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Abstract

With the advancement of microarray technology, it is now possible to study the expression profiles of thousands of genes
across different experimental conditions or tissue samples simultaneously. Microarray cancer datasets, organized as samples
versus genes fashion, are being used for classification of tissue samples into benign and malignant or their subtypes. They
are also useful for identifying potential gene markers for each cancer subtype, which helps in successful diagnosis of
particular cancer types. In this article, we have presented an unsupervised cancer classification technique based on
multiobjective genetic clustering of the tissue samples. In this regard, a real-coded encoding of the cluster centers is used
and cluster compactness and separation are simultaneously optimized. The resultant set of near-Pareto-optimal solutions
contains a number of non-dominated solutions. A novel approach to combine the clustering information possessed by the
non-dominated solutions through Support Vector Machine (SVM) classifier has been proposed. Final clustering is obtained
by consensus among the clusterings yielded by different kernel functions. The performance of the proposed multiobjective
clustering method has been compared with that of several other microarray clustering algorithms for three publicly
available benchmark cancer datasets. Moreover, statistical significance tests have been conducted to establish the statistical
superiority of the proposed clustering method. Furthermore, relevant gene markers have been identified using the
clustering result produced by the proposed clustering method and demonstrated visually. Biological relationships among
the gene markers are also studied based on gene ontology. The results obtained are found to be promising and can
possibly have important impact in the area of unsupervised cancer classification as well as gene marker identification for
multiple cancer subtypes.
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Introduction

The advent of microarray technology has made it possible the

study of the expression profiles of a huge number of genes across

different experimental conditions or tissue samples simultaneously.

This has significant impact on cancer research. Microarray

technology is being utilized in cancer diagnosis through the

classification of the tissue samples. When microarray datasets are

organized as samples versus gene fashion, then they are very

helpful for classification of different types of tissues and

identification of those genes whose expression levels are good

diagnostic indicators. The microarray datasets, where the tissue

samples represent the samples from cancerous (malignant) and

non-cancerous (benign) cells, the classification of them will result in

binary cancer classification. On the other hand, if the samples are

from different subtypes of cancer, then it becomes the problem of

multi-class cancer classification. Multi-class cancer classification

and detection of gene markers for each cancer subtype is a more

challenging task compared to the binary classification.

Most of the researches in the area of cancer diagnosis have

focused on supervised classification of cancer datasets through

training, validation and testing to classify the tumor samples as

malignant or benign, or their subtypes [1–6]. However, unsuper-

vised classification or clustering of tissue samples should also be

studied since in many cases, labeled tissue samples are not

available. In this article, we have explored the application of the

multiobjective genetic clustering for unsupervised classification of

the tissue samples in multi-class cancer data.

A microarray gene expression dataset consisting of g genes and

s tissue samples is typically organized in a 2D matrix E~½eij � of

size s|g. Each element eij represents the expression level of the

jth gene for the ith tissue sample. Clustering [7,8], an important

microarray analysis tool, is used for unsupervised classification of

the tissue samples. Clustering methods partition a set of n objects

into K groups based on some similarity/dissimilarity metric where

the value of K may or may not be known a priori.

Genetic algorithms (GAs) [9] have been effectively used to

develop efficient clustering techniques [10,11]. These techniques

use a single cluster validity measure as the fitness function to reflect

the goodness of an encoded clustering. However, a single cluster

validity measure is seldom equally applicable for different data

properties. This article poses the problem of clustering as a
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multiobjective optimization (MOO) [12–15] problem. Unlike single

objective optimization, in MOO, search is performed over a

number of, often conflicting, objective functions. The final solution

set contains a number of Pareto-optimal solutions, none of which

can be further improved on any one objective without degrading it

in another. Non-dominated Sorting Genetic Algorithm-II (NSGA-

II) [15], a popular evolutionary multiobjective optimization tool,

has been successfully applied in the domain of clustering and

classification in microarray gene expression data [16–18]. In this

article also, an NSGA-II-based multiobjective clustering algorithm

[13] has been adopted that optimizes the cluster compactness and

cluster separation simultaneously. A challenging issue in MOO is

obtaining a final solution from the set of Pareto-optimal solutions. In

this regard, a novel method using Support Vector Machine (SVM)

[19] classifier is described in this article. The procedure utilizes the

points for which most of the non-dominated solutions produce same

class labels to train the SVM classifier with a particular kernel.

Remaining points are classified by the trained classifier. Final

classification is obtained by consensus among the clustering

solutions yielded by different kernel functions.

Furthermore, the clustering solution produced by the proposed

MOGASVM clustering technique has been used to identify the gene

markers that are mostly responsible for distinguishing a particular

tumor class from the remaining ones. Signal-to-Noise ratio (SNR)

statistic-based gene ranking has been utilized for this purpose.

The performance of the proposed MOGASVM clustering

technique has been demonstrated on three publicly available

benchmark cancer datasets, viz., SRBCT, Adult malignancy and

Brain tumor. The superiority of the proposed technique, as

compared to K-means clustering [7], Expectation Maximization

(EM) clustering [20], single objective GA-based clustering that

optimizes the combination of cluster compactness and separation

(SGA), hierarchical average linkage clustering [7], Self Organizing

Map (SOM) clustering [21], consensus clustering [22] and a

recently proposed clustering technique called SiMM-TS [12], is

demonstrated both quantitatively and visually. The superiority of

the MOGASVM clustering technique has also been proved to be

statistically significant through statistical significance tests. Finally,

it has been demonstrated how the MOGASVM clustering result

can be used for identifying the relevant gene markers for the

SRBCT datasets. Also a study of biological relevance of the gene

markers have been conducted based on gene ontology.

Materials and Methods

Multiobjective Optimization using Genetic Algorithms
In many real world situations there may be several objectives

that must be optimized simultaneously in order to solve a certain

problem. This is in contrast to the problems tackled by

conventional GAs, which involve optimization of just a single

criterion. The main difficulty in considering multiobjective

optimization is that there is no accepted definition of optimum

in this case, and therefore it is difficult to compare one solution

with another. In general, these problems admit multiple solutions,

each of which is considered acceptable and equivalent when the

relative importance of the objectives is unknown. The best solution

is subjective and depends on the need of the designer or decision

maker.

Traditional search and optimization methods such as gradient

descent search, and other unconventional ones such as simulated

annealing are difficult to extend as it is to the multiobjective case,

since their basic design precludes the consideration of multiple

solutions. On the contrary, population based methods like

evolutionary algorithms are well suited for handling such

situations. The multiobjective optimization can be formally stated

as [23,24]. Find the vector �xx�~½x�1,x�2, . . . ,x�n�
T

of decision

variables which satisfies m inequality constraints:

gi(x)§0, i~1,2, . . . ,m, ð1Þ

p equality constraints

hi(x)~0, i~1,2, . . . ,p, ð2Þ

and optimizes the vector function

f (x)~½f1(x),f2(x), . . . ,fk(x)�T : ð3Þ

The constraints given in Eqns. (1) and (2) define the feasible region

F which contains all the admissible solutions. Any solution outside

this region is inadmissible since it violates one or more constraints.

The vector �xx� denotes an optimal solution in F . In the context of

multiobjective optimization, the difficulty lies in the definition of

optimality, since it is only rarely that we will find a situation where

a single vector �xx� represents the optimum solution to all the

objective functions.

The concept of Pareto-optimality is useful in the domain of

multiobjective optimization. A formal definition of Pareto-

optimality from the viewpoint of minimization problem may be

given as follows. A decision vector �xx� is called Pareto-optimal if

and only if there is no x that dominates �xx�, i.e., there is no x such

that

Vi[1,2, . . . ,k, fi(x)ƒfi(�xx
�) and

Ai[1,2, . . . ,k, fi(x)vfi(�xx
�):

In other words, �xx� is Pareto-optimal if there exists no feasible

vector x which causes a reduction on some criterion without a

simultaneous increase in at least another. In this context, two other

notions viz., weakly non-dominated and strongly non-dominated solutions

are defined [23]. A point �xx� is a weakly non-dominated solution if

there exists no x such that fi(x)vfi(x
�), for i~1,2, . . . ,k. A point

�xx� is a strongly non-dominated solution if there exists no x such

that fi(x)ƒfi(�xx
�), for i~1,2, . . . ,k, and for at least one i,

fi(x)vfi(�xx
�). In general, Pareto optimum admits a set of solutions

called non-dominated solutions.

There are different approaches for solving multiobjective

optimization problems [23,24], e.g., aggregating, population based

non-Pareto and Pareto-based techniques. In aggregating tech-

niques, the different objectives are generally combined into one

using weighting or goal based method. Vector Evaluated Genetic

Algorithm (VEGA) is a technique in the population based non-

Pareto approach in which different subpopulations are used for the

different objectives. Multiple Objective GA (MOGA), Non-

dominated Sorting GA (NSGA), Niched Pareto GA (NPGA)

constitute a number of techniques under the Pareto-based

approaches. However, all these techniques, described in [24],

are essentially non-elitist in nature. NSGA-II [15], Strength Pareto

Evolutionary Algorithm (SPEA) [25] and SPEA2 [26] are some

more recent elitist techniques. NSGA-II is an improvement over

its previous version NSGA in terms computation time. Moreover,

NSGA-II introduces a novel elitist model by combining the parent

and child populations and propagating the non-dominated

solutions from the combined population to the next generation

Clustering Cancer Subtypes
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ensuring better convergence rate towards globally optimal Pareto

front. Also it proposes a crowded comparison method for binary

tournament selection that provides better diversity in the Pareto

front. In [15], it has been shown that NSGA-II performs better

compared to several other MOO techniques. Hence the multi-

objective clustering technique considered in this work uses NSGA-

II as the underlying optimization framework. However, any other

evolutionary multiobjective optimization tool could have been

used.

NSGA-II based Multiobjective Clustering
In this section, we have described the use of NSGA-II for

evolving a set of near-Pareto-optimal clustering solutions [13].

Cluster compactness and the cluster separation are considered as

the objective functions that are optimized simultaneously. The

technique is described below in detail.

String Representation and Population Initialization. In

the NSGA-II based clustering, the chromosomes are made up of

real numbers which represent the coordinates of the centers of the

clusters. Suppose the size of the dataset is n|d , i.e., the algorithm

clusters n tissue samples each of which is described by d genes

(features). For K clusters, each chromosome thus has a length of

K|d , where d is the data dimension (the number of genes in this

case). As we have used 200 genes that have larger variances across

the samples, the dimension d is therefore 200 for each dataset. The

centers encoded in a chromosome in the initial population are

randomly selected K distinct points from the dataset.

Computing the Objectives. For computing the objective

functions, first the centers V~fv1,v2, . . . ,vKg encoded in a given

chromosome are extracted. Thereafter, each data point is assigned

to its nearest cluster center and the cluster centers are updated by

taking the mean of the points assigned to it. The points are then

reassigned to their nearest cluster centers. The chromosome is also

updated with the new cluster centers.

The global compactness J of a clustering solution is defined as

follows:

J~
XK

i~1

X
xj[Ci

D2(vi,xj), ð4Þ

where D(vi,xj) denotes the distance between the jth point and ith

cluster center. Ci denotes the ith cluster. Note that low value of J
indicates that the clusters are highly compact. Hence the objective

is to minimize J.

The second objective is cluster separation S. This is defined as

follows:

S~
XK

i~1

XK

j~1,i=j

D2(vi,vj): ð5Þ

To obtain well separated clusters, the objective S is to be

maximized. As here NSGA-II is modeled as a minimization

problem, the second objective is taken as the reciprocal of S.

Genetic Operations. The popularly used genetic operations

are selection, crossover and mutation. The selection operation used here

is the crowded binary tournament selection used in NSGA-II [15].

After selection, the selected chromosomes are put in the mating

pool and conventional single point crossover is performed based

on the crossover probability pc. After that, each chromosome

undergoes mutation depending on the mutation probability pm,

where a random cluster center is chosen from it and then moved

slightly.

The most characteristic part of NSGA-II is its elitism operation,

where the parent and child populations are combined and the

non-dominated solutions from the combined population are

propagated to the next generation. For the details on the different

genetic processes, the readers may refer to [15]. The near-Pareto-

optimal strings of the last generation provide the different solutions

to the clustering problem.

Support Vector Machine Classifier
Support vector machine (SVM) classifiers are inspired by

statistical learning theory and they perform structural risk

minimization on a nested set structure of separating hyperplanes

[19,27]. Viewing the input data as two sets of vectors in a

d-dimensional space, an SVM constructs a separating hyperplane

in that space, which maximizes the margin between the two classes

of points. To compute the margin, two parallel hyperplanes are

constructed on each side of the separating one, which are ‘‘pushed

up against’’ the two classes of points. Intuitively, a good separation

is achieved by the hyperplane that has the largest distance to the

neighboring data points of both classes. Larger margin or distance

between these parallel hyperplanes indicates better generalization

error of the classifier. Fundamentally, the SVM classifier is

designed for two-class problems. It can be extended to handle

multi-class problems by designing a number of one-against-all or

one-against-one two-class SVMs.

Suppose a dataset consists of n feature vectors vxi,yiw,

i~f1,2, . . . ,ng, where yi[fz1,{1g, denotes the class label for

the data point xi. The problem of finding the weight vector w can

be formulated as minimizing the following function:

L(w)~
1

2
DDwDD2, ð6Þ

subject to

yi½w:w(xi)zb�§1,i~1, . . . ,n: ð7Þ

Here, b is the bias and the function w(x) maps the input vector to

the feature vector. The dual formulation is given by maximizing

the following:

Q(a)~
Xn

i~1

ai{
1

2

Xn

i~1

Xn

j~1

yiyjaiajK(xi,xj), ð8Þ

subject to

Xn

i~1

yiai~0 and 0ƒaiƒC, i~1, . . . ,n: ð9Þ

Only a small fraction of the ai coefficients are nonzero. The

corresponding pairs of xi entries are known as support vectors and

they fully define the decision function. Geometrically, the support

vectors are the points lying near the separating hyperplane. Here

K(xi,xj)~w(xi):w(xj) is called the kernel function.

Kernel functions help to map the feature space into higher

dimensional space. The kernel function may be linear or non-

linear, like polynomial, sigmoidal, radial basis functions (RBF), etc.

The four kernel functions used in this article are as follows:

Linear: K(xi,xj)~xT
i xj

Polynomial: K(xi,xj)~(cxT
i xjzr)d

Sigmoidal: K(xi,xj)~ tanh (k(xT
i xj)zh)

Radial Basis Function (RBF): K(xi,xj)~e{cDxi{xj D2 .

Clustering Cancer Subtypes
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The extended version of the two-class SVM that deals with

multi-class classification problem by designing a number of one-

against-all two-class SVMs [27] is used here. For example, a K-

class problem is handled with K two-class SVMs, each of which is

used to separate a class of points from all the remaining points.

Obtaining the Final Clustering from the Non-dominated
Solutions

As the multiobjective clustering produces a set of non-

dominated solutions in the final generation, it is required to apply

some technique to obtain the final clustering solution from this set.

This section describes the proposed scheme for combining the

NSGA-II-based multiobjective clustering algorithm with the SVM

classifier for this purpose. In the combined approach, named

MOGASVM, each non-dominated solution is given equal

importance and a majority voting technique is applied. This is

motivated by the fact that due to the presence of training points,

supervised classification usually performs better than the unsuper-

vised classification or clustering. Here we have exploited this

advantage while selecting some training points using majority

voting on the non-dominated solutions produced by the multi-

objective clustering. The majority voting technique gives a set of

points for which most of the non-dominated solutions assign the

same class labels. Hence these points can be thought to be

clustered properly and thus can be used as the training points of

the SVM classifier. Subsequently, the remaining low-confidence

points are classified using the trained classifier. The process is

repeated for different kernel functions and the final clustering is

obtained through majority voting among the cluster label vectors

produced by the different kernel functions. The steps of

MOGASVM are described below.

Step 1: Execute MOGA clustering to obtain a set

S~fs1,s2, . . . ,sNg, NƒP, of non-dominated solution strings

consisting of cluster centers.

Step 2: Decode each solution si[S and obtain the cluster label

vector for each solution by assigning each point to its nearest

cluster center.

Step 3: Reorganize the cluster label vectors to make them

consistent, i.e., cluster k in the first solution should correspond to

cluster k in all other solutions. For example, the cluster label vector

f1122233g is equivalent to f2233311g.
Step 4: Mark the points which are given the same class label k

for at least bN solutions, as the training points, where b, 0vbƒ1,

is the majority voting threshold. The class labels of the points will

be class k.

Step 5: Train the SVM classifier with some kernel function

using the training points.

Step 6: Generate the class labels for the remaining points using

the trained SVM classifier.

Step 7: Repeat Steps 5–6 for the four kernel functions

considered here and obtain the four cluster label vectors.

Step 8: Combine the four clustering label vectors through

majority voting ensemble, i.e., each point is assigned a class label

that obtains the maximum number of votes among the four

clustering solutions. Ties are broken randomly.

The sizes of the training and testing sets depend on the

parameter b (majority voting threshold), which determines the

minimum number of non-dominated solutions that must agree

with each other in the voting context. If b has a high value, the size

of the training set is small. However it implies that more number of

non-dominated solutions agree with each other and thus

confidence of the training set is high. On the contrary, if b has

a low value, the size of the training set is large. But it indicates that

less number of non-dominated solutions have agreement among

themselves and the training set has low confidence level. During

experimentation, we have tried different values for b and found

that the performance of MOGASVM is in general best when b is

in the range between 0.4 and 0.6. This has been observed for all

the datasets considered here. Therefore, to achieve a tradeoff

between the size and confidence of the training set, after several

experiments, we have set the parameter b to a value of 0.5.

However, this parameter can be exposed to the user who can tune

it according to his/her need.

Number of Clusters
For setting the number of clusters K , silhouette index is used

[28]. It is defined as follows. Suppose a represents the average

distance of a point from the other points of the cluster to which the

point is assigned, and b represents the minimum of the average

distances of the point from the points of the other clusters. Now

the silhouette width s of the point is defined as:

s~
b{a

maxfa,bg : ð10Þ

Silhouette index S is the average silhouette width of all the data

points (tumor samples) and it reflects the compactness and

separation of the clusters. The value of silhouette index varies

from 21 to 1 and higher value indicates better clustering result.

The value of S does not have any monotonic increasing or

decreasing tendency with the number of clusters. Hence this index

is a good indicator for selecting the number of clusters [28].

To select the number of clusters K , the MOGASVM algorithm

is run for different values of K starting from 2 to
ffiffiffi
n
p

, n being the

number of data points. For each K , it is executed 10 times from

different initial configurations and the run giving the best S value

is taken. Among these best solutions for different K values, the

value of K for the solution producing the maximum S index value

is chosen. The same K value is used for all the algorithms for a fair

comparison.

Dealing with the Outliers
It is known that the presence of outliers can affect the performance

of the clustering algorithms. The proposed MOGASVM clustering

algorithm computes the means of the clusters during chromosome

updation which is likely to be affected due to the presence of outliers

in the dataset. To cope with this, we modified the proposed algorithm

as follows. During the chromosome updation, instead of taking the

means of the points in a cluster, we compute the medoid of the cluster.

A cluster medoid, unlike cluster mean, is an actual data point in the

cluster from which the sum of the distances to the other points of the

cluster is minimum. Since medoid is an actual data point, it is less

influenced by the presence of outliers [29]. The rest of the steps of the

modified algorithm remains same. During experimentation, it has

been found that the medoid-based multiobjective clustering algo-

rithm performs similarly as the mean-based approach for the three

datasets considered in this article. Therefore we have not reported the

results for the medoid-based approach. This suggests that the datasets

considered here are possibly free from outliers. However, this may not

be true for the other datasets and in that case, it will be better to use

the medoid-based approach instead of the mean-based one. It is to be

noted that finding the medoids is computationally more expensive

than finding the means. But it is possible to precompute the complete

distance matrix and keep it in memory during the execution of the

clustering algorithm for faster performance, because the number of

samples in sample-gene microarray datasets is usually much smaller

compared to the number of genes.

Clustering Cancer Subtypes
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Performance Metrics
Two performance measures, i.e., percentage Classification

Accuracy (%CA) and Adjusted Rand Index (ARI ) are considered

for comparing the results produced by different algorithms. These

are defined below.

Percentage Classification Accuracy. We define the

percentage Classification Accuracy (%CA) to compare a

clustering solution with the true clustering. Suppose T is the

true clustering of the samples in a gene expression dataset and C is

a clustering result given by some clustering algorithm. Let a be the

number of pairs of points that belong to the same clusters in both

T and C, b be the number of pairs of points that belong to

different clusters in both T and C, and c be the total number of

pairs of points, i.e.,
n

2

� �
. The %CA is defined as:

%CA(T ,C)~
azb

c
|100: ð11Þ

Higher value of %CA means a better matching between T and C.

Evidently %CA(T ,T)~100%.

Adjusted Rand Index. The Adjusted Rand index (ARI ) [30]

is also used to compare a clustering solution with the true

clustering. Suppose T is the true clustering of the samples in a gene

expression dataset and C is a clustering result given by some

clustering algorithm. Let a, b, c and d respectively denote the

number of pairs of points belonging to the same cluster in both T

and C, the number of pairs belonging to the same cluster in T but

to different clusters in C, the number of pairs belonging to

different clusters in T but to the same cluster in C, and the

number of pairs belonging to different clusters in both T and C.

The adjusted Rand index ARI(T ,C) is then defined as follows:

ARI(T ,C)~
2(ad{bc)

(azb)(bzd)z(azc)(czd)
: ð12Þ

The value of ARI(T ,C) lies between 0 and 1 and higher value

indicates that C is more similar to T . Evidently, ARI(T ,T)~1.

Identification of the Gene Markers
In this section we have demonstrated how the proposed

MOGASVM clustering technique can be used to identify the

Table 1. The comparison of the average ARI and %CA scores
produced by 50 consecutive runs of MOGASVM with
ensemble of kernel functions and MOGASVM with individual
kernel functions for all the datasets.

Algorithms SRBCT
Adult
malignancy Brain tumor

ARI %CA ARI %CA ARI %CA

MOGASVM 0.5126 76.6412 0.8172 96.4718 0.7172 88.5150

MOGASVM
(linear)

0.4726 74.7926 0.7591 95.8244 0.6836 87.5836

MOGASVM
(polynomial)

0.4682 74.5343 0.7238 94.7375 0.6927 88.0116

MOGASVM
(sigmoidal)

0.4816 76.0284 0.7704 95.7581 0.6734 87.2046

MOGASVM
(RBF)

0.4855 76.2891 0.7926 96.2183 0.7025 88.1173

doi:10.1371/journal.pone.0013803.t001

Table 2. The average ARI and %CA scores produced by 50
consecutive runs of different algorithms for the SRBCT data.

Algorithms ARI %CA

MOGASVM 0.5126 76.6412

K-means 0.3135 70.1903

EM 0.3376 71.1295

SGA 0.3198 70.8193

Avg. linkage 0.1021 49.0527

SOM 0.3872 71.7845

SiMM-TS 0.4628 74.4853

CSPA 0.3922 72.0297

HGPA 0.2839 67.4533

MCLA 0.3902 71.9764

doi:10.1371/journal.pone.0013803.t002

Table 3. The average ARI and %CA scores produced by 50
consecutive runs of different algorithms for the Adult
malignancy data.

Algorithms ARI %CA

MOGASVM 0.8172 96.4718

K-means 0.6924 92.5441

EM 0.7251 94.7294

SGA 0.7491 95.7858

Avg. linkage 0.6190 93.0437

SOM 0.5917 92.8100

SiMM-TS 0.7823 96.0139

CSPA 0.7331 95.0801

HGPA 0.7192 94.0549

MCLA 0.7398 95.2813

doi:10.1371/journal.pone.0013803.t003

Table 4. The average ARI and %CA scores produced by 50
consecutive runs of different algorithms for the Brain tumor
data.

Algorithms ARI %CA

MOGASVM 0.7172 88.5150

K-means 0.5764 84.5144

EM 0.5581 83.1457

SGA 0.6325 87.1433

Avg. linkage 0.4603 78.2811

SOM 0.6214 87.0376

SiMM-TS 0.6892 87.9110

CSPA 0.6028 85.9984

HGPA 0.5295 83.9416

MCLA 0.5974 86.4543

doi:10.1371/journal.pone.0013803.t004
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gene markers that are mostly responsible for distinguishing the

different classes of tissue samples. Here we have demonstrated the

process for the SRBCT dataset (described in the next section). This

has been done as follows.

At first, MOGASVM is applied to cluster the samples of the

preprocessed dataset into four classes corresponding to the tumor

subtypes EWS, NB, BL and RMS, respectively. To obtain the

gene markers for the EWS subtype, the clustering result is treated

as two classes: one class corresponds to the EWS tumors and the

other class corresponds to the remaining tumor types. Considering

these two classes, for each of the genes, a statistic called Signal-to-

Noise Ratio (SNR) [1] is computed. The SNR is defined as

SNR~
m1{m2

s1zs2

, ð13Þ

where mi and si, i[f1,2g, respectively denote the mean and

standard deviation of class i for the corresponding gene. Note that

larger absolute value of SNR for a gene indicates that the gene’s

expression level is high in one class and low in another. Hence this

bias is very useful in distinguishing the genes that are expressed

differently in the two classes of samples. After computing the SNR

statistic for each gene, the genes are sorted in descending order of

their SNR values. From the sorted list, top 10 genes are selected as

the gene markers (5 down-regulated, i.e., negative SNR and 5 up-

regulated, i.e., positive SNR) for the EWS subtype. The top 10

gene markers for the other tumor subtypes are selected similarly,

i.e., by considering two classes each time, one corresponding to the

tumor class for which the gene markers are being identified, and

the other corresponding to all the remaining tumor classes.

It has been observed that the set of top 10 genes selected in

different runs of MOGASVM varies slightly from one run to

another. So while reporting the final gene markers for the SRBCT

data, we have reported the most frequently selected 10 genes over

all the runs. The frequencies of the selected genes have also been

reported. Moreover, the clustering result obtained using the 40

marker genes for the SRBCT data (10 for each of the 4 cancer

subtypes) is compared with the clustering results obtained using

initially selected 200 genes to show the effectiveness of using only

the marker genes for clustering.

Datasets
In this article, three publicly available benchmark cancer

datasets, viz., SRBCT, Adult malignancy and Brain tumor datasets have

been used for experiments. The datasets are described in this

section.

         

Figure 1. The boxplots showing the %CA index scores produced by different algorithm over 50 consecutive runs for the SRBCT
dataset.
doi:10.1371/journal.pone.0013803.g001

Clustering Cancer Subtypes

PLoS ONE | www.plosone.org 6 November 2010 | Volume 5 | Issue 11 | e13803



Small Round Blood Cell Tumors (SRBCT). The small

round blood cell tumors (SRBCT) are 4 different childhood

tumors named so because of their similar appearance on routine

histology [5]. The number of samples is 63 and total number of

genes is 2308. They include Ewing’s family of tumors (EWS) (23

samples), neuroblastoma (NB) (8 samples), Burkitt’s lymphoma

(BL) (12 samples) and rhabdomyosarcoma (RMS) (20 samples).

This dataset is publicly available at http://www.ailab.si/supp/

bi-cancer/projections/info/SRBCT.htm.
Adult Malignancy. This data consists of 190 tumor samples,

spanning 14 common tumor types to oligonucleotide microarray

[6]. The 14 tumor types are: breast adenocarcinoma (BR) (11

samples), prostate adenocarcinoma (PR) (10 samples), lung

adenocarcinoma (LU) (11 samples), colorectal adenocarcinoma

(CR) (11 samples), lymphoma (LY) (22 samples), bladder transitional

cell carcinoma (BL) (10 samples), melanoma (ML) (11 samples),

uterine adenocarcinoma (UT) (10 samples), leukemia (LE) (30

samples), renal cell carcinoma (RE) (11 samples), pancreatic

adenocarcinoma (PA) (11 samples), ovarian adenocarcinoma (OV)

(11 samples), pleural mesothelioma (ME) (11 samples) and central

nervous system (CNS) (20 samples). The number of genes is 1363.

This dataset is publicly available at the following website: http://

algorithmics.molgen.mpg.de/Static/Supplements/CompCancer.
Brain Tumor. Embryonal tumors of the central nervous

system (CNS) represent a heterogeneous group of tumors [6]. The

dataset contains five types of tumor samples viz., primitive

neuroectodermal tumors (PNETs) (8 samples), atypical teratoid/

rhabdoid tumors (Rhab) (10 samples), malignant gliomas (Mglio) (10

samples), medulloblastomas (MD) (10 samples) and normal tissues

(Ncer) (4 samples). The number of genes in this dataset is 1379. This

dataset is also publicly available at the following website: http://

algorithmics.molgen.mpg.de/Static/Supplements/CompCancer.

Preprocessing of the Datasets
Each dataset is subjected to the following preprocessing steps to

find out the genes with most variability across the samples. At first,

for each gene, we have calculated its variance across all the

samples. Thereafter, the genes are sorted in descending order of

their variances. Subsequently, from all the genes, the top 200

genes with the largest variance across the samples are selected.

This is done with the expectation that the genes having larger

variance across the samples are more effective in distinguishing

different classes of tumor samples rather than the genes with small

variance across the samples. Next, the expression values are log-

transformed. Finally, each sample is normalized to have mean 0

and variance 1.

Results and Discussion

The performance of the proposed MOGASVM clustering has

been compared with that of K-means clustering [20], Expectation

Maximization (EM) clustering [20], single objective GA minimiz-

ing
J

S
(SGA), hierarchical average linkage clustering [7], Self

Organizing Map (SOM) clustering [21], SiMM-TS clustering [12]

and consensus clustering [22]. Under consensus clustering, three

cluster ensemble approaches as found in [22], namely, Cluster-

based Similarity Partitioning Algorithm (CSPA), HyperGraph

Partitioning Algorithm (HGPA) and Meta-CLustering Algorithm

(MCLA) are studied. The clustering solutions found by the K-

means, EM, average linkage and SOM clustering have been

combined through these three cluster ensemble techniques. We

have tested two well-known distance measures viz., Euclidean and

Pearson Correlation based distance. However as the datasets are

normalized so that each row has mean 0 and variance 1, it is

known that both Euclidean and correlation based distance

perform similarly. Therefore, in this section, we have reported

the results for Euclidean distance only.

Input Parameters
The different parameters of MOGA and SGA are taken as

follows: number of generations = 100, population size = 50,

         

Figure 2. The boxplots showing the %CA index scores produced by different algorithm over 50 consecutive runs for the Adult
malignancy dataset.
doi:10.1371/journal.pone.0013803.g002
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crossover probability = 0.8 and mutation probability = 0.01. The

value of the parameters b is taken as 0.5. The parameters have been

set after several experiments. It has been found during experimen-

tation that the best clustering is actually obtained with lower

number of generations and smaller population size for all the

datasets. However, to make it standard and consistent for all the

datasets considered here, we have chosen the aforementioned

parameter setting to obtain good clustering result within reasonable

time. The probabilities of crossover and mutation are also selected

experimentally and found to be reasonably robust around the

selected values. The K-means, EM and SOM clustering have been

run for 5000 iterations unless they converge before that. In each run

of hierarchical average linkage clustering, K-means, EM and SOM,

the clustering solutions are combined using CSPA, HGPA and

MCLA ensemble approaches to obtain the consensus clustering.

Clustering Performance
Firstly, in Table 1, we have reported the average ARI index and

%CA index scores over 50 consecutive runs of MOGASVM (with

majority voting ensemble of four kernel functions) and MO-

         

Figure 3. The boxplots showing the %CA index scores produced by different algorithm over 50 consecutive runs for the Brain
tumor dataset.
doi:10.1371/journal.pone.0013803.g003

Table 5. The P-values produced by t-test comparing MOGASVM with the other algorithms.

P-values

datasets (comparing mean values of %CA index of MOGASVM with other algorithms)

K-means EM SGA Avg. Link SOM SiMM-TS CSPA HGPA MCLA

SRBCT 3.1E-07 2.17E-07 2.41E-03 1.08E-06 6.5E-05 5.32E-03 3.23E-04 6.38E-06 2.94E-04

Adult malignancy 2.21E-05 1.67E-08 3.4E-05 4.52E-12 1.44E-04 2.53E-03 7.2E-04 2.3E-06 1.4E-04

Brain tumor 3.42E-05 7.43E-08 5.8E-05 2.7E-07 2.1E-05 1.4E-04 8.92E-05 6.2E-06 9.3E-05

doi:10.1371/journal.pone.0013803.t005
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GASVM with individual kernel functions for the three datasets

considered in this article. It is evident from the performance index

scores that the ensemble of kernel functions performs better than

the individual kernel functions. This demonstrates the utility of

MOGASVM with ensemble of kernel functions rather than using

the four kernel functions individually.

Figure 4. The heatmap of the expression levels of the most frequently selected top 10 gene markers for each tumor subtype in the
SRBCT data. Red/green represents up/down regulation relative to black. Each subgroup is in a yellow box to identify its samples and the
distinguishing gene markers. The image clone IDs of the marker genes are also shown on the right side of the genes.
doi:10.1371/journal.pone.0013803.g004

Table 6. The gene markers in the SRBCT data for the EWS class, their Image IDs, symbols, selection frequencies, descriptions and
up/down regulation natures.

Gene Image ID Symbol Frequency % Description Up/Down

782811 HMGA1 100 high-mobility group (nonhistone chromosomal) Down

protein isoforms I and Y

796646 ODC1 100 ornithine decarboxylase 1 Down

810899 CKS1B 96 CDC28 protein kinase regulatory subunit 1B Down

745138 TUBA3D 96 tubulin, alpha Down

30093 RANBP1 90 RAN binding protein Down

866702 PTPN13 100 protein tyrosine phosphatase, non-receptor type 13 Up

(APO-1/CD95 (Fas)-associated phosphatase)

811028 TMEM49 98 transmembrane protein 49 Up

505491 PTTG1IP 98 pituitary tumor-transforming 1 interacting protein Up

470261 SMA4 94 glucuronidase, beta pseudogene Up

814260 KDSR 92 3-ketodihydrosphingosine reductase Up

doi:10.1371/journal.pone.0013803.t006
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Tables 2,3,4 report the average ARI index and average %CA
index scores over the 50 runs of each algorithm considered in this

article, respectively, for the SRBCT, Adult malignancy and Brain

tumor datasets. For all the three datasets, the silhouette index has

found the correct number of clusters. As is evident from the tables,

MOGASVM produces the best average ARI index and %CA
index scores compared to the other algorithms.

From the tables, it appears that MOGASVM also outperforms

its single objective counterpart SGA that optimizes the combina-

tion of cluster compactness and cluster separation. On the other

hand, MOGASVM optimizes both of these objectives simulta-

neously. As MOGASVM performs better in terms of both the

performance scores, it indicates that optimizing multiple criteria

simultaneously can yield better clustering rather than the case

when the objectives are combined into one.

For the purpose of illustration, Figures 1,2,3 show the boxplots

representing the %CA scores over 50 runs of the algorithms for the

three datasets considered here. It is evident from the figures that

the boxplots corresponding to MOGASVM are situated at the

upper side of the figures, which indicates that MOGASVM

produces higher %CA scores than those produced by the other

algorithms. SiMM-TS has been found to be the closest competitor

of MOGASVM for all the datasets.

Execution Time
All the algorithms have been implemented in Matlab and

executed on an Intel Core 2 Duo 2.0 GHz Machine with 2 GB

memory having Windows XP operating system. It should be noted

that time requirement for the GA based clustering techniques is

usually more because of the different genetic operations performed

during the execution of the algorithms. On average, MOGASVM

executes for 97.24 seconds for the SRBCT dataset, whereas the

SGA and SiMM-TS clustering takes 75.93 and 161.37 seconds,

respectively. The other algorithms execute only for a few seconds

for this dataset. The execution times have been computed on the

basis of the parameter settings discussed in the Input Parameters

section. As expected, the execution time of MOGASVM is larger

compared to the other single objective clustering methods because

of some additional operations necessitated by its multiobjective

nature. Only SiMM-TS takes more time than it, because SiMM-

Table 7. The gene markers in the SRBCT data for the NB class, their Image IDs, symbols, selection frequencies, descriptions and
up/down regulation natures.

Gene Image ID Symbol Frequency % Description Up/Down

207274 IGF2 100 Human DNA for insulin-like growth factor II (IGF-2); Down

exon 7 and additional ORF

563673 ALDH7A1 100 aldehyde dehydrogenase 7 family, member A1 Down

1416782 CKB 100 creatine kinase, brain Down

296448 IGF2 96 insulin-like growth factor 2 (somatomedin A) Down

250654 SPARC 92 secreted protein, acidic, cysteine-rich (osteonectin) Down

812965 MYC 100 v-myc avian myelocytomatosis viral oncogene homolog Up

344134 IGLL1 100 immunoglobulin lambda-like polypeptide Up

840942 HLA-DPB1 94 major histocompatibility complex, class II, DP beta Up

868304 ACTA2 94 actin, alpha 2, smooth muscle, aorta Up

745343 REG1A 90 regenerating islet-derived 1 alpha Up

(pancreatic stone protein, pancreatic thread protein)

doi:10.1371/journal.pone.0013803.t007

Table 8. The gene markers in the SRBCT data for the BL class, their Image IDs, symbols, selection frequencies, descriptions and
up/down regulation natures.

Gene Image ID Symbol Frequency % Description Up/Down

784224 FGFR4 100 fibroblast growth factor receptor Down

365826 GAS1 98 growth arrest-specific Down

810057 CSDA 98 cold shock domain protein A Down

839552 NCOA1 94 nuclear receptor coactivator Down

244618 FNDC5 94 fibronectin type III domain containing 5 Down

878652 PCOLCE 100 procollagen C-endopeptidase enhancer Up

327350 HNRNPA2B1 100 heterogeneous nuclear ribonucleoprotein A2/B1 Up

824041 SFRS9 100 splicing factor, arginine/serine-rich Up

950574 H3F3B 96 H3 histone, family 3B (H3.3B) Up

812105 MLLT11 92 myeloid/lymphoid or mixed-lineage leukemia Up

(trithorax homolog, Drosophila); translocated to, 11

doi:10.1371/journal.pone.0013803.t008
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TS needs two stages of clustering. The iterative algorithms have

always converged far before reaching the maximum number of

iterations. However, as is evident from the results, the clustering

performance of MOGASVM is the best among all the methods for

all the datasets considered in this article. It is also found during

experimentation that even if the other algorithms used for

comparison are allowed to run for the time taken by MOGASVM,

they are not able to improve their clustering results any further.

The average execution times of MOGASVM for the Adult

malignancy and the Brain tumor datasets are 212.76 and

81.28 seconds, respectively. The timing requirements of the

proposed technique can be reduced further by using a stopping

criterion based on some test of convergence of the multiobjective

evolutionary process.

Statistical Significance Test
To establish that MOGASVM is significantly superior to the

other algorithms, a statistical significance test called t-test has been

conducted at 5% significance level. Ten groups, corresponding to

the ten algorithms (1. MOGASVM, 2. K-means, 3. EM, 4. SGA,

5. average linkage, 6. SOM, 7. SiMM-TS, 8. CSPA, 9. HGPA, 10.

MCLA) have been created for each dataset. Each group consists of

the %CA index scores produced by 50 consecutive runs of the

corresponding algorithm.

As is evident from the Tables 2,3,4, the average values of the

%CA scores for MOGASVM are better than those for the other

algorithms. To establish that this goodness is statistically

significant, Table 5 reports the P-values produced by t-test for

comparison of two groups (the group corresponding to MO-

GASVM and a group corresponding to some other algorithm) at a

time. As a null hypothesis, it is assumed that there is no significant

difference in the mean values of the two groups. Whereas, the

alternative hypothesis is that there is significant difference in the

mean values of the two groups. All the P-values reported in the

table are less than 0.05 (5% significance level). This is a strong

evidence against the null hypothesis, indicating that the better

mean values of the %CA index produced by MOGASVM are

statistically significant and have not occurred by chance.

Gene Markers for the SRBCT Dataset
In Figure 4 we have shown the heatmap of the gene versus

sample matrix of the SRBCT dataset, where the rows correspond

to the most frequently selected top 10 genes in terms of SNR

statistic scores for each tumor subtype depicted in the columns.

Table 9. The gene markers in the SRBCT data for the RMS class, their Image IDs, symbols, selection frequencies, descriptions and
up/down regulation natures.

Gene Image ID Symbol Frequency % Description Up/Down

627939 CSRP3 100 cysteine and glycine-rich protein 3 Down

(cardiac LIM protein)

52076 OLFM1 100 olfactomedinrelated ER localized protein Down

781097 RTN3 100 neurotrophic tyrosine kinase, receptor-related Down

841620 DPYSL2 98 dihydropyrimidinase-like Down

377461 CAV1 98 caveolin 1, caveolae protein, 22kD Down

878798 B2M 100 beta-2-microglobulin Up

770394 FCGRT 98 Fc fragment of IgG, receptor, transporter, alpha Up

263716 COL6A1 98 collagen, type VI, alpha Up

461425 MYL4 96 myosin light chain 4 Up

298062 TNNT2 96 troponin T2, cardiac Up

doi:10.1371/journal.pone.0013803.t009

Table 10. The significant GO terms shared by the gene markers in the SRBCT data for the EWS class. Level refers to the GO Level.

Level GO term Module % Genome %

3 cellular component organization and biogenesis (GO:0016043) 50.0 18.3

4 transport (GO:0006810) 42.86 18.33

3 multicellular organismal development (GO:0007275) 25.0 15.83

3 nitrogen compound metabolic process (GO:0006807) 12.5 3.24

3 protein localization (GO:0008104) 12.5 5.28

4 carbohydrate metabolic process (GO:0005975) 14.29 3.72

4 amino acid and derivative metabolic process (GO:0006519) 14.29 2.48

6 DNA replication (GO:0006260) 14.29 1.7

6 biogenic amine metabolic process (GO:0006576) 14.29 0.52

Module % is the percentage of the genes involved in the particular GO term among the gene markers. Genome % is the percentage of genes involved in the particular
GO term among the complete genome.
doi:10.1371/journal.pone.0013803.t010
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Thus there are a total of 40 rows, corresponding to the 40 gene

markers, 10 for each of the four classes. The cells of the heatmap

represent the expression levels of the genes in terms of colors. The

shades of red represent high expression levels, the shades of green

represent low expression levels and the colors towards black

represent the absence of differential expression values. It is evident

from the figure that the gene markers for each tumor subtypes

have either high expression values (up-regulated) or low expression

values (down-regulated) over all the samples of the respective

tumor class. In Tables 6,7,8,9, we have reported the top 10 gene

markers along with their description and up/down regulation

states for the EWS, NB, BL and RMS tumor classes, respectively.

Also the frequency of selection of each gene over 50 runs of

MOGASVM is reported. For the EWS class, the genes 782811

(HMGA1), 796646 (ODC1), 810899 (CKS1B), 745138 (TU-

BA3D) and 30093 (RANBP1) are down-regulated and the genes

866702 (PTPN13), 811028 (TMEM49), 505491 (PTTG1IP),

470261 (SMA4) and 814260 (KDSR) are up-regulated. It is

interesting to observe that these genes behave almost oppositely in

the remaining tumor classes (Figure 4). For the NB class, the genes

207274 (IGF2), 563673 (ALDH7A1), 1416782 (CKB), 296448

(IGF2) and 250654 (SPARC) are down-regulated and the genes

812965 (MYC), 344134 (IGLL1), 840942 (HLA-DPB1), 868304

(ACTA2) and 745343 (REG1A) are up-regulated. For the BL

class, the down-regulated genes are 784224 (FGFR4), 365826

(GAS1), 810057 (CSDA), 839552 (NCOA1) and 244618

(FNDC5), whereas the up-regulated genes are 878652 (PCOLCE),

327350 (HNRNPA2B1), 824041 (SFRS9), 950574 (H3F3B) and

812105 (MLLT11). Lastly, for the RMS class, the down-regulated

and up-regulated genes are 627939 (CSRP3), 52076 (OLFM1),

781097 (RTN3), 841620 (DPYSL2), 377461 (CAV1) and 878798

(B2M), 770394 (FCGRT), 263716 (COLGA1), 461425 (MYL4),

298062 (TNNT2), respectively.

Among the above gene markers, many of those have already

been validated to be associated with the respective cancer classes

in different existing literature. For example, the gene PTPN13 has

been shown to be over-expressed for EWS (thus has been treated

as a marker for the EWS class) in [31]. In [32] and [33], the

relation of IGF2 with neuroblastoma (NB) has been investigated

and IGF2 has been found to be a good marker for the NB class.

For another gene CKB, it has been stated in [34] that the cytosolic

CKB is induced in a variety of tumors, including neuroblastoma.

Moreover, the work in [35] reveals that the gene SPARC potently

inhibits angiogenesis and significantly impairs the NB tumor

growth in vivo. In [36], the role for b2-Microglobulin (B2M) in

echovirus infection of rhabdomyosarcoma (RMS) cells has been

investigated. The gene MYL4 has been shown to be over-

expressed in Alveolar rhabdomyosarcoma (ARMS) class by gene

expression profiling. Finally, TNNT2 has also been shown to be

highly expressed for the RMS class in [37]. This discussion

indicates that our approach has identified many potential gene

markers that are also shown to be associated with the respective

cancer types in different existing studies. Therefore, it will be

interesting to conduct some biological experimentation to

investigate the roles of the other marker genes selected in this

work.

To look into the biological relationship among the selected gene

markers, gene ontology based study has been conducted using

FatiGO (http://babelomics.bioinfo.cipf.es/). The outcome of the

study has been reported in Tables 10,11,12,13 for the gene

Table 11. The significant GO terms shared by the gene markers in the SRBCT data for the NB class.

Level GO term Module % Genome %

3 cell proliferation (GO:0008283) 42.86 5.46

3 immune response (GO:0006955) 28.57 5.38

3 cell cycle (GO:0007049) 28.57 6.23

3 response to abiotic stimulus (GO:0009628) 14.29 1.02

3 antigen processing and presentation (GO:0019882) 14.29 0.84

3 tissue remodeling (GO:0048771) 14.29 0.75

6 regulation of progression through cell cycle (GO:0000074) 40.0 4.55

7 transmembrane receptor protein tyrosine 66.67 1.9

kinase signaling pathway (GO:0007169)

Level refers to the GO Level. Module % is the percentage of the genes involved in the particular GO term among the gene markers. Genome % is the percentage of
genes involved in the particular GO term among the complete genome.
doi:10.1371/journal.pone.0013803.t011

Table 12. The significant GO terms shared by the gene markers in the SRBCT data for the BL class.

Level GO term Module % Genome %

3 response to stress (GO:0006950) 69.72 7.24

4 mitotic cell cycle (GO:0000278) 16.67 2.04

6 regulation of progression through cell cycle (GO:0000074) 16.67 4.45

8 S phase of mitotic cell cycle (GO:0000084) 20.0 0.14

9 RNA splicing, via transesterification reactions with bulged adenosine as nucleophile (GO:0000377) 25.0 1.83

Level refers to the GO Level. Module % is the percentage of the genes involved in the particular GO term among the gene markers. Genome % is the percentage of
genes involved in the particular GO term among the complete genome.
doi:10.1371/journal.pone.0013803.t012
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markers of the four tumor classes EWS, NB, BL and RMS,

respectively. Each table reports a list of GO terms (under

biological process category) shared by the marker genes of the

corresponding tumor class. For each GO term, the percentage of

genes sharing that term among the marker genes and percentage

of genes sharing that term among the whole genome have been

reported. It is evident from the tables that the percentage among

the gene markers is much higher than the percentage among the

whole genome. This indicates that the gene markers of a particular

tumor class are more involved in similar biological processes

compared to the remaining genes of the genome.

For the purpose of illustration, the %CA scores have been

computed for the clustering solutions generated by all the

algorithms on the complete preprocessed SRBCT dataset (with

the initially selected 200 genes) and on the reduced dataset

consisting of only the marker genes as selected using the SNR

Table 13. The significant GO terms shared by the gene markers in the SRBCT data for the RMS class.

Level GO term Module % Genome %

3 circulation (GO:0008015) 25.0 1.07

3 antigen processing and presentation (GO:0019882) 25.0 0.84

3 multicellular organismal development (GO:0007275) 50.0 15.83

3 anatomical structure development (GO:0048856) 50.0 14.44

3 cellular developmental process (GO:0048869) 50.0 15.58

3 regulation of biological quality (GO:0065008) 25.0 4.14

3 immune response (GO:0006955) 25.0 5.38

4 endothelial cell proliferation (GO:0001935) 12.5 0.09

4 homeostatic process (GO:0042592) 25.0 2.73

4 cell differentiation (GO:0030154) 50.0 16.04

6 regulation of endothelial cell proliferation (GO:0001936) 20.0 0.09

6 cardiac inotropy (GO:0002026) 20.0 0.05

6 muscle development (GO:0007517) 40.0 1.47

6 sterol transport (GO:0015918) 20.0 0.06

6 glycerolipid metabolic process (GO:0046486) 20.0 0.19

7 negative regulation of endothelial cell proliferation (GO:0001937) 25.0 0.07

7 cholesterol transport (GO:0030301) 25.0 0.08

7 regulation of nitric oxide biosynthetic process (GO:0045428) 25.0 0.09

7 cardiac muscle development (GO:0048738) 25.0 0.05

9 protein oligomerization (GO:0051259) 66.67 1.22

Level refers to the GO Level. Module % is the percentage of the genes involved in the particular GO term among the gene markers. Genome % is the percentage of
genes involved in the particular GO term among the complete genome.
doi:10.1371/journal.pone.0013803.t013

Table 14. The performance of the clustering algorithms on the SRBCT dataset with the initially selected 200 genes, the marker
genes selected using the t-statistic and the marker genes selected using the SNR statistic.

Algorithms %CA

Initially selected Markers selected Markers selected

200 genes by the t-statistic by the SNR statistic

MOGASVM 76.6412 85.8293 90.3781

K-means 70.1903 80.3772 85.3914

EM 71.1295 82.3371 86.8934

SGA 70.8193 81.1823 86.4927

Avg. linkage 49.0527 70.2947 76.9837

SOM 71.7845 82.7845 86.9833

SiMM-TS 74.4853 84.9648 89.1397

CSPA 72.0297 83.2983 88.2286

HGPA 67.4533 77.8447 83.9824

MCLA 71.9764 83.1845 87.9411

doi:10.1371/journal.pone.0013803.t014
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statistic. Moreover, we also tested the performance of the t-statistic

as a marker gene selector. It is defined as
m1{m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1zs2
2

q , where mi

and si are as defined in Eqn. 13. The %CA is also computed for

the clustering solutions for the dataset consisting of only the

marker genes selected using the t-statistic. The average %CA
scores over 50 runs of each of the clustering algorithms for the

SRBCT dataset consisting of the initially selected 200 genes,

marker genes selected using the t-statistic and marker genes

selected using the SNR statistic are reported in Table 14. It is

evident from the table that the performance of the algorithms gets

improved irrespective of the clustering algorithm used, when

applied to the dataset with the identified marker genes only.

Moreover, the performance of the SNR statistic is found to be

better compared to that of the t-statistic. This indicates the ability

of the gene markers to distinguish the different classes of samples in

the datasets.
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