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Abstract: Existing tools to estimate cardiovascular (CV) risk have sub-optimal predictive capacities.
In this setting, non-invasive imaging techniques and omics biomarkers could improve risk-prediction
models for CV events. This study aimed to identify gene expression patterns in whole blood that could
differentiate patients with severe coronary atherosclerosis from subjects with a complete absence of
detectable coronary artery disease and to assess associations of gene expression patterns with plaque
features in coronary CT angiography (CCTA). Patients undergoing CCTA for suspected coronary
artery disease (CAD) were enrolled. Coronary stenosis was quantified and CCTA plaque features
were assessed. The whole-blood transcriptome was analyzed with RNA sequencing. We detected
highly significant differences in the circulating transcriptome between patients with high-degree
coronary stenosis (≥70%) in the CCTA and subjects with an absence of coronary plaque. Notably,
regression analysis revealed expression signatures associated with the Leaman score, the segment
involved score, the segment stenosis score, and plaque volume with density <150 HU at CCTA. This
pilot study shows that patients with significant coronary stenosis are characterized by whole-blood
transcriptome profiles that may discriminate them from patients without CAD. Furthermore, our
results suggest that whole-blood transcriptional profiles may predict plaque characteristics.

Keywords: RNA sequencing analysis; circulating transcriptome; coronary CT; advanced plaque analysis

1. Introduction

Atherosclerotic cardiovascular (CV) disease still represents a major cause of mortality,
despite a decline in incidence rates in several countries in Europe. Several risk scores have
been proposed for the assessment of individual 10-year CV risk based on traditional risk
factors (sex, age, smoking, total and LDL cholesterol, etc.) [1]. Nevertheless, existing tools
to estimate CV risk have sub-optimal predictive capacities and the accurate identification
of “at-risk” individuals remains a major challenge [2]. Coronary lesions that are not
hemodynamically significant may be responsible for acute coronary syndromes (ACS).
Thus, performing a well-planned clinical, biochemical, and genetic evaluation may be
important to provide a complete CV risk assessment.
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Noninvasive imaging techniques could improve risk-prediction models for CV events.
In this setting, coronary CT angiography (CCTA) plays an important role in the identifi-
cation of individuals with suspected coronary artery disease (CAD) and shows excellent
diagnostic accuracy compared to invasive coronary angiography [3,4]. CCTA enables the
early quantification of coronary atherosclerosis, before the onset of the clinically overt
disease [5], but also the detection of adverse plaque characteristics associated with markers
of histological vulnerability [6] and with prognosis in several studies [5,7].

In addition, investigation of molecular biomarkers (e.g., transcript biomarkers, pro-
teins, or metabolites), which are present and altered in the biological fluids and at the level
of the injured tissue [8], may help to reclassify patients according to various levels of risk,
starting from a sub-clinical level of atherosclerosis up to high-risk subjects [9]. Blood is
an ideal surrogate tissue for CAD studies [10,11]: tests on peripheral blood could be of
paramount importance for CV disease diagnosis and prognosis. Due to the dynamic nature
of the transcriptome, gene expression profiling has turned out to be an important research
tool for elucidating disease pathophysiology and finding specific biomarkers.

Recently a few authors have used the RNA sequencing (RNA-Seq) technique to ex-
plore the whole-blood transcriptome in search of biomarkers of coronary atherosclerosis
and/or related conditions. Preliminary studies have identified gene expression profiles that
would distinguish women with acute myocardial infarction (MI) with nonobstructive CAD
from those with MI-CAD or controls [12], and subjects with coronary stenosis ≥50% from
those with stenosis <50% [13]. Two larger studies documented transcriptional expression
signatures that discriminated a low degree of stenosis (≤20%) from an intermediate degree
(>20% but <70% in any vessel) in patients presenting for elective coronary catheteriza-
tion [14], and subjects with early MI from those with subclinical coronary atherosclerosis
(detected as a high degree of coronary artery calcification (CAC)) and from controls without
a history of MI or high CAC [15]. In all these studies, the presence or absence of coronary
atherosclerosis had been documented by invasive coronary angiography.

Through the identification of biomarkers and non-invasive imaging analysis, it should
be possible to monitor the development of atherosclerotic lesions, identify the “vulnerable
patient”, and potentially prevent fatal outcomes.

This study makes use of CCTA and RNA-Seq to (1) identify whole-blood gene ex-
pression patterns that could differentiate patients with severe coronary atherosclerotic
pathology from subjects with complete absence of CAD, (2) detect possible pathways
and immune cell populations associated with the pathological phenotype through func-
tional inference analysis, and (3) assess the association of gene expression patterns with
CCTA-derived plaque features. It should be emphasized that this is a pilot study and proof-
of-concept research that is intended to evaluate the experimental validity of an innovative
hypothesis in a small number of subjects.

2. Materials and Methods
2.1. Study Design

The present work made use of the EPIFANIA prospective observational study un-
derway at our Institute, which enrolled a large cohort of consecutive patients undergoing
CCTA for suspected CAD, in order to identify molecular and imaging biomarkers of coro-
nary atherosclerosis progression and occurrence of CV events. Inclusion criteria were: age
between 18 and 80 years and negative history of previous coronary events (angina, silent
ischemia, acute myocardial infarction) or revascularization (coronary angioplasty or bypass
graft). Exclusion criteria were: age <18 and >80 years, pregnancy, history of previous CV
or coronary revascularization, indication for immediate revascularization, arrhythmias,
congestive heart failure, non-ischemic cardiomyopathies, pacemakers, defibrillators, se-
vere or disabling extra-cardiac disease or infectious disease, immunosuppressive therapy
or chemotherapy in the previous year, major surgery in the previous six months, blood
perfusions in the previous two months, and failure to obtain the informed consent.



Biomedicines 2022, 10, 1309 3 of 14

Patient enrollment and signing of informed consent, as well as peripheral blood
sampling from an antecubital vein, were undertaken upon admission at the Department
of Cardiovascular Imaging before CCTA was performed. Medical history and clinical
information were collected. Routine hematochemical tests were performed along with the
CCTA examination.

For this exploratory pilot study, we adopted a strategy that would allow us to search
for highly relevant differences and remove possible confounding factors. Therefore, we
selected two groups of individuals at the extremes of the distribution of coronary artery
stenosis extent (i.e., patients with severe stenosis versus subjects who showed no signs of
coronary atherosclerosis), matched for sex, age, and CV risk factors, from those enrolled
between October 2016 and November 2018.

The study protocol conformed to the principle of the Declaration of Helsinki and was
approved by the Ethics Committee of the IRCCS Istituto Europeo di Oncologia and Centro
Cardiologico Monzino. All recruited patients signed the written informed consent form
and participants agreed to share their de-identified information.

2.2. Coronary Computed Tomography Angiography

CCTA was performed using a novel scanner (Revolution CT, GE Healthcare, Milwau-
kee, WI, slice configuration 256 × 0.625 mm, gantry rotation time 280 msec, prospective
ECG triggering) for qualitative and quantitative assessment of the atherosclerotic burden
and detection of high-risk plaque features. Coronary plaques were defined as structures
of at least 1 mm2 area within and/or adjacent to the artery lumen, clearly distinguishable
from the vessel lumen. High-risk plaque features, such as the arterial remodeling index
(RI), spotty calcification (SC), and napkin ring sign (NRS), were evaluated. The RI is defined
as the ratio between the lesion plaque area and a reference lumen area. The NRS is a thin,
rim-like enhancement (no more than 130 HU) distributed along the outer contour of the
vessel and surrounding a fibro-lipidic plaque. SC is any discrete calcification ≤3 mm in
length and occupying ≤90◦ arc when viewed on a short axis [16]. Plaque density was
assessed using HU, and low attenuation plaque (LAP) was defined as the presence of any
voxel < 30 HU. Total plaque volume (TPV) was evaluated and reported in mm3 [16,17]. Low
attenuation plaque volume (<30 HU) and fibrotic plaque volume (30–150 HU), summarized
as the noncalcific plaque volume, were defined as the amount of plaque with <150 HU [16].
In all patients, the segment involvement score (SIS) and segment stenosis score (SSS) were
calculated. The SIS is the total number of coronary artery segments with plaques (rang-
ing from 0 to 16) and reflects the extent of the plaques. The SSS is the sum of the extent
grades based on the Coronary Artery Disease Reporting and Data System (CAD-RADS)
(grade 0: no visible stenosis; grade 1: <25% stenosis; grade 2: 25–49% stenosis; grade 3:
50–69% stenosis; grade 4: 70–99% stenosis; and grade 5: totally occluded) of all segments
(ranging from 0 to 80) [18,19]. Finally, the CT-adapted Leaman score, including information
on lesion localization, plaque composition (with a multiplication factor of 1 for calcified
plaques and of 1.5 for non-calcified and mixed plaques), and the degree of stenosis (with
a multiplication factor of 0.615 for non-obstructive (<50% stenosis) and a multiplication
factor of 1 for obstructive (≥50% stenosis) lesions) was used to obtain a comprehensive
assessment of plaque burden [20].

2.3. Blood Sample Collection

Peripheral venous blood samples were drawn prior to CCTA into Vacutainer tubes
(Becton-Dickinson, Franklin Lakes, NJ, USA) for hematological exams and into Tempus
Blood RNA tubes containing RNA stabilizing reagents (Applied Biosystems, Bedford, MA,
USA) for RNA analyses. Indeed, contrast agents would have strongly affected blood-cell
gene expression levels and host metabolic/inflammatory responses. Tempus tubes were
vortexed for at least 10 s to stabilize RNA and stored at −80 ◦C until use.
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2.4. RNA Isolation and Sequencing

Total RNA was isolated using a KingFisher Flex Purification system and a MagMax
for Stabilized Blood Tube RNA Isolation kit (Thermo Fisher Scientific, Waltham, MA, USA)
following the manufacturer’s instructions, including DNase treatment for genomic DNA
removal. Total RNA concentration and quality were evaluated, respectively, using micro-
volume spectrophotometry and microfluidics electrophoresis with an RNA 6000 Nano
Assay Kit on a 2100 Bioanalyzer system (Agilent, Santa Clara, CA, USA). α- and β-globin
mRNA depletion was performed using the GLOBINclear Human kit (Applied Biosystems).
This was followed by poly(A)+ RNA enrichment using the Dynabeads mRNA Direct Micro
Kit (Thermo Fisher Scientific) starting from 500 ng of globin-depleted RNA.

Barcoded libraries were prepared using the Total RNA-Seq Kit v2.0 and Ion Express
RNA-Seq following the manufacturer’s instructions. Then, 200 bp cDNA fragments were
amplified by PCR (16 cycles), with the use of specific Barcode BC primers for library
demultiplexing, and quantified on a 2100 Bioanalyzer System. A total of 100 pM diluted
libraries were randomly pooled (six samples/pool), loaded on 550 chips, and sequenced
with an Ion Gene Studio S5 Prime System (Thermo Fisher Scientific).

2.5. RNA-Seq Data Pre-Processing

A mean of 18.5 ± 0.53 million reads per sample was obtained. Sequential aligning
of raw reads was performed against the GRCh38 (hg38) human genome. In particular,
reads were aligned to the reference genome using STAR [21] and Bowtie 2 [22] aligners.
Gene annotation and quantification were computed using FeatureCounts software [23] to
obtain a gene expression matrix of raw reads. Raw counts data were then imported into R
software v 4.0.0 and filtered to retain genes with a minimum of five counts in at least 40%
of the samples.

2.6. Differential Expression Analysis

Differential expression analysis was performed with the LIMMA package [24], adjust-
ing the statistical model for “technical batches”. A p-value distribution plot was used to test
the consistency of differential expression analysis [25]. Genes were deemed as significant at
a p-value < 0.001. We also computed p-values adjusted for multiple testing, using Benjamini
and Hochberg’s method to control the false discovery rate (FDR). Heatmaps were drawn
with the pHeatmap package using significantly differentially expressed genes.

2.7. Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) [26] was performed on the entire transcriptome
with GSEA software version 4.1.0 (Broad Institute, Cambridge, MA, USA), using Gene
Ontology biological processes as reference. We deemed gene sets as significantly associated
with a phenotype at an FDR-adjusted p-value < 0.05. Then, GSEA results were visualized
with an enrichment network of the most significant pathways (FDR < 0.05) using the
Enrichment Map Software [27] version 3.3.0, a Cytoscape [28] (version 3.8) plugin.

A similar approach was used to perform cell-type enrichment analysis. To this end,
we used a gene-set collection including 22 subsets of human hematopoietic cell types [29].

2.8. Microarray Analysis

Transcriptome profiling was repeated in a subgroup of patients using the Clariom D As-
say microarrays (Thermo Fisher Scientific), following the manufacturer’s instructions. Gene
expression analysis was performed in the R environment v4.0.3, using R/Bioconductor
packages. Briefly, probe-level raw data were imported as CEL files, normalized using
the robust multichip average (RMA) method [30] implemented in oligo [31], annotated
with the Affymetrix clariomdhuman annotation data clariomdhumantranscriptcluster.db, and
summarized to the gene level with affycoretools. To control for unwanted heterogeneity, the
normalized expression matrix was assessed for the presence of latent variables through the
DaMiRseq R/Bioconductor package [32]. The statistical model to compare CAD vs. noCAD
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patients was implemented through the LIMMA package [24], adjusting for a latent variable;
i.e., technical batches. To assess the technical reproducibility of cell-type enrichment analy-
sis, Pearson’s correlation was calculated between the mean differences in hematopoietic
cell gene sets observed with RNA-Seq and those detected with microarrays.

2.9. Statistical Analysis

Continuous variables were presented as means with standard deviation (SD), and
categorical data as counts and proportions. Continuous variables normally distributed
were compared using Student’s t-test for independent samples. The proportion of the
categorical variables was compared using a χ2 analysis or Fisher’s exact test, as appropriate.
Linear regression analysis was performed to evaluate the relationships between each
expressed gene and CCTA high-risk features. p-value distribution plots were used to test
the consistency of the associations observed. A p-value < 0.05 was considered statistically
significant, except where indicated. Statistical analysis and graphics were produced with
native R functions.

3. Results
3.1. Study Population

For this pilot study, we selected 54 patients, either with severe coronary stenosis
(≥70% in at least one vessel; CAD, n = 27) or without atherosclerosis (noCAD, n = 27),
matched for sex, age, and CV risk factors using the function GetSetMatched embedded in
the R/Bioconductor package CGEN. Two noCAD subjects were excluded from the analysis
because of the poor quality of the RNA extracted (RNA Integrity Number [RIN] < 5). Thus,
the final, cohort was composed of 52 patients (CAD, n = 27; noCAD, n = 25).

Table 1 shows the characteristics of the patients under study.

Table 1. Patient characteristics.

Clinical
Characteristics CAD (n = 27) noCAD (n = 25) p-Value

Males 21 (77.8%) 20 (80%) 0.84
Age (years) 63 ± 8 62 ± 7 0.65

BMI (kg/m3) 26.2 ± 3 26 ± 2.7 0.8
Smokers 16 (59.2%) 13 (52%) 0.60

Hypertension 19 (70%) 10 (40%) 0.045
Hypercholesterolemia 19 (70%) 16 (64%) 0.64

Use of statin 15 (55%) 7 (28%) 0.06
Diabetes mellitus 4 (14.8%) 3 (12%) 0.76

Peripheral artery disease 5 (19%) 2 (8%) 0.42

Clinical presentation

Any of the symptoms below 15 (55.5%) 13 (52%) 0.80
Angina pectoris 3 (11%) 2 (8%) 0.71

Atypical chest pain 6 (22%) 4 (16%) 0.58
Dyspnea 3 (11%) 2 (8%) 0.71

Arrhythmias 4 (14%) 7 (28%) 0.21

Laboratory

Erythrocytes (106/µL) 4.88 ± 0.5 4.91 ± 0.41 0.81
Leucocytes (103/µL) 8.32 ± 1.67 7.67 ± 1.84 0.19
Hemoglobin (g/dL) 14.83 ± 1.42 14.85 ± 1.12 0.95

Hematocrit (%) 43.04 ± 3.91 43.50 ± 2.67 0.62
Platelets (103/µL) 239.88 ± 50.38 255.48 ± 55.82 0.33
Glycemia (mg/dL) 100.33 ± 10.9 102 ± 27.27 0.77
Uric acid (mg/dL) 5.34 ± 1.05 5.2 ± 1.40 0.68
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Table 1. Cont.

Clinical
Characteristics CAD (n = 27) noCAD (n = 25) p-Value

γ-GT (UI/L) 35.34 ± 22.35 34.08 ± 23.9 0.84
Total bilirubin (mg/dL) 0.62 ± 0.27 0.71 ± 0.34 0.31

Troponin I (ng/L) 5.07 ± 11.2 2.81 ± 2.23 0.31
Triglycerides (mg/dL) 109 ± 65.82 94.44 ± 33.64 0.31

Total cholesterol (mg/dL) 200.48 ± 49.26 195.84 ± 40.42 0.71
HLD-c (mg/dL) 58.22 ± 13.37 66.76 ± 18.05 0.06
LDL-c (mg/dL) 120.40 ± 41.59 110.08 ± 33.99 0.33
CRP (mg/dL) 2.12 ± 2.59 1.46 ± 1.90 0.30

Categorical variables are presented as counts (n) and proportions (%); quantitative variables are expressed
as means ± SD. Continuous variables were compared using Student’s t-test for independent samples. The
proportions of the categorical variables were compared using Fisher’s exact test. SD: standard deviation;
BMI: body mass index; γ-GT: γ-glutamyl transpeptidase; HDC-c: high-density lipoprotein cholesterol; LDL-
c: low-density lipoprotein cholesterol.

3.2. Differential Gene Expression between CAD and NoCAD Patients

Following alignment, read count, and data filtering, 15,128 expressed genes were
identified. Genes expressed in peripheral blood were used to evaluate their ability to
discriminate between the two phenotypes under study. We observed 2949 differentially
expressed genes at a nominal p-value < 0.05 with a log2 fold-change (FC) range between
−0.96 and 0.93. Of these, 1507 (51%) were on average more expressed in CAD subjects,
while 1442 (49%) were less expressed in CAD subjects (Supplementary Table S1). Ap-
plying more stringent criteria, there were 138 significantly differentially expressed genes
(p-value < 0.001) with a log2 FC ranging from −0.63 to 0.75. Of these 138 genes, 74 (54%)
showed a higher expression in CAD subjects, while 64 (46%) had a lower expression. The
volcano plot in Figure 1 shows the extent of the differential gene expression between CAD
and noCAD subjects.

Figure 1. Volcano plot of differential gene expression analysis of CAD vs. noCAD patients. Red and
blue dots represent genes significantly overexpressed or decreased in CAD patients, respectively
(p < 0.001). Pink and light blue dots highlight genes with higher or lower expression in CAD vs.
noCAD patients, respectively, at a nominal p-value < 0.05. Grey dots represent genes with no
difference in expression between the two groups.
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3.3. Hierarchical Clustering

Unsupervised hierarchical clustering analysis was performed to evaluate if the genes
differentially expressed were able to distinguish CAD from noCAD subjects. The dendro-
gram (Figure 2) shows a hierarchical organization with two main clusters, highlighting a
good separation between CAD and noCAD subjects. In fact, 81% of CAD subjects (n = 22)
are grouped into a single cluster and 76% (n = 19) of noCAD subjects constitute a second
well-separated group.

Figure 2. Heatmap visualizing hierarchical clustering results. The dendrograms show the subjects
under study in the columns and the differentially expressed genes in the lines. In the heatmap, each
gene is associated with a chromatic index indicating normalized expression in the sample (from
bright blue = low level of expression to dark red = high level of expression).

3.4. Functional Inference

We performed GSEA using the collection of gene sets reported in the Gene Ontology
database of biological processes (GO-BP) to determine whether members of a set of genes
tend to be better associated with one phenotype than another (Supplementary Table S2).
Fifty gene pathways were positively associated with CAD, while 300 pathways were
negatively associated (FDR-adjusted p-value < 0.05). The most significant GO-BP terms are
reported in Table 2.
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Table 2. Top non-redundant Gene Ontology biological processes associated with CAD.

NAME Gene Ontology ID NES q-Value

Positively associated
rRNA metabolic process GO:0016072 4.706 0

Aerobic respiration GO:0009060 3.535 0
Ribosome assembly GO:0042255 3.732 0

Complement activation GO:0006956 2.956 0.00007
B cell-mediated immunity GO:0019724 2.686 0.00053
Mitochondrial transport GO:0006839 2.490 0.00185

tRNA processing GO:0008033 2.070 0.02193
Negatively associated

Pattern recognition receptor signaling pathway GO:0002221 −3.129 0
Negative regulation of MAP kinase activity GO:0043407 −2.894 0.00058

Response to peptide hormone GO:0043434 −2.719 0.00206
Myeloid leukocyte activation GO:0002274 −2.644 0.00243

Inflammatory response GO:0006954 −2.544 0.00399
Activation of innate immune response GO:0002218 −2.529 0.00422

Response to transforming growth factor-beta GO:0071559 −2.384 0.00694
Angiogenesis GO:0001525 −2.316 0.00956

Phospholipid biosynthetic process GO:0008654 −2.197 0.01545
Lipid transport GO:0006869 −2.032 0.02875

NES: normalized enrichment score; q-value: false discovery rate-adjusted p-value.

The results obtained through the GSEA analysis were graphically displayed in an
enrichment network, which highlights the most significant pathways and the relationships
between them (Figure 3). The coronary atherosclerotic stenotic phenotype was positively
associated with tRNA processing pathways, ribosomal metabolic process and assembly, mi-
tochondrial transport, complement activation, and B cell-mediated immunity. Conversely,
the stenotic atherosclerosis phenotype was negatively associated with pattern recognition
receptor signaling pathway, regulation of innate immunity and inflammatory responses,
and angiogenesis.

Through the GSEA, we also carried out a cell enrichment analysis (Supplementary
Table S3) using a set of hematopoietic cell genes. We sought possible relationships between
specific cell types of the immune system and the atherosclerotic phenotype, based on
the expression profiles of circulating cellular poly(A+) RNA. The analysis showed a clear
distinction between the enriched cell types in the two phenotypic groups (Figure 4). Indeed,
the CAD group was found to be enriched by gene expression profiles associated with T
lymphocytes (Tregs, T-CD4+, T-CD8+, and follicular T cells) and B lymphocytes (naive and
memory cells). All these cell types play important roles in the adaptive immune system.
Conversely, the CAD group was found to be negatively enriched by all cell types associated
with the innate immune system, such as granulocytes (both neutrophils and eosinophils),
monocytes, and activated and resting mast cells.

To confirm these findings, we selected a subgroup of patients (CAD n = 14 vs.
noCAD n = 13, matched for sex, age, and cardiovascular risk factors) and repeated the
differential gene expression analysis using microarrays. Then, we correlated the mean
differences (log2 FC) in hematopoietic cell gene sets observed with RNA-Seq to those
detected with microarrays. The analysis revealed highly significant correlations between
the two independent detection methods for each hematopoietic gene set (with Pearson’s
correlation coefficients ranging from 0.53 to 0.86 and all p-values < 0.01; Supplementary
Figure S3) and strongly supported the observations on phenotype-specific cell enrichment.
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Figure 3. Enrichment map of the gene sets positively (red nods) and negatively (blue nodes) associ-
ated with CAD, respectively. The network shows the most significant results of the GSEA with the
Gene Ontology biological processes gene sets (FDR-adjusted p-value < 0.05).

Figure 4. Cell enrichment map. The red nodes represent the enriched cells in the CAD phenotype,
while the blue nodes were enriched in the noCAD phenotype and negatively associated with CAD.

3.5. Associations between Gene Expression and High-Risk Plaque Features

Linear regression analysis was performed to assess possible associations between
gene expression in whole blood and high-risk features detected at CCTA. Genes were
considered significantly associated with a p-value < 0.01 and |R| ≥ 0.6. The robustness
of the regression analysis results was assessed by exploring the histograms of the p-value
distribution. Ideally, p-values should show a uniformly flat distribution across the unit
interval (null p-values) with a peak near the zero value (p-values for alternative hypothesis).
Notably, regression analysis showed reliable p-value distributions for Leaman score, SIS,
SSS, and plaques with density < 150 HU in CCTA (Supplementary Figure S1). Regression
analysis, in contrast, did not detect consistent associations between gene expression and
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other high-risk features (NRS, LAP, spotty calcification, RI > 1.4) and total plaque volume
(Supplementary Figure S2).

The numbers of genes significantly associated with the Leaman score, SIS, SSS, and
plaque density < 150 HU are reported in Table 3. The genes associated with these four CT
traits, along with their significance levels, are shown in Supplementary Table S4. These
may represent robust transcriptional predictors of the four high-risk features in CCTA, both
positively and negatively correlated.

Table 3. Numbers of genes significantly associated with CT plaque features (p < 0.01 and |R| ≥ 0.6).

Variable Significantly
Associated Genes

Positively
Associated Genes

Negatively
Associated Genes

Leaman Score 19 11 8
SIS 34 17 17
SSS 17 7 10

Plaque density < 150
HU 58 42 16

4. Discussion

The main findings of the present study suggest (a) that patients with significant
coronary stenosis (≥70%) at first diagnosis are characterized by whole-blood transcriptome
profiles that can discriminate them from patients without coronary plaques as detected by
CCTA and (b) that blood-based transcriptional signatures may predict specific high-risk CT
plaque features. These results were derived from genome-wide transcript profiling in the
whole blood of a group of 54 patients—27 with CCTA-documented CAD and 25 without
signs of atherosclerotic lesions—matched for sex, age, and CV risk factors. Clustering
analysis highlighted that the expression patterns identified could distinguish the two
phenotypic groups, and functional enrichment analysis showed specific pathways and cell
subpopulations positively or negatively associated with the CAD phenotype.

Genome-wide molecular profiling (specifically peripheral blood gene expression profil-
ing) is an informative tool for investigating disease states and identifying markers reflecting
genetic predisposition and/or disease activity. Blood is an ideal surrogate tissue for CAD
studies [10,11] because it includes immune and inflammatory cells that are key elements in
the atherosclerotic process. The search for transcriptional signatures in the whole blood,
rather than in cell fractions, reduces handling artifacts (such as induction of transcriptional
changes due to cell fractionation procedures) and sample-to-sample variability. Previous
studies reported gene expression patterns in peripheral blood that correlate with the ex-
tent of CAD [10,33,34]. However, profiling was performed using microarrays, which are
limited in dynamic range. Only recently have a few studies used RNA-Seq to look for
transcriptional markers of the degree of coronary stenosis or related conditions, although in
all of these the vessels were being investigated using invasive angiography in symptomatic
patients [12–15].

RNA sequencing has unveiled new molecular players that could be useful for an
in-depth understanding of the pathophysiology of CAD. The molecular and cellular mech-
anisms underlying coronary atherosclerosis include intracellular lipid accumulation and
immune-inflammatory response, which play crucial roles in all the different stages of the
atherosclerotic process (i.e., initiation, perpetuation, and resolution of the atherosclerotic
process) [35,36]. In addition, increased reactive oxygen species production and mitochon-
drial dysfunction (with subsequent release of damage-associated molecular patterns and
apoptosis-triggering molecules) contribute to atherogenesis, and it has been reported that
mitochondrial DNA mutations could play a role in disease progression, although the
mechanism remains unknown [37]. Our data showed that the coronary atherosclerotic
phenotype was positively associated with mitochondrial respiratory processes, electron
transport chain, complement activation, and B-cell-mediated immunity and, in contrast,
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negatively associated with pattern recognition receptor signaling pathway and regulation
of innate immunity and inflammatory responses.

Accordingly, cell-type enrichment analysis revealed that CAD and noCAD groups had
a divergent association with the immune response. The CAD phenotype was associated
with transcriptional profiles of T lymphocytes (Tregs, T-CD4+, T-CD8+, and follicular T cells)
and B lymphocytes (naive and memory cells), whereas the noCAD group was enriched with
cell types associated with the innate immune system, such as granulocytes, monocytes, and
mast cells. Although atherosclerosis is considered a chronic inflammatory disorder whose
progression is driven by the innate immune response, with the principal involvement of
myeloid cells, the hypothesis that both innate and adaptive immunity are involved in
the development of this disease has emerged from recent studies [38], and involvement
of regulatory T cell (Tregs) imbalance has been described [14]. The presence of B cells
and T cells at the level of the lesion suggests that atherosclerotic pathology may also be
characterized by the presence of an important autoimmune component [28,38].

Hence, cellular enrichment of the different types of T and B lymphocytes in this study
could suggest an association between a systemic antigen-specific immune component
and the stenotic atherosclerotic phenotype, supporting the hypothesis of an auto-immune
response in CAD subjects with advanced pathology. Our data suggest that, in a late phase of
the atherosclerotic process (overt stenotic CAD), the autoimmune response is prevalent over
the innate inflammatory processes. Consistent with this hypothesis, in a recent study [39]
that investigated whole-blood transcriptome profiles in patients with acute myocardial
infarction, we observed that the non-ST-segment elevation acute myocardial infarction
(NSTEMI) phenotype was associated with immune cells, such as T and NK cells, and with
leukocyte/lymphocyte activation processes.

Finally, this study suggests the existence of peripheral blood gene expression patterns
able to predict the degree of some high-risk features in CCTA. Of interest, regression analy-
sis unveiled several genes whose expression was consistently correlated with the Leaman
score, SIS, and SSS, as well as plaques with density <150 HU in CCTA. Indeed, the combina-
tion of these parameters allows a comprehensive assessment of atherosclerotic burden, as
SIS represents the diffuseness of CAD, SSS combines the extent of disease with the degree
of stenosis, the Leaman score points out plaque characteristics and lesion proximity, and
plaque volume < 150 HU is focused on plaque composition. In contrast, no association
was found with the total coronary plaque volume, LAP, NRS, spotty calcification, and
RI > 1.4. LAP (expression of the lipidic composition of the plaque), NRS (representing a
plaque with a large necrotic core), spotty calcification (associated with intraplaque hem-
orrhage), and RI > 1.4 (expression of early atherosclerosis) are qualitative plaque features
previously associated with increased risk of ACS [2]. However, our findings are in line
with the major results of recent prospective, multicenter studies on the prognostic value
of plaque characterization in CCTA, such as CAPIRE and ICONIC, that demonstrated the
superiority of CCTA-derived quantitative vs. qualitative parameters in predicting acute
coronary events [40,41]. Both these studies showed that quantitative plaque parameters,
such as noncalcific (<150 HU), otherwise called fibro-fatty, plaque volume, are superior in
stratifying patient prognosis and predicting ACS than the presence of qualitative high-risk
plaque features, such as LAP, NRS, spotty calcification, and positive remodeling. On the
other hand, more recent insights from CAPIRE showed a strict association between the non-
calcific component (<150 HU) of the plaque volume (the highest quartile of the noncalcific
plaque volume) and inflammatory biomarkers such as high-sensitivity CRP or pentraxin 3,
whereas no significant association was found between inflammatory biomarkers and ele-
vated total coronary plaque volume [16]. These data support the role of inflammation in
atherosclerosis pathophysiology, but the absence of an association between inflammatory
biomarkers and total coronary plaque volume may suggest that inflammation selectively
enhances high-risk atherosclerosis development, but it is not directly involved in the global
coronary atherosclerosis burden [16]. Notably, CCTA, particularly when the latest scanner
generation equipped with improved spatial and temporal resolution is used, has been
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demonstrated to accurately measure coronary plaque volume in comparison with the inva-
sive standard of reference [42]. Indeed, a recent study showed a mean difference between
plaque volume defined by IVUS and CCTA performed with a 256-slice scanner of 4 mm3

only, with boundaries of agreement of 21.8 and −13.9 mm3 and a very high correlation
coefficient (0.98) [17].

Thus, an association between transcriptional profiles in the whole blood and plaque
characteristics could help early identification of the “vulnerable patient” and, therefore,
prevent CV events, as previously suggested in the literature [10].

The strength of these results is that they were obtained from whole blood and with an
RNA sequencing method, increasing the reliability and robustness of emerging biomark-
ers for the management and stratification of patients. The small size of the population
represents a limitation of this study and it will be necessary to confirm the results on
a larger number of patients and validate them with a new independent sample group.
In addition, it should be considered that the sequencing analysis of the circulating tran-
scriptome was carried out on all cell populations present in the peripheral blood (bulk
analysis) and, therefore, it was not possible to associate a specific pathway with a precise
cellular subpopulation.

5. Conclusions

The results of this explorative pilot study show differences in the expression of the
circulating transcriptome between patients with significant coronary stenosis (≥70%) and
subjects with the absence of coronary atherosclerosis in CCTA. These different patterns are
functionally associable with two divergent immune-inflammatory profiles. Moreover, the
results of regression analysis suggest the hypothesis that a possible association between
whole-blood transcriptional profiles and plaque characteristics could help identify the
“vulnerable patient” and potentially prevent CV events.
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