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Abstract: Mutations in the promoter of the human Telomerase Reverse Transcriptase (hTERT) gene
are common and associated with its elevated expression in bladder cancer, melanoma, and glioblas-
toma. Though these mutations and TERT overexpression are associated with aggressive disease and
poor outcome, an incomplete understanding of mutant TERT regulation limits treatment options
directed at this gene. Herein, we unravel a signaling pathway that leads to upregulated hTERT
expression resulting from the −124 bp promoter mutation, the most frequent variant across human
cancer. We employed engineered bladder cancer cells that harbor a GFP insertion at the TSS re-
gion on −124 hTERT promoter for high-content screening drug discovery using a focused library of
~800 kinase inhibitors. Studies using in vitro and in vivo models prioritized AST-487, an inhibitor
of the wild-type, and mutant RET (rearranged during transfection) proto-oncogene as a novel drug
inhibitor of both wild-type and mutant promoter-driven hTERT expression. We also identified
the RET kinase pathway, targeted by AST-487, as a novel regulator of mutant hTERT promoter-
driven transcription in bladder cancer cells. Collectively, our work provides new potential precision
medicine approaches for cancer patients with upregulated hTERT expression, perhaps, especially
those harboring mutations in both the RET gene and the hTERT promoter, such as in thyroid cancer.

Keywords: TERT; telomerase; RET

1. Introduction

Human telomerase reverse transcriptase (hTERT) is commonly expressed in cells
that divide rapidly, such as stem cells and cells functioning in development [1–3]. While
hTERT expression is repressed in most normal somatic tissues, many types of cancer have
developed mutations in the gene promoter region to upregulate gene expression [4–6].
Increased hTERT activity is important in cancer cell survival since hTERT also has non-
canonical/non-telomerase roles in promoting cell proliferation, DNA-damage response,
and protecting cancer cells from apoptosis [7–9]. Patients harboring hTERT promoter
mutations have shorter survival than patients with no mutations [10]. Recurrent hTERT
promoter mutations, at −124 bp and −146 bp from the translation start site (TSS), are
the most frequent events associated with hTERT promoter alterations and mRNA over-
expression in cancer [10]. Importantly, these mutations are heterozygous and mutually
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exclusive in mutant cancer cell lines [5]. Furthermore, an identical DNA sequence cre-
ated by both 124 and 146 mutations leads to the formation of de novo binding sites for
ETS (E-twenty-six) transcriptions factors [11], including GA Binding Protein Transcription
Factor Alpha (GABPA) [12,13]. Strikingly, hTERT promoter mutations are detected at
high frequency in the bladder (70%), glioma (67%), thyroid (60%), and melanoma (49%)
cancers [10]. Although the impact of hTERT promoter mutations has been characterized in
human cancer, the signaling pathways upstream of the transcription factors above, and the
means to inhibit those pathways, remain relatively unexplored.

In this study, we set out to identify those upstream signaling pathways that drive
hTERT transcription from the mutant promoter at −124. By employing a novel reporter in
bladder cancer (BLCA) cells and a kinase inhibitor library, we also aimed to identify kinase
inhibitors of hTERT upregulation. We previously generated a novel engineered reporter
cell line (UMG12) by knocking-in green fluorescent protein (GFP) at mutant (−124) hTERT
promoter allele in UMUC3 human BLCA cells [14]. Using the UMG12 cell model system,
we performed high-content screening (HCS) with ~800 commercially available kinase
inhibitors. HCS identified 21 hits with no previous association in altering hTERT expression.
Hit-to-Lead compound validation studies using monolayer and tumor organoid cell models,
and in vivo xenograft tumors, prioritized AST-487 as a lead compound that inhibits mutant
promoter-driven hTERT expression by inhibiting upstream RET kinase receptor activity.
Genomic depletion confirmed the role of RET in hTERT expression. Collectively, this work
links RET kinase as a key regulator of mutant promoter-driven hTERT expression and
proposes a novel potential precision medicine strategy for cancer patients harboring mutant
hTERT promoter sites. This approach may be particularly suitable for patients with a high
frequency of RET and TERT alterations, such as those with thyroid cancer [10,15–18].

2. Results
2.1. Drug Discovery Targeting Mutant Promoter Driven hTERT Expression

UMG12 GFP-hTERT fusion reporter cells were used to generate monolayer and tumor
organoid models for High-Content Screening (HCS) drug discovery of a focused library of
~800 kinase inhibitors (Figure 1). Each cell model was treated with kinase inhibitors for 72 h
before high-content imaging on an Opera Phenix HCS System. Images were analyzed with
Harmony High-Content Imaging and Analysis Software version 4.9 (PerkinElmer, Waltham,
MA, USA). Mean GFP intensity was calculated with a 4-step method (Figure 1A,B). For
monolayer imaging, images were acquired, nuclei were identified by Hoechst 33342 stain-
ing (Thermo Scientific, Waltham, MA, USA), cell boundaries were then determined by
measuring cytoplasmic GFP fluorescence and brightfield imaging, and finally, the back-
ground signal around each cell was measured and subtracted from the cell GFP signal.
Mean GFP intensity from all cells in random fields within a single well was then calculated.
Tumor organoid images were captured by measuring brightfield, Hoechst 33343, and GFP
channels, and the organoid area was measured using brightfield images. To measure GFP
intensity from each tumor organoid, the background signal around the tumor organoid
was subtracted from the GFP signal of each tumor organoid. Assay conditions were stan-
dardized using mock siRNA control (−control), GFP-siRNA treatment (+control), DMSO
(-control), or GNE-317, a PI3K inhibitor and positive control known to downregulate hTERT
expression (Figure 1C,D) [19,20]. The Z’-factor analysis for each plate was employed for
GFP intensity and cell viability, validating both cell models for HCS (Figure 1E,F) [21,22].

Next, the UMG12 cells were used in a monolayer to conduct focused HCS with kinase
inhibitors arrayed with three log doses of 10 nM, 100 nM, and 1 µM. Tumor organoids
proved to be less sensitive to kinase inhibitors than monolayer culture, and therefore,
organoids were screened at a single dose of 10 µM (Figure 2). For both monolayer and
tumor organoid HCS, most of the kinase inhibitors had little or no effect on GFP-hTERT
expression (%GFP mean) at all concentrations tested with a hit limit set at <70%. Because
kinase inhibitors are well known to alter tumor cell growth or viability, we multiplexed cell
viability in conjunction with GFP-hTERT expression by measuring the % viability. These
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viability values were based on differences in cell numbers between DMSO and kinase
inhibitor-treated monolayer cells or by measuring the percentage area of tumor organoids.
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Figure 1. HCS assay validation in UMG12 cell models. UMUC3 BLCA cells engineered with a 
mutant promoter-driven GFP-hTERT fusion reporter cell line (UMG12) were developed and vali-
dated for HCS drug discovery in cells cultured as monolayers or tumor organoids. (A) monolayer 
and (B) tumor organoid Step-wise high-content analysis workflow of images acquired after HCS. 
(C) Monolayer and (D) Tumor organoid representative images of HCS controls showing GFP inten-
sity after the PI3K inhibitor GNE-317 (1 μM, +control), a known inhibitor of hTERT expression. (E) 
Monolayer and (F) Tumor organoid Z’-factor analysis demonstrating valid controls for HCS. 
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Figure 1. HCS assay validation in UMG12 cell models. UMUC3 BLCA cells engineered with a
mutant promoter-driven GFP-hTERT fusion reporter cell line (UMG12) were developed and vali-
dated for HCS drug discovery in cells cultured as monolayers or tumor organoids. (A) monolayer
and (B) tumor organoid Step-wise high-content analysis workflow of images acquired after HCS.
(C) Monolayer and (D) Tumor organoid representative images of HCS controls showing GFP in-
tensity after the PI3K inhibitor GNE-317 (1 µM, +control), a known inhibitor of hTERT expression.
(E) Monolayer and (F) Tumor organoid Z’-factor analysis demonstrating valid controls for HCS.
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limits were used to select hits from HCS. 

Figure 2. HCS of kinase inhibitors in UMG12 cell models. UMG12s were used to screen a focused
library of kinase inhibitors in cells cultured as (A–C) monolayers or (D) tumor organoids. HCS of
monolayer cells were treated with 3 different concentrations of kinase inhibitor library as indicated.
The hit limit for mean GFP intensity was set to less than 70% (red dashed line) for each HCS condition.
In addition, cell viability was multiplexed with GFP mean intensity with a hit limit set at great than
30% (monolayer) and 50% (tumor organoid) viability, respectively. Both GFP and viability hit limits
were used to select hits from HCS.
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To select and prioritize hits from HCS, we first excluded hits that lead to <30% in cell
viability (monolayer) and <50% area (tumor organoid) to deprioritize hits that significantly
alter cell viability. The reasons for excluding compounds that suppress cell viability when
screening for compounds that inhibit transcription of TERT were as follows: (1) reliability
and robustness of transcriptional readouts are compromised in cells whose viability is
severely compromised by drugs; (2) the specificity of the reduced TERT expression readout
may be compromised by the simultaneous activity of cell death machinery; (3) we sought
to identify relatively specific agents that rapidly reduced TERT expression rather than those
which also rapidly inhibited growth since the latter would not be due to TERT depletion.
Compounds that passed these criteria and decreased mean GFP intensity by <70% were
considered hits on both screens. These hit criteria and filtering identified 125 hits from
monolayer HCS and 249 from the tumor organoid HCS. Of these, 78 hits were identified
from both screens hitting 25 different known kinases (Table S2). Next, we performed
a literature analysis to determine how many of these 25 kinases have been reported to
regulate hTERT expression. We found that PI3K [19], EGFR [23], mTOR [14], AKT [19],
Raf [24], MEK [23,24], BCR-ABL [25], p38MAPK [26], and ERK [24] are already reported to
affect hTERT expression. Hence, we excluded 57 inhibitors targeting these kinases from
further studies, as our goal was to identify only novel kinase inhibitors that downregulate
hTERT expression. This filtering reduced the hits of interest to 21, targeting 16 kinases. The
21 hits were confirmed by rescreening in 3D at 10 µM concentration (Figure 3). In addition,
we also confirmed hits using three other orthogonal cell line models, including the UWG6
clonal cell line [14], in which GFP is tagged to the wild-type hTERT promoter, UMUC3-
CMV-GFP with CMV-promoter driven exogenous GFP expression, and UMUC3-CMV-
hTERT-GFP with CMV-promoter driven exogenous hTERT-GFP expression. From these hit
confirmation studies, the kinase inhibitor AST-487 displayed the most promising activity
as it significantly inhibited GFP-hTERT expression from the mutant hTERT promoter in
UMG12 cells and from the wild-type hTERT promoter in UWG6 cells. In contrast, AST-487
did not inhibit the CMV promoter-driven GFP or hTERT-GFP expression. Other inhibitors
either did not significantly inhibit the hTERT promoter-driven GFP-hTERT expression or
inhibited the CMV-driven GFP expression.
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Figure 3. HCS identified 21 hits targeting 16 kinases with no known association to hTERT. The
Mean GFP intensity was measured in UMG12, UWG6, UMUC3-CMV-GFP, and UMUC3-CMV-hTERT-
GFP cells treated with 21 kinase inhibitors. Red dotted line box indicate the effect of AST-487 on
cell proliferation.
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To confirm hits from HCS, we utilized four orthogonal cell lines, including UMG12
(mutant promoter driving GFP-hTERT fusion protein), UWG6 (wt promoter driving GFP-
hTERT fusion protein), UMUC3-CMV-GFP (GFP control), and UMUC3-CMV-hTERT-GFP
(hTERT-GFP fusion protein control) as indicated. Taken together, hits were confirmed based
on the downregulation of GFP intensity in UMG12 and UWG6 but not the control cell
models. Based on these criteria, AST487 (red dashed box) was prioritized for hit-to-lead
validation studies.

2.2. AST-487 Inhibits hTERT Expression In Vitro and In Vivo

To further confirm that AST-487 is inhibiting hTERT expression from both the mutant
and wild-type promoter and validate the results from HCS and orthogonal assays, GFP-
hTERT mRNA levels were measured by qRT-PCR after AST-487 treatment in UMG12 and
UWG6 cells. A reduction in GFP-hTERT mRNA levels occurred after AST-487 treatment in
both UMG12 and UWG6 cells, which correlated with a decrease in GFP-reporter activity
(Figures 4A and S1). To examine the potential broader impact of AST-487 activity beyond
engineered cell lines, we examined the effect of AST-487 on native hTERT mRNA levels in
multiple human bladder cancer cell lines, treating cells at 5 µM concentration over 16 h. We
observed a>75% decrease in hTERT mRNA levels in all the cell lines tested after treatment
with AST-487, regardless of their hTERT promoter mutation status (Figure 4B). We next
examined the ability of AST-487 to inhibit hTERT expression in vivo by employing UMG12
and UMUC3-CMV-hTERT-GFP in nude mouse tumor xenografts. The mice were adminis-
tered AST-487 by oral gavage, and 6 h later tumors were harvested and hTERT expression
was measured by qRT-PCR (Figure 4C,D). As expected, hTERT expression in UMUC3-
CMV-hTERT-GFP control tumors was unaltered after AST-487 treatment (Figure 4C). In
contrast, AST-487 treatment significantly reduced hTERT expression in UMG12 xenografts
(Figure 4D). Collectively, these results support the in vitro results, demonstrating that
AST-487 is an effective lead compound inhibiting hTERT promoter activity.

2.3. AST-487 Suppresses hTERT Expression by Inhibiting the RET Kinase Receptor

AST-487 inhibits multiple kinases such as Flt3, RET, CDKL3/5, HIPK4, and MAP3K7 [27–29].
To deconvolute the kinase molecular target of AST-487 involved in regulating hTERT
expression, we first considered a panel of kinases to which AST-487 displays potent binding
affinity (Kd < 10 nM) [29] and targeted these kinases using Smartpool siRNA transfections
of UMG12, UWG6, and UMUC3-CMV-hTERT-GFP cells (Figure 5A). GFP intensity was
measured 72 h after siRNA transfection, and TRIM28 [14] and GFP siRNA were used
as positive controls for this experiment. Notably, siRNAs against CDKL3, HIPK4, and
MAP3K7 reduced GFP intensity relative to control in UMG12 and UWG6 cells but also
in the control UMUC3-CMV-hTERT-GFP cells (Figure 5A). However, siRNA against the
RET kinase receptor showed much higher inhibition of GFP intensity in both UMG12 and
UWG6 cells but not in UMUC3-CMV-hTERT-GFP cells. These data point to RET kinase as a
regulator of hTERT expression from both mutant and wild-type promoter alleles, consistent
with RET kinase being an important molecular target of AST-487. Confirmation knockdown
studies of CDKL3, HIPK4, MAP3K7, and RET were conducted using parental T24T cells,
which harbor the heterozygous −124 promoter mutation and display higher hTERT mRNA
compared to other BLCA cell lines (Figure 5B–E) [30]. These results are consistent with RET
being the likely kinase target of AST-487 regulating hTERT expression in BLCA (Figure 5E).
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PCR analysis. hTERT mRNA expression is shown (bottom of the graph panels) from (C) UMUC3-
CMV-hTERT-GFP and (D) UMG12 xenografts 6 h post AST-487 treatment. The significance is indi-
cated as: * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Figure 4. Validation of AST-487 for effect on hTERT expression in vitro and in vivo. (A) GFP-
hTERT mRNA expression from UMG12 and UWG6 cells were treated with AST-487, as indicated,
for 16 h, followed by qRT-PCR analysis. (B) hTERT mRNA expression from different BLCA cells
was treated with AST-487 for 16 h, followed by qRT-PCR analysis. Schematics showing (C) UMUC3-
CMV-hTERT-GFP and (D) UMG12 tumor xenografts development and treatment with AST-487 in
nude mice as indicated on the top of the graph panels. Tumors were harvested, followed by qRT-PCR
analysis. hTERT mRNA expression is shown (bottom of the graph panels) from (C) UMUC3-CMV-
hTERT-GFP and (D) UMG12 xenografts 6 h post AST-487 treatment. The significance is indicated as:
* p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 5. Kinase target validation for AST-487 affecting hTERT expression. (A) AST-487 inhibits
several kinases, which were transiently knocked down in cells as indicated and monitored for GFP
intensity after 72 h. Kinases affecting hTERT transcription are shown with black arrows. (B–E) T24T
BLCA cells were treated with siRNAs as indicated, and the knockdown of genes and effect on hTERT
mRNA was confirmed by qRT-PCR. The student’s t-test indicated significance: * p < 0.05, ** p < 0.01,
*** p < 0.001.

2.4. AST-487 Suppresses the Proliferation of Bladder Cancer Cells

In addition to inhibiting hTERT expression, we investigated whether AST-487 can also
suppress BLCA cell growth. We conducted dose response studies with AST-487 using five
BLCA cell lines. A dose-dependent decrease in cell proliferation was observed in all the cell
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lines tested (Figure 6). The inhibition concentration 50% (IC50) value for AST-487 ranged
between 1.3- to 2.5-µM for all the cell lines tested. These results suggest that AST-487 treat-
ment has therapeutic potential in treating BLCA patients with elevated hTERT expression.
Surprisingly, 30–40% of BLCA don’t exhibit any mutation in the promoter region. Therefore,
hTERT expression was examined in the TCGA database with no promoter region mutation.
Interestingly, hTERT was overexpressed in several cancer types (Figure S2), indicating
that AST-487 may be useful in treating cancers with upregulated hTERT expression even
when hTERT promoters are not mutated. Finally, mutational analysis by sequencing 10,000
metastatic cancer patients [10] revealed that co-occurrence of hTERT mutations and RET
mutations occur more frequently than expected when all tumors are considered (Figure S3).
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IC50 values.

3. Discussion

Herein, we report a comprehensive HCS campaign to identify kinase inhibitors that
can effectively inhibit elevated hTERT expression, including those resulting from hTERT
promoter mutations in BLCA. Our HCS approach featured both monolayer and tumor
organoid cell models, which can differ significantly in gene expression and therapy re-
sponse. Examining both provides a more complete picture of inhibitor effectiveness [31,32].
In addition, for each model, we multiplexed cell viability and mutant and/or wild-type
promoter-driven GFP-hTERT expression to filter out pleotropic inhibitors and capture the
most effective kinase inhibitors downregulating hTERT expression. We identified hundreds
of hits using the HCS models, with 78 hits targeting 25 different kinases that were effective
in both. Nine kinases targeted by 57 hits were eliminated from our screen because of their
known effects on hTERT expression. Using our HCS approach, we discovered 21 novel
inhibitors of hTERT expression, targeting 16 different kinases. Secondary orthogonal cell
model screening identified AST-487 as a potential lead compound inhibitor of both mutant
and wild-type promoter-driven hTERT expression.

AST-487 has been reported to inhibit a variety of receptor tyrosine kinases [29]. There-
fore, there was a considerable challenge in identifying the kinase which regulates hTERT
expression. However, our target deconvolution approach focused on a panel of 16 kinases
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with low nM binding affinities to AST-487. AST-487 is known to inhibit the autophos-
phorylation of RET and, consequently, downstream RET-mediated signaling cascades
(Figure 7) [15–18]. In addition, the proliferation rate of thyroid cancer cells with RET kinase
mutations has been shown to be inhibited by AST-487 treatment [15], which is interesting
since thyroid cancer has a high rate of hTERT promoter mutations [10]. Davis et al. have
profiled a total of 72 kinase inhibitors, including AST-487, which was found to be promiscu-
ous with several different kinases [29]. We evaluated the most potent targets of AST-487
using siRNA. We found HIPK4, MAP3K7, and RET to be inhibitors of hTERT expression in
T24T BLCA cells, which have an hTERT mutated promoter as well as the highest hTERT
expression among all BLCA cell lines [30]. siRNA knockdown of MAP3K7 and HIPK4
also downregulated control UMUC3-CMV-hTERT-GFP cells. However, knockdown of RET
did not alter CMV-driven reporter activity but had a significant impact on wt and mutant
promoter-driven hTERT expression, confirming RET as a major cellular target.
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Figure 7. Summary of mechanisms regulating hTERT expression in BLCA. The results herein link
the receptor tyrosine kinase RET as a key factor regulating hTERT expression in BLCA (green &
orange dashed arrow). Parallel kinase signaling pathways known to regulate hTERT expression that
are also activated by RET are shown with grey arrows and likely converge on upregulating hTERT
expression. Upstream inhibition of RET attenuates hTERT promoter activation, including the more
tumorigenic mutant hTERT promoter, regardless of the signaling pathways shown in grey.

RET is a transmembrane receptor kinase and upstream regulator of major oncogenic
pathways such as PI3K-AKT-mTOR, Ras-ERK, JNK, and p38MAPK [33–36]. RET is ac-
tivated through the glial cell line-derived neurotrophic factor (GDNF) family of ligands
and has been reported to be activated in several cancer types [37]. RET signaling is consti-
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tutively activated through mutations in many cancers, notably medullary and papillary
thyroid and non-small cell lung cancers [36], which also have a high rate of hTERT promoter
mutations [10]. To the best of our knowledge, this is the first study reporting RET as a
novel regulator of hTERT expression, including the expression driven by mutations in the
hTERT promoter. RET might mediate hTERT promoter activity through its downstream
signaling noted above and in Figure 7. For example, alterations in PI3K-AKT pathway
genes are more common in hTERT wild-type compared to mutant hTERT promoter activity
in glioblastoma and AKT phosphorylation is associated with hTERT expression in gastric
cancer [38,39]. Likewise, activation of Ras MAPK signaling is also known to regulate
mutant hTERT promotor activity in melanoma [24]. Recently, we demonstrated that the
mTORC1 complex upregulates hTERT expression preferentially from mutant promoter
through phosphorylation of the transcription factor TRIM28 [14]. Therefore, mechanis-
tically, the results of this study suggest that RET kinase is a master regulator of hTERT
expression by exhibiting control over these kinase signaling cascades, evidenced by the fact
that AST-487 inhibits hTERT expression regardless of these other pathways (Figure 7).

In conclusion, this work demonstrates the power of HCS phenotypic drug discovery to
identify new therapeutic strategies for repurposing focused clinically relevant compound
libraries such as kinase inhibitors. Moreover, the results from this work have significant
translational implications when considering that two RET kinase inhibitors, Pralsetinib and
Selpercatinib, have recently been FDA-approved for non-small cell lung cancer (NSCLC)
and RET+ advanced medullary thyroid cancer. Thus, it would be interesting to measure
hTERT expression in patients after receiving Pralsetinib or Selpercatinib therapy. Finally,
this work provides potential new precision medicine approaches for cancer patients with
up-regulated hTERT expression. This approach may be especially effective in patients
harboring mutations/activation of both the RET gene and the hTERT promoter, such as
thyroid cancer patients.

4. Materials and Methods
4.1. Human Cancer Cell Lines

Bladder cancer cell lines UMUC3, UMUC6, UMUC13D, T24T, SW1710, 253J-BV, and
UMUC1 were previously described [40]. UMG12, UWG6, UMUC3-CMV-GFP, and UMUC-
CMV-hTERT-GFP cell lines are described in Agarwal et al., 2021 [14]. Cell lines were
maintained in MEM containing L-glutamine and supplemented with 10% FBS and 1 mM
sodium pyruvate. Imaging experiments were performed in phenol red-free medium
containing L-glutamine and supplemented with 10% FBS. Cell culturewares and reagents
were purchased from Fisher Scientific, USA. All cell lines were confirmed mycoplasma-free
(MycoAlert, Lonza, Basel, Switzerland) before screens and cultivated at 37 ◦C and 5% CO2.
Cells were utilized for experiments within 4 weeks post-thawing. AST-487 was purchased
from Targetmol and SelleckChem.

4.2. Monolayer High-Content Screening (HCS)

A manually curated library of 807 kinase inhibitors was created by combining Sel-
leckChem and MedChemExpress kinase inhibitor libraries and removing the duplicate
inhibitors. All kinase inhibitors were screened at 3 different concentrations for 1 µM,
100 nM, and 10 nM. Cell plating was performed by the automated Janus Liquid Handler
Workstation (PerkinElmer, Waltham, MA, USA), and imaging was done on Opera Phenix
High Content Screening System (PerkinElmer). UMG12 cells were seeded at a density of
500 cells/well in 384-well black, clear flat bottom microplates (Greiner Bio-one, Kremsmün-
ster, Upper Austria). Drug vehicle (DMSO at 0.5%) and GFP siRNA (20 nM) were used
as a negative and positive control, respectively. Cells were then incubated with kinase
inhibitors, with a single drug per well, for 72 h and nuclear stained with Hoechst 33342 dye
20 min before imaging. Cells were imaged with a 20× water objective using 2 channels for
Hoechst and GFP. Harmony 4.9 software (PerkinElmer) was employed for image analysis.
First, the Hoechst channel was used to find the nuclei, then the cytoplasm and cell numbers
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were identified based on the GFP channel. The GFP intensity was calculated within cells
after background subtraction. Fluorescent images of GFP-positive cells were captured using
an EVOS cell imaging system (Thermo Fisher, Waltham, MA, USA) at 20× magnification.

4.3. Tumor Organoid High-Content Screening (HCS)

A total of 10,000 cells/well were used for organoid formation. Uniformly suspended
cells were seeded in round bottom ultra-low attachment 96-well plates (PerkinElmer). Cells
were aggregated by centrifugation at 1000 rpm for 15 min and incubated for 3 days with a
2% growth factor reduced Matrigel (Corning, Corning, NY USA) in phenol red-free RPMI
medium 1640. Organoids were treated with the kinase inhibitor library described above at
10 µM concentration. Drug vehicle (0.5% of DMSO) and GFP siRNA (20 nM) were used as
a negative and positive control, respectively. All tumor organoids had a diameter above
300 µm and were stained with Hoechst 33342 (Invitrogen, Waltham, MA, USA) 40 min
before imaging with the Opera Phenix. The single-tumor organoids were imaged with a 5×
air objective (PerkinElmer), recording 15 confocal z-stack images in 20 µm steps and using
3 channels for brightfield, Hoechst, and GFP. Images were analyzed with the Harmony
software 4.9 (PerkinElmer). In brief, tumor organoids were analyzed in the maximum
projection configuration. Brightfield image was first inverted, then combined with Hoechst
and GFP channels. Objects were identified with the combined 3 channels, and the tumor
organoid was identified using objective roundness and area as the criteria. The background
was defined as the surrounding region of the tumor organoid. The mean GFP intensity of
the tumor organoid was calculated after background subtraction.

4.4. Hit Validation of Kinase Inhibitors

Hits were validated using BLCA UMG12, UWG6, UMUC3-CMV-GFP, and UMUC3-
CMV-hTERT-GFP cells cultured as tumor organoids as described above, and treated with
kinase inhibitors at 10 µM concentration for 72 h. High-content imaging and analysis were
conducted as described above.

4.5. Gene Expression Analysis

Cells in 2D cell culture were scraped after adding lysis buffer (Qiagen RNeasy kit,
Hilden, Germany). The subsequent RNA extraction was performed according to the
manufacturer’s protocol. For xenograft tumors, total RNA was isolated using the RNeasy
Mini Kit (Qiagen). RNA concentration was quantified with the Synergy H1 microplate
reader (BioTek, Winooski, VT, USA). cDNA was synthesized using an H-minus Reverse
Transcription kit (Fisher Scientific). qPCR reaction was set up with a PowerUP SYBR green
master mix (Thermo Fisher). Gene transcript levels were analyzed on the QuantStudio
6 Flex (Applied Biosystems, Waltham, MA, USA) and calculated by the ∆∆CT method
for relative quantification using β-Actin as a reference gene. Primer sequences used are
provided (Table S1). Xenograft tumor data were analyzed on Graphpad Prism. First, the
ROUT method was employed to exclude any outliers (Q = 10%). Data from AST-487 treated
group were then normalized to the vehicle-treated group. Normalized data from two
separate experiments were combined, and statistical analysis was conducted using an
unpaired t-test (one-tail). p-Values are indicated in Figure 5C,D.

4.6. AST-487 Molecular Target Deconvolution Studies

Smartpool genomic siRNAs for all AST-487 gene targets were purchased using cherry-
pick library tool of Horizon Discovery. Cells were transfected with 20 nM siRNA in 96-well
format using Lipofectamine RNAiMax transfection reagent (Thermo Fisher). After 72 h of
transfection, cells were stained with Hoescht 33342 dye and imaged using both Hoescht
and GFP channels in the Opera-Phenix imaging system. Post-imaging analysis was done
as described above for 2D screening.
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4.7. AST-487 Dose-Response Studies

BCLS cells (Figure 6) were seeded at 1000 cells/well in 96-well plates. Each condition
was done in 6 replicates. Cells were treated with AST-487 at various concentrations and
incubated for 72 h before freezing the plate at −80 ◦C. Frozen plates were then processed
using the CyQuant assay (Life Technologies, Carlsbad, CA, USA). Fluorescence intensity
was measured using a BioTek microplate reader, and fold change was calculated from
differences in intensity of AST-487 compared to DMSO-treated cells.

4.8. Tumor Xenograft Studies with AST-487

The in vivo experiments were performed according to IUCAC-approved protocol. For
pharmacological inhibition studies, 5–6 weeks aged nude mice were used. The mice were
purchased from Taconic biosciences. Two separate animal experiments were carried out
with animal number = 5 per group for each experiment. For generating xenograft tumors,
1 million UMG12 and UMUC3-CMV-hTERT-GFP cells were injected subcutaneously to
both flanks of each mouse. The mice were ear-tagged, and age-matched male mice were
randomized into the vehicle or AST-487 groups. Tumors were measured twice every week,
and once tumors reached the appropriate size of ~150 mm3, vehicle [1:10 (vol/vol) DMSO-
PEG300] and AST-487 (50 mg/kg) were administered by oral gavage. Tumor samples were
harvested 6 h post-treatment and snap-frozen in liquid nitrogen. Tumor samples were
stored at −80 ◦C for further analysis. For all in vivo experiments, a blind analysis was
performed by investigators among drug treatment groups.

4.9. Statistical Analyses

Statistical analyses were performed using Prism v9.0 (GraphPad Software Inc.,
La Jolla, CA, USA). Data were collected for three independent experiments (N = 3) with
three technical replicates (n = 3) for each experiment unless otherwise mentioned. For each
figure presented, including SI figures, error bars were represented as the SEM from the
means of three independent experiments. IC50 values were calculated from the best-fit
curves within the 95% confidence interval. Statistical significance was calculated using
a two-tailed Student’s t-test. p-value significance is represented as * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001.
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