical potential of montelukast and other
leukotriene modifying compounds in various diseases, there
is concern about the adverse drug reactions associated with
montelukast treatment in children as well as in adults. Besides
reports of allergic granulomatous angiitis, some neuropsychiatric
symptoms were observed with montelukast use. Among those,
depressions, aggressions, headaches and nightmares occur in
a certain percentage of children and adults, and even cases of
suicide after use of montelukast have been reported (Haarman
et al., 2017). Importantly, the FDA recently re-evaluated the
benefits and risks of montelukast (Singulair and generics)
use, strengthened existing warnings about serious behavior
and mood-related changes with montelukast and determined
that a Boxed Warning was appropriate. The underlying
mechanisms of such side effects are completely unknown.
In consequence to this remaining risk of adverse events,
and as there are currently no predictive biomarkers available
for such adverse events, COVID-19 patients would require
thorough examinations for such adverse events while they are on
the drug.

SUMMARY AND
CONCLUSION—REPURPOSING
MONTELUKAST FOR COVID-19
TREATMENT

To date, there are no marketed and effective antiviral drug
products or biologics available for the control of SARS-CoV-2,
other than symptomatic clinical treatment strategies for COVID-
19. LTs might be involved in COVID-19 pathology. The
LT receptor antagonist montelukast might provide antiviral
activity through modulation of the Mpro inhibitor site and
as such may inhibit viral replication. Montelukast is an anti-
inflammatory drug andmight alleviate vascular and parenchymal
damage. Several investigations in China and Italy looking at
comorbidities or pre-existing medical conditions in laboratory-
confirmed COVID-19 patients did not find asthma among the
comorbidities; similarly, asthma was not reported when patients
died as a result of SARS-CoV-2 infection. The use of asthma
medication like montelukast might have had a role in minimizing
the clinical presentation of this comorbidity. Given that to date,
there areminimal to no effective strategies in the armamentarium
against this debilitating and lethal COVID-19 disease, this
treatmentmodality should be considered.Montelukast might not
only alleviate pathology but promote structural and functional
recovery (for summary see Figure 1).
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