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Abstract: The immune system is remarkably responsive to a myriad of invading microorganisms
and provides continuous surveillance against tissue damage and developing tumor cells. To achieve
these diverse functions, multiple soluble and cellular components must react in an orchestrated
cascade of events to control the specificity, magnitude and persistence of the immune response.
Numerous catabolic and anabolic processes are involved in this process, and prominent roles for
L-arginine and L-glutamine catabolism have been described, as these amino acids serve as precursors
of nitric oxide, creatine, agmatine, tricarboxylic acid cycle intermediates, nucleotides and other
amino acids, as well as for ornithine, which is used to synthesize putrescine and the polyamines
spermidine and spermine. Polyamines have several purported roles and high levels of polyamines
are manifest in tumor cells as well in autoreactive B- and T-cells in autoimmune diseases. In the
tumor microenvironment, L-arginine catabolism by both tumor cells and suppressive myeloid cells is
known to dampen cytotoxic T-cell functions suggesting there might be links between polyamines
and T-cell suppression. Here, we review studies suggesting roles of polyamines in normal immune
cell function and highlight their connections to autoimmunity and anti-tumor immune cell function.
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epigenetics; autoimmunity

1. Introduction

Metabolic regulation is a vital component of a coordinated immune response [1].
Dormant immune cells circulate in blood and tissues and morph into highly activated cells following
antigen exposure. Activated immune cells act as sentinels throughout the body, and eradicate
pathogens present in distinct ecosystems, in areas with diverse growth factors or low oxygen [2],
and when nutrients are limiting [3], which can compromise their functional veracity. For a versatile
and potent response, immune cells must make rapid and precise adaptations to these environmental
changes [4]. To achieve its diverse functions, the immune system is comprised of heterogeneous
populations of cells that are each capable of a broad range of responses. Importantly, all of these cells
must adjust their metabolic activity to meet functional demands that include migration, proliferation
and sometimes long-lasting persistence in these diverse environments [5,6].

Recent advances in understanding immunometabolism have shown that the energetic demands
of unique T-cell subpopulations are linked to dynamic responses of the immune system. Most
immune cells generate adenosine triphosphate (ATP) from glucose as their primary energy source,
but drastic changes in metabolism are observed when transitioning from a quiescent to an activated
state [7,8] and the complexity of metabolic circuits has confounded ascribing a particular function to
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one specific pathway or intermediate. Here, a focused discussion is provided that reviews the roles
of an understudied metabolic pathway in immune cells, specifically that which controls polyamine
homeostasis, in normal immune cell functions and immune-related diseases [9].

2. B-Cell Lymphopoiesis and Activation

As members of the adaptive immune system, T- and B-lymphocytes are fundamental components
of an integrated immune response [10]. B-cell differentiation starts in the fetal liver and continues
in the bone marrow during adult life [11]. Though both B- and T-cell populations are derived from
a common lymphoid progenitor (CLP) in bone marrow [11–14], T-cells and B-cells differ by their
mechanism of antigen recognition [15]. Specifically, B-cells express surface immunoglobulin (Ig) as a
receptor for detecting circulating microorganisms. Antigen binding to Ig receptors activates B-cells
and triggers their differentiation into plasma cells that produce and secrete copious amounts of soluble
antibodies with distinct isotypes that selectively bind to the activating antigen. Further, a subset of
antigen-activated B-cells differentiate into long-lasting memory B-cells, which allow for a more rapid
response following re-exposure to cognate antigen [16].

The initial step in activating a B-cell response involves receptor-antigen interactions that occur
in restricted areas of primary lymphoid organs such as the spleen, lymph node or tonsils [16].
On its surface, each B-cell expresses a single membrane bound Ig receptor (B-cell receptor, BCR)
that is created through a unique process of somatic genomic recombination of immunoglobulin
genes to form heterodimeric immunoglobulin receptors that results from the fusion of three
separate gene segments, variable (V), diversity (D) and joining (J) genes (VDJ) that provide
receptor diversity [15,17]. Both integrated T-cell and innate immune cell interactions are required
for the activation of B-cells, which become progressively more antigen reactive via a process of
hypermutation and class switching [16,18–20]. Precursor, immature and mature B-cells signal through
the immunoglobulin receptor. Immature B-cells, expressing only membrane IgM heavy chain (mu) and
the Igα and Igβ, [21] undergo several selection events triggered by the recognition of self-molecules
in bone marrow that prevent autoimmunity [9]. Since the V(D)J-BCR gene rearrangement process is
stochastic, there is a random expression of self-reactive receptors that requires a systematic bioenergetic
reprogramming to achieve clonal deletion or inactivation of self-reactive B-cells in circulation [18,22].
Autoreactive B-cells have been shown to increase glycolysis and oxygen consumption compared
to normal antigen-activated B-cells [22,23]. Further, disabling glycolysis by treatment with the
pyruvate dehydrogenase inhibitor dichloroacetate impairs antibody production both ex vivo and
in vivo [22]. Moreover, B-cell specific deletion of the glucose transporter Glut1 or Myc revealed
their role in B-lymphopoiesis, and that c-Myc is necessary for activation-induced expression of
Glut1 [22,24]. Notably, overexpression and inhibitor studies have revealed that c-Myc directly
and coordinately induces the transcription of ornithine decarboxylase (ODC), adenosylmethionine
decarboxylase-1 (Amd1), spermidine synthase (Srm), and spermine synthase (Sms), four enzymes
which direct polyamine biosynthesis [25]. Indeed, c-Myc itself is a transcription factor for ODC and
Sms [26,27]. Ornithine decarboxylase functions as a dimer and is the rate-limiting enzyme in the
pathway and converts ornithine to putrescine, which is then converted into spermidine and spermine.
Ornithine decarboxylase is tightly controlled by rapid messenger RNA (mRNA) turnover, a very short
protein half-life, as well as by antizyme that is translationally induced as polyamine levels rise and
which directly binds to ODC and triggers its destruction by the proteasome [28]. Gene knockout
studies in mice have established that ODC is essential for proper embryogenesis [29].

Increased expression of enzymes that direct polyamine production and polyamine levels occur
after BCR activation [30]. Further, addition of spermine compromises activation-associated apoptosis,
suggesting polyamines may be important in repressing the clonal deletion of B-cells after activation.
Moreover, nitric oxide enhanced IgE class-switching by anti-trinitrophenyl (TNP) keyhole limpet
hemocyanin-(KLH) is blocked in vivo by treatment with aminoguanidine, which inhibits serum
diamine oxidase and prevents the conversion of extracellular polyamines into toxic products [31,32].
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Thus, although there are scant reports directly linking polyamines to specific B-cell functions, the
importance of Myc and the role that Myc plays in B-cell activation and development suggests direct
links to polyamines.

3. The Role of Polyamines in T-Lymphopoiesis

T-cells express either an αβ or γδ T-cell receptor (TCR) that rearrange through non-homologous
recombination of the V(D)J genes mediated by the activations of the recombination activating genes
(Rag)1 and Rag2 [33,34] as described for B-cells [35]. Deletion of Rag1 or Rag2, whose expression is
restricted to lymphocytes, leads to small lymphoid organs and to the complete loss of mature circulating
T and B-cells in mice. Unlike B-cell development that largely occurs in the bone marrow, T-cells arise
from a common lymphoid progenitor that migrates into the thymus [36,37] where environmental
interactions with thymic epithelial cells [38], signaling via NOTCH1 [39,40] and TCR repertoire
selection occurs at the population level through positive and negative selection processes similar to
B-cells [33–35,41]. Most T-cells (95%) in the lymphoid compartment express αβTCRs [42], but are
further delineated by surface expression of CD4 or CD8, which are required for major histocompatibility
cluster (MHC)-class II and MHC-class I co-ligation, respectively [43,44]. The αβTCR receptor is also
expressed on regulatory T-cells [45], on a minor population of natural killer (NK) T-cells [46], and on
subtypes of intestinal intraepithelial lymphocytes (IELs) [47], which play regulatory roles in response
to mucosal infections [48].

A major difference between B- and T-cells is the MHC-restricted nature of TCR antigen
activation [43]. T-cells recognize their targets (e.g., virally infected cells) through interaction of
small peptide fragments bound in the groove of an MHC molecule, which strengthens selectivity
for self over non-self and protects against autoimmunity [43,44]. Professional antigen-presenting
cells (APCs) such as B-cells, macrophages and dendritic cells (DC) express both MHC class I and
MHC class II for activating CD4+ and CD8+ T-cells. Through receptor or phagocytosis-mediated
antigen internalization, APCs process antigen into the correct fragment length for display by the
MHC molecule [49]. These cells also express additional co-stimulatory signals including CD28,
OX40 ligand, CD40L (Figure 1), which enhances the T-cell’s response and provides a critical level of
regulation [50–54]. Notably, the inducible co-stimulatory (ICOS) molecule, a member of the CD28
family, is essential for the T-cell mediated induction of immunoglobulin isotype class switching by
activated B-cells [19]. Further T-cells undergo an educational process in the thymus mediated by Aire,
a transcription factor expressed by medullary epithelial cells (mTECs) in the thymus, which induces
the promiscuous expression of restricted peripheral tissue antigens (PTAs) [55] that trigger the clonal
deletion of T-cells with potential self-reactivity before they can exit the thymus [56,57]. In part, this
is due to the unique ability of Aire to recognize the hypomethylated amino-terminal tail of histone
H3 [38,58], to bind to transcriptional sites of paused polymerases [59], and to control genes that direct
mRNA splicing [57]. This process is critical to the formation of immunological tolerance, autoimmune
prevention, and antitumor immunity [56,57,59,60].
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Figure 1. Stimulatory and inhibitory molecules expressed on T-cells. Diagram depicting the antigen 
presenting cell (APC) and T-cell interactions and activating receptors and ligands on these cells that 
govern the functional outcomes of T-cells such as cytotoxicity-associated granzyme B expression, 
cytokine release, and proliferation [61]. The T-cell receptor complex is composed of several proteins 
that are necessary for survival and signaling including T-cell receptor (TCR)α and TCRβ chains, CD3 
signaling molecules δ/ε, CD3γ/ε and CD247 composed on the dimeric ζζ-chains or ζn (not shown). 
Co-stimulatory molecules on T-cells such as CD28, the founding member of the immunoglobulin (Ig) 
family of costimulatory receptors, are critical to amplify and sustain the signaling response. 
Activation leads to metabolic reprogramming to increase glycolysis, oxidative phosphorylation, and 
amino acid metabolism through glutaminolysis and ultimately to polyamine biosynthesis [62,63]. 
Additional receptors include CD40L (CD154), T-cell specific surface glycoprotein CD28, inducible T-
cell costimulatory ICOS (CD278) which is a CD28-family molecule expressed on T-cells important for 
Th2 responses, Traf-linked tumor necrosis factor receptor family protein, CD27, which is important 
in T and B-cell memory formation and activation of natural killer (NK) cells [64–66], tumor necrosis 
factor receptor superfamily (TNFRSF), member 4 (TNFRSF4) also OX40 (CD134) expressed on 
activated T-cells [51–53], leukocyte-associated antigen-1 (LFA1) which is an integrin involved in T-
cell migration [53,67], the adhesion molecule CD2 present on T-cells and NK cells (also known 
erythrocyte receptor and rosette receptor, LFA-2), herpesvirus entry mediator (HVEM) also known 
as tumor necrosis factor receptor superfamily member 14 (TNFRSF14), glucocorticoid-induced TNFR 
family related gene (GITR) a member of the TNFRSF [68], S-type lectin Galectin 9, T-cell 
immunoglobulin mucin domain 1 (TIM1) also known as hepatitis A virus cellular receptor 1 (HAVcr-
1), and 4-1BB (CD137, TNFRS9). Corresponding receptors on APC are the classical costimulatory 
ligands CD80 (B7-1), CD86 (B7-2) that interact with CD28, TNFRS5 (CD40), human inducible 
costimulatory-ligand (ICOSL) [69], ligand for CD27 (CD70 also TNFSF7), OX40 ligand (OX40L), 
intercellular adhesion molecule 1 (ICAM-1, also CD54), leukocyte-associated antigen-3 (LFA3), 
HVEM counter-receptor lymphotoxin-like, exhibits inducible expression, and competes with herpes 
simplex virus glycoprotein D for HVEM, a receptor expressed by T-lymphocytes (LIGHT, also 
CD160), GITR ligand (GITRL), and 4-1BB ligand (4-1BBL). Inhibitory receptors and ligands are shown 
including cytotoxic T-lymphocyte antigen-4 (CTLA4) which interacts with CD80, CD86 that also 
recognizes CD28, programmed cell death protein 1 (PD1) receptor and its ligands PD-ligand 1 (PDL1) 
and PD-ligand 2 (PDL2), and B-and T-lymphocyte attenuator (BTLA) and CD160 [70] that both 
recognize HVEM. MHC: major histocompatibility complex, Ag: antigenic peptide. 

Figure 1. Stimulatory and inhibitory molecules expressed on T-cells. Diagram depicting the antigen
presenting cell (APC) and T-cell interactions and activating receptors and ligands on these cells that
govern the functional outcomes of T-cells such as cytotoxicity-associated granzyme B expression,
cytokine release, and proliferation [61]. The T-cell receptor complex is composed of several proteins
that are necessary for survival and signaling including T-cell receptor (TCR)α and TCRβ chains, CD3
signaling molecules δ/ε, CD3γ/ε and CD247 composed on the dimeric ζζ-chains or ζn (not shown).
Co-stimulatory molecules on T-cells such as CD28, the founding member of the immunoglobulin
(Ig) family of costimulatory receptors, are critical to amplify and sustain the signaling response.
Activation leads to metabolic reprogramming to increase glycolysis, oxidative phosphorylation, and
amino acid metabolism through glutaminolysis and ultimately to polyamine biosynthesis [62,63].
Additional receptors include CD40L (CD154), T-cell specific surface glycoprotein CD28, inducible
T-cell costimulatory ICOS (CD278) which is a CD28-family molecule expressed on T-cells important for
Th2 responses, Traf-linked tumor necrosis factor receptor family protein, CD27, which is important in
T and B-cell memory formation and activation of natural killer (NK) cells [64–66], tumor necrosis
factor receptor superfamily (TNFRSF), member 4 (TNFRSF4) also OX40 (CD134) expressed on
activated T-cells [51–53], leukocyte-associated antigen-1 (LFA1) which is an integrin involved in T-cell
migration [53,67], the adhesion molecule CD2 present on T-cells and NK cells (also known erythrocyte
receptor and rosette receptor, LFA-2), herpesvirus entry mediator (HVEM) also known as tumor
necrosis factor receptor superfamily member 14 (TNFRSF14), glucocorticoid-induced TNFR family
related gene (GITR) a member of the TNFRSF [68], S-type lectin Galectin 9, T-cell immunoglobulin
mucin domain 1 (TIM1) also known as hepatitis A virus cellular receptor 1 (HAVcr-1), and 4-1BB
(CD137, TNFRS9). Corresponding receptors on APC are the classical costimulatory ligands CD80
(B7-1), CD86 (B7-2) that interact with CD28, TNFRS5 (CD40), human inducible costimulatory-ligand
(ICOSL) [69], ligand for CD27 (CD70 also TNFSF7), OX40 ligand (OX40L), intercellular adhesion
molecule 1 (ICAM-1, also CD54), leukocyte-associated antigen-3 (LFA3), HVEM counter-receptor
lymphotoxin-like, exhibits inducible expression, and competes with herpes simplex virus glycoprotein
D for HVEM, a receptor expressed by T-lymphocytes (LIGHT, also CD160), GITR ligand (GITRL), and
4-1BB ligand (4-1BBL). Inhibitory receptors and ligands are shown including cytotoxic T-lymphocyte
antigen-4 (CTLA4) which interacts with CD80, CD86 that also recognizes CD28, programmed cell
death protein 1 (PD1) receptor and its ligands PD-ligand 1 (PDL1) and PD-ligand 2 (PDL2), and
B-and T-lymphocyte attenuator (BTLA) and CD160 [70] that both recognize HVEM. MHC: major
histocompatibility complex, Ag: antigenic peptide.
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Once released from the thymus, antigen-naive T-cells are primarily reliant on interleukin-7 (IL-7)
which is critical for their growth and survival [71]. IL-7 directs the metabolic function of naïve cells
by regulating basal glucose and amino acid metabolism via activation of Janus kinase (JAK3) and
phosphorylation of signal transducer and activator of transcription-5 (STAT5) and PI3K/Akt/mTOR
that promotes the surface expression of Glut1 and transport of glucose [72–74]. T-cells interact with
peptide-loaded APCs in peripheral lymphoid organs, such as the spleen and lymph nodes, which
stimulates the activation of their effector functions. Activation then triggers a complex cascade of
signaling events (Figure 2) that leads to changes in metabolism [4–6]. Based on the cytokine milieu,
CD4+ effector cells can differentiate into distinct subsets including T helper (Th)1, Th2, Th17, as well
as FoxP3+ CD4+ regulatory T-cells (Tregs) which are all metabolically distinct [7,75]. Differential
regulation of mammalian target of rapamycin mTOR, protein kinase B(Akt)-mediated phosphorylation
of the tuberous sclerosis complex (TSC1/TSC2), and Ras family GTPase Rheb are critical in regulating
this process [76–79]. Most notably, suppression of TOR complex 1 (mTORC1) pharmacologically and
through genetic depletion of mTOR in T-cells leads to a predominance of Treg differentiation [80].
Functional specificity of mTOR is determined by its interacting proteins. The mTORC1 complex
contains a small GTPase Rheb, a regulatory-associated protein of mTOR (raptor), the G protein
β-subunit-like protein (GβL, also known as mLST8) and substrate 40 kDa (PRAS40) whereas, mTORC2
contains mTOR, and GβL with the rapamycin-insensitive companion of mTOR (rictor) and mammalian
stress-activated protein kinase interacting protein-1 (mSin1) [81]. Signaling events such as activated
AMP-activated protein kinase (AMPK) [82,83] that differentially antagonize the activation of mTORC1,
polarize T-cell differentiation toward Tregs and simulate lipid oxidation [23]. Several surface markers
such as L-selectin (CD62L) are also critical for metabolic reprogramming since they regulate homing
and migration of T-cells into and out of lymphoid organs [84]. Although they express classical αβTCRs,
NKT-cells function independent of MHC class I or II via interactions with a glycolipid antigen in the
context of CD1d, a non-canonical MHC molecule. Based on the current literature, several of these
fundamental events appear controlled by polyamines and/or are linked to key signaling molecules
like mTOR or Myc (Figure 2) that control polyamine homeostasis.

Required role of polyamines in proper erythrocyte differentiation have been shown in studies
with alpha-difluoromethylornithine (DFMO), a suicide inhibitor of ODC [91,92], but the impact of
polyamines on lymphocyte development is largely unknown. Given established roles for putrescine
(1,4-diaminobutane), spermidine and spermine in cell proliferation, DNA and RNA synthesis [93,94],
as well as in protein translation in both cell free systems and in activated lymphocytes [62], polyamines
are highly likely to play key roles in T-cell or B-cell development, particularly in scenarios where
exogenous polyamines are limiting and there is compensatory mechanisms induced by polyamine
uptake through designated energy-dependent transporters [95–101].
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associated antigen-1 (LFA1) which is an integrin involved in T-cell migration or CD28 interaction with 
CD80 (B7-1) or CD86 (B7-2) (see also Figure 1) activates the phosphorylation of the YXXM or YNPP 
signaling motifs [86] which regulates glucose metabolism. CD28 leads to stable recruitment of the adaptor 
protein Grb2/GADS along with interleukin-2-indicible T-cell kinase (Itk), Lck, and phosphatidylinositide 3 
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RasGRP, and the Ras/Raf/MEK/Erk pathway downstream of phosphorylated SLP-76 and Zap-70 
modulating the TCR signal strength [86]. A complement of transcription factors nuclear factor of activated 
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(when in combination with c-Fos forms the AP-1 early response transcription factor complex, nuclear factor 
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coordinately regulate gene expression. Activation of CD28 leads to the phosphorylation of PI3K, 
phosphatidylinositol-3,4 bisphosphate (PIP2) and phosphoinositide-dependent kinase 1 (PDK1) [87] which 
integrates the TCR and CD28 signaling to induce the NFκB pathway including protein kinase C-theta 
(PKC-θ), and inhibits the ubiquitin ligase c-Cbl [88] leading to activation of Bcl10, Malt1, Carma1 (CBM) 
complex leading to IKKαβγ activation of NFκB and REL [87]. In addition to PKC-θ, phosphorylation of 
Akt is critical for the regulation of mTORC1 and mTORC2 complexes of mTOR that bind GβL and 
raptor or rictor, respectively [79,81]. This is a critical step in c-Myc-dependent transcriptional 
regulation that stimulates dramatic changes in metabolism including glucose, amino acid, nucleotide 
and polyamine biosynthesis [63,89]. Divalent cations such as calcium (Ca2+) are induce downstream 
of phospholipase C γ1, PIP2, and indo inositol-1,4,5 triphosphate (IP3) which mobilizes the release of 
intracellular Ca2+ stores from the endoplasmic reticulum (Ca2+-ER) a potential metabolic switch that 
suppresses intratumoral T-cell function [90]. Sustained signaling then promotes the influx of 
extracellular Ca2+ into the cells through calcium release-activated Ca2+ (CRAC) channels. Calcium-
calmodulin interactions (Ca2+/CaM) then activates the phosphatase calcineurin and 
calcium/calmodulin-dependent protein kinase type IV calmodulin (CaMKIV), which dephosphorylates 
the cytoplasmic subunits of nuclear factor of activated T-cells ( NFAT) exposing a nuclear localization 
signal resulting in nuclear transport and phosphorylates CREB, respectively. 

Figure 2. Proximal T-cell signaling cascade. Proximal signaling pathways downstream of the
T-cell receptor (TCR)-antigen presenting cell (APC)ignaling complex (as described in Figure 1) are
responsible for the cascade of events leading to metabolic reprogramming including the transcription
of amino acid transporter and enzymes involved in metabolism of nutrients and biosynthesis
of polyamines [85]. Phosphorylation of the immunoreceptor tyrosine-based activation motifs
(ITAMs) on the cytoplasmic side of the TCR/CD3 complex engage numerous cascading interactions
largely mediated by phosphorylation, dephosphorylation or ubiquitinylation resulting in cellular
activation [61]. The initiating signal is generated by lymphocyte protein tyrosine kinase (Lck) and
other proto-oncogene tyrosine-protein kinase (Src) family tyrosine kinases including the zeta-chain
associated protein kinase (Zap-70) that is recruited to the TCR/CD3 complex. Costimulation through
leukocyte-associated antigen-1 (LFA1) which is an integrin involved in T-cell migration or CD28
interaction with CD80 (B7-1) or CD86 (B7-2) (see also Figure 1) activates the phosphorylation of the
YXXM or YNPP signaling motifs [86] which regulates glucose metabolism. CD28 leads to stable
recruitment of the adaptor protein Grb2/GADS along with interleukin-2-indicible T-cell kinase (Itk),
Lck, and phosphatidylinositide 3 kinase (PI3K) heterodimer p85/p110 and SLP76. These interactions
promote the activation of VAV-1, RasGRP, and the Ras/Raf/MEK/Erk pathway downstream of
phosphorylated SLP-76 and Zap-70 modulating the TCR signal strength [86]. A complement of
transcription factors nuclear factor of activated T-cells (NFAT), cAMP response element-binding
protein (CREB), Fox family transcription factor c-Fos, Jun (when in combination with c-Fos forms
the AP-1 early response transcription factor complex, nuclear factor kappa-light-chain-enhancer of
activated B cells (NFκB), an NFκB family member c-Rel, and c-Myc which coordinately regulate
gene expression. Activation of CD28 leads to the phosphorylation of PI3K, phosphatidylinositol-3,4
bisphosphate (PIP2) and phosphoinositide-dependent kinase 1 (PDK1) [87] which integrates the TCR
and CD28 signaling to induce the NFκB pathway including protein kinase C-theta (PKC-θ), and
inhibits the ubiquitin ligase c-Cbl [88] leading to activation of Bcl10, Malt1, Carma1 (CBM) complex
leading to IKKαβγ activation of NFκB and REL [87]. In addition to PKC-θ, phosphorylation of Akt is
critical for the regulation of mTORC1 and mTORC2 complexes of mTOR that bind GβL and raptor or
rictor, respectively [79,81]. This is a critical step in c-Myc-dependent transcriptional regulation that
stimulates dramatic changes in metabolism including glucose, amino acid, nucleotide and polyamine
biosynthesis [63,89]. Divalent cations such as calcium (Ca2+) are induce downstream of phospholipase
C γ1, PIP2, and indo inositol-1,4,5 triphosphate (IP3) which mobilizes the release of intracellular
Ca2+ stores from the endoplasmic reticulum (Ca2+-ER) a potential metabolic switch that suppresses
intratumoral T-cell function [90]. Sustained signaling then promotes the influx of extracellular Ca2+ into
the cells through calcium release-activated Ca2+ (CRAC) channels. Calcium-calmodulin interactions
(Ca2+/CaM) then activates the phosphatase calcineurin and calcium/calmodulin-dependent protein
kinase type IV calmodulin (CaMKIV), which dephosphorylates the cytoplasmic subunits of nuclear
factor of activated T-cells (NFAT) exposing a nuclear localization signal resulting in nuclear transport
and phosphorylates CREB, respectively.
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Conditional gene targeting in T-cells is accomplished using the lymphocyte-specific protein
tyrosine kinase Lck or CD4-gene promoter fused Cre recombinases [39,102]. Expression of genes under
the control of the Lck proximal promoter initiates conditional inactivation of genes early in T-cell
development prior to the expression of T-cell lineage markers [103] versus CD4-Cre which directs
gene expression after transition from the CD4+/CD8+ double-positive cell leading to gene deletion in
both mature CD4+ and CD8+ single lineage T-cells in the periphery [39,43]. Although cell-specific Odc
deletion in T-cells or B-cells has yet to be reported, several studies have assessed the effects of regulators
of the polyamine pathway. The mTOR serine/threonine protein kinase senses the nutrient state and
exists as two distinct protein complexes, mTORC1 and mTORC2. Cell growth (mass) is regulated by
mTORC2 via c-Myc and, in turn, c-Myc coordinately induces polyamine biosynthetic enzymes through
direct transcriptional regulation and through other mechanisms of regulation [26,27,63]. Notably,
T-cells lacking c-Myc in LckCre; c-Mycfl/fl mice are severely defective in their proliferative response
and fail to undergo progression through the double positive (CD4+/CD8+) stage, which is likely due
to failed proliferation by early pre-TCR signaling [104]. Further, deletion of Mnt, a Myc antagonist,
triggers apoptosis of thymic T-cells and blocks T-cell development [105]. As a target of Myc [25], select
depletion of Odc in T-cells is needed to assess the importance of polyamines on thymic development.

4. Role of Polyamines in Antigen Activated T-Cells

Given that ODC enzymatic activity is significantly increased after T-cell activation, polyamine
production is an important part of normal T-cell function [82,92,93]. Though other ODC-regulating
proteins have been reported, c-Myc is the major regulator of enzymes involved in polyamine
biosynthesis in T-cells [25,87]. Indeed, mice deficient in another transcriptional regulator of ODC,
c-Fos, have been shown to have normal peripheral T-cells, further demonstrating that c-Myc is the
master regulator of T-cell-associated polyamines [106,107].

Two of the amino acid precursors for ornithine, glutamine and arginine, are required for T-cell
activation [108,109] downstream of TCR signaling events, including mTOR, Myc and mitogen-activated
protein kinases/extracellular signal-regulated kinases (MAPK/ERK) [63,109] that are linked through
integrated signaling (Figure 2). Polyamines are likely produced downstream of either arginine or
glutamine due to the increase in ODC enzymatic activity [63,110,111]. Mass spectrometry-based
global metabolomics and integrated transcriptome analyses have been used to map the changes in
metabolic intermediates after TCR-stimulation [112]. Notably, proteins that regulate the arginine and
proline pathways are enriched in TCR-stimulated CD4+ T-cells, and metabolic tracing studies have
shown that TCR activation triggers flux of L-arginine Arg into ornithine, putrescine, and agmatine,
and to lower levels of spermidine and proline. Catabolism of Arg into polyamines in CD4+ T-cells is
regulated by mitochondrial arginase-2 (ARG2) as arginase-1 is not expressed in these cells. Interestingly,
dietary supplementation of Arg during activation is associated with enhance mitochondrial oxidative
phosphorylation (OXPHOS) and mitochondrial spare respiratory capacity (SRC) [113–115]. The
morphology and numbers of mitochondria are critical determinants for SRC and in T-cells, for a
functional memory response following secondary antigenic challenge [113–115]. Notably, in vivo
Arg supplementation of transgenic mice bearing a TCR receptor that specifically recognizes the
hemagglutinin antigen (HA 110–119 peptide) increases intracellular Arg levels and the survival of
memory T-cells [112].

Although polyamines have not yet been shown to be involved in the memory response, the role
of polyamines in survival in other cells suggests that proper polyamine pools may be necessary for
this response [25,116,117]. Further, similar to phenotypes observed in other cell types, polyamines
are required for T-cell proliferation manifest after TCR stimulation [63,118]. Accordingly, though the
mechanism (s) is unclear, polyamine depletion during initial T-cell activation in vitro has been shown
to impair cytotoxic function (CTL) against target cells [119–124].
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5. Role of Polyamines and Anti-Tumor Immunity

Polyamines are essential components of T-cell and B-cell activation, where for example they are
necessary for the effector functions and high rates of proliferation of T-cells [63,119–124]. However,
polyamines play much different roles in other cell types of the immune system (Figure 3).

Surprisingly, several studies have demonstrated that ODC inhibition [133–136], and/or treatment
with polyamine transport inhibitors (PTIs) significantly reduces rates of tumor growth and that this is
due to increase in anti-tumor immunity. Further, the anti-tumor response is linked to T-cell anti-tumor
activity, as the beneficial effects observed following treatment with ODC inhibitors and PTIs are
reversed in Rag−/− mice lacking both T and B-cells, and in athymic nude mice that lack only T-cells
consistent with activation of T-cells after polyamine depletion in tumor models [134,137]. Moreover,
polyamine inhibition increases CD8+ T-cell infiltration into the tumor bed [116,134,137]. Though CD8+

T-cells isolated from a similar B16F10 melanoma model lack cytotoxic functions in vitro [136], it is clear
that systemic polyamine inhibition of tumor-bearing mice restores T-cell anti-tumor immunity.

In the tumor microenvironment, cell populations suppress the immune response and contribute
to tumor escape from immune surveillance [138]. These cells also use polyamines to invoke
their suppressive activations and to support their metabolism (Figure 3). Suppressive myeloid
cells are evident in many infectious diseases, including leishmaniasis [139], toxoplasmosis [140],
candidiasis [141], and human immunodeficiency virus (HIV)-infected individuals [142], and are
significantly elevated in tumor-bearing animals [128,143]. Comparable suppressive cells have been
identified in both mouse models and human cancers including melanoma, breast cancer, pancreatic,
non-small cell lung and leukemia [143].
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Figure 3. Bioenergetics of macrophage subsets. Monocyte-derived macrophages can be differentially
polarized by the cytokine milieu [125,126]. (A) M1 macrophages originate from cells in the bone
marrow and develop in inflammatory environments. Nitric oxide (NO) is the major byproduct of
these cells arising from the reaction of arginine with oxygen through the actions of inducible nitric
oxide synthase (iNOS) which produces citrulline and NO (see detailed pathway Figure 3C). Citrulline
is then exported and re-imported to re-generate arginine and sustain NO production. A product of
the degradation of arginine through this cycle is fumarate which is derived from the conversion of
argininosuccinate to arginine (see Figure 3C). M1 macrophages are also critical for the production of
cytokines and chemokines and for the production of itaconate which acts as an anti-microbial cellular
metabolite. Succinate, a proinflammatory molecule that controls IL-1β expression, accumulates and
stabilizes the oxygen sensing pathway regulated by hyposia-inducible factor 1-alpha (HIF1α) [125,127].
(B) Unlike M1 macrophages, the polarized M2 subtype reduces their ability to make NO and instead
hydrolyzes imported arginine into ornithine and urea through the urea cycle (detailes in Figure 3C).
M2 macrophages are therefore suppressive by competing for both arginine and glutamine that is
necessary for effector T-cell functions [63,89,112]. To fuel their functions, including proliferation,
M2 macrophages use fatty acids oxidation (FAO) which supports oxidative phosphorylation and
electron transport through the tricarboxylic acid (TCA) cycle. Also present in the suppressive tumor
microenvironment is a population of bone marrow derived immature myeloid cells known as myeloid
derived suppressor cells [128,129]. While bioenergetics for these cells needs further analysis, they retain
NO production and FAO, TCA and deplete arginine and glutamine [130] from the microenvironment.
(C) Also detailed is the metabolism of arginine, L-citrulline and L-ornithine to produce fumarate
from conversion of argininosuccinate. Citrulline plus aspartate generates argininosuccinate via the
actions of argininosuccinate synthetase (ASS) in the cytosol and ornithine is converted to citrulline by
carbamylphosphate plus ornithine via the enzymatic activity of ornithine transcarbamoylase (OTC).
Additional enzymes and reactions include those metabolized by ODC: ornithinine decarboxylase,
ARG: arginase 1 or arginase 2, ADC: arginine decarboxylase which is the biosynthetic enzyme for
agmatate [131], OAT: ornithine aminotransferase, NOS: nitric oxide synthase, PRMT: protein arginine
methyltransferases which is important for epigenetic regulation [132], and AGAT: L-arginine:glycine
amidinotransferase which is the enzyme that catalyzes the transfer of an amidino group from L-arginine
to produce L-ornithine and guanidinoacetate and acts as the immediate precursor of creatine.

Suppressive myeloid cells, specifically myeloid-derived suppressor cells (MDSCs),
monocyte-derived M2 macrophages and some dendritic cells (DCs), can be present in high
numbers in the tumor microenvironment. Based on the cytokine milieu, monocyte-derived
macrophages can be polarized into M1 or M2 macrophages [116,144,145]. M2 macrophages do not
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make nitric oxide (NO), a major byproduct of M1 macrophages, and use arginase to hydrolyze
imported arginine into ornithine and urea which depletes arginine in the tumor microenvironment,
compromising intratumoral T-cell functions and survival [129,143,146]. Myeloid-derived suppressor
cells (MDSCs) retain the ability to produce NO and high levels of reactive oxygen species (ROS) leading
to nitration of tyrosine residues of the TCR which disrupts its interaction with the peptide-MHC
complex during antigen presentation [49] (Figure 1). The suppressive functions of M2 macrophages
relies on higher basal mitochondrial oxygen consumption rates driven by fatty acid oxidation
(FAO) [147] and, accordingly, the development of M2 macrophages is blocked by inhibiting
mitochondrial OXPHOS and FAO (Figure 3). Further, unlike M1 macrophages, M2 macrophages
require glutaminolysis for proliferation and ODC inhibition through difluoromethylornithine (DFMO)
or polyamine transport inhibitor treatment of tumor-bearing mice significantly reduces intratumoral
suppressive MDSCs [116,134,137] which should improve Arg availability for T-cells that is necessary
for their proliferation and persistence [108,112,148,149]. Polyamine inhibition also increases TNFα
and IL-1 cytokine production by tumor infiltrating macrophages, suggesting reprogramming of
macrophages into the M1 phenotype that augments presentation of tumor-associated antigens,
increases citrulline export and import, and further supports the TCA cycle through arginine-derived
fumarate [116,136]. Recently, it has been shown that arginine-derived polyamines produced by DCs
induce IDO1 expression within the cell through Src kinase, which results in a more immunosuppressive
phenotype [150]. This can also be exacerbated by bystander MDSCs that provide more polyamines in
the extracellular milieu freely available to DCs. Inhibition of ODC by DFMO reduces this signaling
network and promotes DCs to an immune stimulatory phenotype [150]. Thus, it appears that although
polyamines are required for normal CD8+ T-cell functions, the net effects of polyamine depletion on
suppressive myeloid cells is to increase anti-tumor CD8+ T-cell activity by restoring a more conducive
tumor microenvironment.

6. Polyamines in Autoimmune Disease

Autoimmune diseases are provoked by abnormal, unchecked immune responses against normal
host tissue, and are driven self-reactive TCRs and BCRs in the thymus and bone marrow. Further,
suppressive immune populations including myeloid cells, regulatory T-cells (Tregs) and IELs, are
necessary to establish peripheral tolerance against self-reactive effector T- and B-cells that escape
negative selection [6,151,152]. Autoimmunity can arise in almost every peripheral tissue in the body,
for example multiple sclerosis in the brain, thyroiditis and Graves’s disease in the thyroid, rheumatoid
arthritis and ankylosing spondylitis in the joints, psoriasis, eczema and scleroderma in the skin,
diabetes in the pancreas, and celiac disease, ulcerative colitis, and Crohn’s Disease that occur in
the intestine. Interestingly, circulating polyamine levels are increased in patients with autoimmune
diseases [153,154], polyamines have the ability to form nuclear aggregates [155–157] and it has been
suggested that nuclear polyamine aggregates interact with DNA, RNA, or other macro-molecular
structures to stabilize autoantigens. Strikingly, the most common autoimmune B-cell responses
are generated to macromolecules such as double stranded DNA or single stranded DNA [158,159].
Abnormal polyamine structures have been noted in patients with systemic lupus erythematosus
(SLE), and rheumatoid arthritis that are characterized by anti-nuclear antibodies consistent with
this hypothesis.

7. Concluding Remarks

Recent studies have provided key mechanistic insights into how polyamines may regulate cell
fate and proliferation. First, it has been shown that decreasing polyamine pools with the ODC
inhibitor DFMO reduces pools of the methyl donor S-adenosylmethionine (SAM, an activated form
of methionine) [160]. This appears to occur via effects of polyamines on harnessing the translation
of SAM decarboxylase (SAMDC/AMD1) [161,162], which converts SAM to decarboxylated SAM
(dcSAM) [163]. Thus, reductions in polyamine pools lead to increases in dcSAM and corresponding



Med. Sci. 2018, 6, 22 11 of 19

reductions in SAM pools. Notably, methylation of DNA and histone tails requires the transfer of the
methyl group derived from SAM, and these epigenetic changes are required for changing the pattern
of peripheral tissue antigens during negative selection [38,60]. Furthermore, unbiased metabolomic
analyses of colon tumor cells revealed that treatment with DFMO also leads to profound reductions in
thymidine and thymidine monophosphate (TMP), and that inhibitory effects of DFMO on growth can
be overcome by treatment with exogenous thymidine [160,161]. Collectively, these findings suggest
a model whereby BCR- and TCR-dependent activation of c-Myc coordinately induces polyamine
biosynthesis, and where polyamines then regulate B-cell and T-cell growth, fate, and effector functions
via both epigenetic and metabolic control.
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