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Abstract
PARP inhibitors (PARPis) were initially developed as DNA repair inhibitors that inhibit 
the catalytic activity of PARP1 and PARP2 and are expected to induce synthetic le-
thality in BRCA- or homologous recombination (HR)-deficient tumors. However, the 
clinical indications for PARPis are not necessarily limited to BRCA mutations or HR 
deficiency; BRCA wild-type and HR-proficient cancers can also derive some benefit 
from PARPis. These facts are interpretable by an additional primary antitumor mecha-
nism of PARPis named PARP trapping, resulting from the stabilization of PARP-DNA 
complexes. Favorable response to platinum derivatives (cisplatin and carboplatin) in 
preceding treatment is used as a clinical biomarker for some PARPis, implying that 
sensitivity factors for platinum derivatives and PARPis are mainly common. Such 
common sensitivity factors include not only HR defects (HRD) but also additional 
factors. One of them is Schlafen 11 (SLFN11), a putative DNA/RNA helicase, that sen-
sitizes cancer cells to a broad type of DNA-damaging agents, including platinum and 
topoisomerase inhibitors. Mechanistically, SLFN11 induces a lethal replication block 
in response to replication stress (ie, DNA damage). As SLFN11 acts upon replication 
stress, trapping PARPis can activate SLFN11. Preclinical models show the importance 
of SLFN11 in PARPi sensitivity. However, the relevance of SLFN11 in PARPi response 
is less evident in clinical data compared with the significance of SLFN11 for platinum 
sensitivity. In this review, we consider the reasons for variable indications of PARPis 
resulting from clinical outcomes and review the mechanisms of action for PARPis as 
anticancer agents.
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1  |  INTRODUC TION

Among the PARP family members (PARP1-PARP17), PARP1 and 
PARP2 act as DNA repair enzymes for DNA single-strand breaks. 
Hence, catalytic PARP inhibition by PARP inhibitors (PARPis) pre-
vents the repair of DNA single-strand breaks, and PARPis act as 
DNA repair inhibitors. Since the discovery of synthetic lethality of 
PARPis in BRCA mutant cells that impair the repair of DNA double-
strand breaks (DSBs),1,2 clinical PARPis with comparably high cat-
alytic inhibition potency (olaparib, niraparib, talazoparib, rucaparib, 
and veliparib) have been developed. According to the original con-
cept, PARPis should be selectively toxic to BRCA mutation or HRD 
cancer cells. However, clinical trials revealed the significant benefit 
of PARPis in BRCA wild-type or HR-proficient cancers, while BRCA 
mutation or HR-deficient cancers received superior benefit.3–6 
Hence, current indications of PARPis have been expanded and are 
not restricted to cancers with BRCA mutations (Table  1). Former 
favorable response to platinum derivatives (cisplatin and carbopla-
tin) is used as a clinical biomarker for PARPi sensitivity regardless 
of BRCA status. These facts are not interpretable by the initial syn-
thetic lethal model of PARPis.

A decade ago, we reported an additional primary mechanism 
of action of PARPis, named PARP trapping.7,8 In the presence of 
PARPis, PARP1 and PARP2 (hereafter, which we described as 
PARP if not explicitly mentioned) bind the 5′-deoxyribose phos-
phate group–containing DNA ends noncovalently,9 generating 
highly toxic PARP-DNA complexes (Figure 1). As PARPis turn the 
PARP protein toxic, they act as “PARP poisons,” which explains that 
the antitumor effects of PARPis completely disappear in PARP-
deficient cells.8 PARP-DNA complexes strongly block DNA repli-
cation, leading to DSBs with bulky PARP proteins at one strand of 
5’-DNA ends. Cancer cells employ multiple repair factors beyond 
BRCA to manage PARP trapping. Hence, PARP-trapping lesions 
can also damage HR-proficient cells (see our review for detailed 
information10). The potency of PARP trapping is widely different 
among PARPis, talazoparib being the strongest and veliparib the 
weakest (Table 1). Structural studies revealed an allosteric folding 
change of a helical domain of PARP1, leading to different reten-
tion potency of PARP1 on single-strand breaks.11 Overall, these 
differences are reflected in the drug dosing; for example, the daily 
dose of talazoparib is 1 mg, while the daily dose of other PARPis is 
hundreds mg, indicating that PARP-trapping potency is the limiting 
factor to decide the clinical dose. The variety of indications and 
usages of PARPis based on the results of clinical trials deepen the 
understanding of PARPis and let us reconsider the most relevant 
mechanisms of action of PARPis in the human body. In this review, 
we first summarize recent topics about PARP trapping and then 
consider the reasons for variable indications of PARPis resulting 
from clinical outcomes. Next, we introduce Schlafen 11 (SLFN11) as 
a cause of cross-sensitivity with platinum derivatives and propose 
the “hyper synthetic lethal strategy” using SLFN11 protein expres-
sion and BRCA mutation as biomarkers for PARPis.

2  |  HOW DO C ANCER CELL S PROCESS 
PARP-TR APPING LESIONS?

Replication is often challenged by proteins covalently bound to DNA, 
also known as DNA-protein crosslinks (DPCs). DPCs originate when 
proteins become crosslinked to DNA after exposure to UV light or 
aldehydes or due to faulty enzymatic reactions.12 A representative 
example of enzymatic DPC is a topoisomerase 1 (TOP1)-DNA cleav-
age complex (TOP1cc) generated through the TOP1-mediated cova-
lent bond between 3’-DNA ends and the catalytic tyrosyl residue of 
TOP1.13 Failure in the self-resealing of TOP1ccs results in stabilized 
TOP1-DPCs, which are trapped by TOP1 poisons, such as campto-
thecin (CPT), and its clinical derivatives irinotecan and topotecan.14 
Because TOP1-DPCs are products of a physiological reaction, eu-
karyote cells possess multiple pathways to dissolve the TOP1-DPCs 
by excising and ligating the associated breaks. Tyrosyl-DNA phos-
phodiesterase 1 (TDP1) cleaves the tyrosyl-DNA bonds, whereas 
a structure-specific endonuclease MRE11 removes the TOP1-DPC 
along with the adjacent DNA segment.14 A metalloprotease Spartan 
(SPRTN) debulks TOP1-DPCs to make the peptide-DNA bonds ac-
cessible to the repair factors.14 Similar repair pathways exist for 
TOP2-DPC with TDP2 and MRE11 for their excision.15

Getting back to the subject of PARP trapping, the PARP-DNA 
complex, a noncovalent bond at the 5’-DNA ends, is an unnatural 
product that is uniquely formed in the presence of PARPis. One 
possible exception can be the case happening in XRCC1-deficient 
condition, where PARP1 occupies DNA ends and blocks base exci-
sion repair.16 However, XRCC1-deficient cell is not found at the tran-
scription level and in mutation status in the NCI-60 and Genomics of 
Drug Sensitivity in Cancer (GDSC) database (https://disco​ver.nci.nih.
gov/cellm​inerc​db/).17 Then, it is questionable how human cells pro-
cess the unnatural PARP-trapping lesions. The 5’-DNA ends should 
be clean to access exonucleases (MRE11, CtIP, EXO1, and DNA2) to 
initiate HR. Recently, several factors have been reported to process 
trapped PARP1 or PARP2 (Figure 1).

The metalloprotease SPRTN involved in the debulking of TOP1-
DPCs is recruited to trapped PARP1 in S-phase to assist in the ex-
cision and replication bypass of PARP1-DNA complexes.18 Hence, 
SPRTN-deficient cells are hypersensitive to talazoparib and olapa-
rib but not to veliparib.18 The serine protease FAM111A, a PCNA-
interacting protein, also plays a vital role in mitigating the effects 
of protein obstacles on replication forks. FAM111A protects repli-
cation forks from stalling at PARP1-trapping lesions, thereby pro-
moting cell survival after PARPi treatment.19 Amplified in liver 
cancer 1 (ALC1), a chromatin-remodeling enzyme, can remove 
inactive PARP1 indirectly through binding to PARylated chroma-
tin.20 Consequently, ALC1 deficiency enhances PARP1 trapping, 
conferring PARPi sensitivity, while ALC1 overexpression reduces 
the sensitivity of BRCA-deficient cells to PARPis.20 Moreover, ALC1 
appears strictly required for PARP2 release, and catalytic inactiva-
tion of ALC1 quantitatively traps PARP2 but not PARP1, enhanc-
ing PARPi-induced cancer cell killing.21 Mass spectrometry–based 

https://discover.nci.nih.gov/cellminercdb/
https://discover.nci.nih.gov/cellminercdb/
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interactomes identified an interaction between trapped PARP1 and 
the ubiquitin-regulated p97 ATPase/segregase.22 Trapped PARP1 
has been shown to be SUMOylated by PIAS4 and subsequently 
ubiquitylated by the SUMO-targeted E3 ubiquitin ligase RNF4, 
promoting the recruitment of p97 and removal of trapped PARP1 
from chromatin (Figure  1).22 Notably, this pathway appears rather 
general as it is also involved in the repair of trapped TOP cleavage 
complexes.23 Thus, cells use redundant pathways to efficiently re-
move PARP-DNA complexes trapped by PARPis. Inhibitors for the 
resolving factors of trapped PARP are expected to synergize with 
the trapping-PARPis.

3  |  DIFFERENCES BET WEEN PARPIS 
AND CONVENTIONAL DNA-DAMAGING 
ANTIC ANCER DRUGS

PARPis generate lesions leading to replication-dependent DSBs with 
trapped PARP. In terms of expectation of replication-dependent cell 
death, platinum drugs and TOP inhibitors, which are conventional 
DNA-damaging anticancer agents, also have similar mechanisms 
of action in that they ultimately induce DSBs.24 Hence, HR genes 
are common critical repair factors for PARPis and DNA-damaging 
agents.

Here, we point out the differences between PARPis and the con-
ventional DNA-damaging agents that generate bulky DNA adducts. 
Platinum drugs covalently crosslink DNA. TOP inhibitors trap cova-
lent TOP1- and TOP2-DPC. Therefore, even if the drug concentra-
tion is reduced, DNA lesions, once generated, will not be restored 
unless they are repaired. In contrast, the PARP-DNA complex is not 
a covalent bond, so the trapped PARP can be quickly released from 
DNA when the concentration of PARPis becomes lower (Figure 2).8 
We previously showed that when the PARPi was removed from 
the cell culture medium, PARP-DNA complexes began to be re-
leased after 5 minutes and were wholly released after 30 minutes 
with the recovery of PARylation.8 Once trapped PARP is released, 
the remaining single-strand breaks can be rapidly repaired by the 

reactivated PARP regardless of HR status (Figure 2). However, if the 
PARP-DNA complex has already generated collisions with replica-
tion forks, DSBs with clean (ie, protein-unbound) DNA ends remain. 
The clean DSBs can be repaired in HR-proficient cells, while still 
highly toxic in HR-deficient cells, which is attributed to the original 
synthetic lethality model (Figure 2).

We assume that these points can partly explain the expected 
clinical benefit among PARPis for HR-deficient cancers, as well as 
the inconsistent clinical benefit among PARPis for HR-proficient 
cancers (Table  1). Niraparib is a unique PARPi in terms that it is 
approved for first-line maintenance in patients with advanced 
ovarian cancer after initial response to platinum-based chemo-
therapy, regardless of BRCA status.3 Although the study design 
is different, olaparib did not benefit HR-proficient cancers in the 
first-line maintenance setting in the PAOLA-1 study that com-
bined olaparib and bevacizumab (VEGF inhibitor).25 Veliparib was 
tested in combination with first-line chemotherapy (cisplatin and 
paclitaxel) and as maintenance therapy as a single agent in ovarian 
cancer in the VELIA study. The VELIA study revealed significant 
benefits of veliparib in BRCA mutated or HR-deficient (myChoice 
assay HRD score ≥ 33) cancers, but not in BRCA wild-type or non-
HRD cancers.26

According to our model, transient PARP trapping is toxic enough 
for HR-deficient cancers if sufficient levels of DSBs are generated 
by replication block (Figure 2). By contrast, maintaining PARP trap-
ping should be a key for anticancer acting in HR-proficient cancer 
cells (Figure 2). The long elimination half-life (time required for the 
blood concentration of a drug component to decrease by half) of 
niraparib (~36 h) and relatively high cell membrane permeability and 
volume of distribution27 possibly enable niraparib to maintain PARP 
trapping and be effective in HR-proficient cancers. On the other 
hand, the relatively short elimination half-life of olaparib (5-11 h) or 
veliparib (~6 h), which accounts for their twice-daily administration 
protocols (Table 1), may explain the lack of efficacy of these drugs in 
HR-proficient cancers. Talazoparib, which has an extended half-life 
(~58 hours) and most potent PARP-trapping power, is supposed to 
have the potency to benefit HR-proficient cancers. However, clinical 

F I G U R E  1  Schematic representation 
of the multiple pathways that resolve the 
PARP-DNA complex. A metalloprotease 
Spartan (SPRTN) or a PCNA-interacting 
serine protease FAM111A degrade 
trapped PARP1 (left). A chromatin-
remodeling enzyme ALC1 removes PARP1 
and/or PARP2. The model by Blessing et 
al. specifies that not PARP1 but PARP2 
is the target of ALC1-mediated PARP 
removal (middle). SUMOylation on PARP1 
by PIAS4 followed by ubiquitination on 
PARP1 by the E3 ligase RNF4 promotes 
the recruitment of segregase p97 (right)
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trials have been selectively performed in breast cancer patients with 
BRCA mutations, and the benefit of talazoparib in BRCA wild-type 
cancers has not been evaluated.28,29 In the setting of recurrent tu-
mors, olaparib, niraparib, and rucaparib benefit HR-proficient can-
cers to a significant extent but are less effective compared with 
HR-deficient cancers30 (Table 1).

The VELIA study examined the effect of veliparib in combination 
with first-line chemotherapy (cisplatin and paclitaxel) by comparing 
the combination-only and chemotherapy-only groups. The study re-
vealed little additional effect of veliparib combination.26 These re-
sults are interpretable because PARP is not a primary repair factor 
of the cisplatin-induced lesions (ie, PARP deficiency does not confer 
hypersensitivity to cisplatin treatment)31 and because veliparib is a 
relatively weak PARP trapper. It is assumed that the toxicity of cis-
platin and paclitaxel is dominant in the combination setting where 
PARP inhibition has little impact on the toxicity.

4  |  WHICH GENES CONTRIBUTE TO THE 
CROSS-SENSITIVIT Y BET WEEN PARPIS AND 
PL ATINUM DERIVATIVES?

Although some repair factors are uniquely crucial for platinum de-
rivatives or PARPis,10 the utility of platinum sensitivity as a clinical 
biomarker for PARPis implies that PARPis and platinum agents share 
similar sensitivity and resistance factors. The clinical outcomes are 
readily recapitulated across ~900 cell lines, revealing the extremely 
high sensitivity correlation between PARPis (talazoparib, olaparib, 
and veliparib) and cisplatin regardless of tumor types (Figure  3). 
Notably, the P value of each PARPi correlates with their PARP-
trapping potency (Figure 3 and Table 1), indicating that such com-
mon sensitivity factors are involved in the cellular responses to 
PARP-trapping lesions as well as DNA-crosslinking lesions. Because 
both lesions eventually induce replication-coupled DSBs repaired by 

F I G U R E  2  Schematic representation of repair pathways for PARP-trapping lesion following the removal of PARP inhibitors. Elimination of 
PARPi reactivates poly ADP-ribosylation (PARylation) and releases the noncovalently bound PARP from DNA. The remaining single-strand 
DNA breaks are repaired by the base excision repair (BER) pathway, while the remaining double-strand breaks (DSBs) after replication fork 
collision need homologous recombination (HR). “Clean” DSBs with the ends free of protein crosslinks sensitize HR-deficient cancers, while 
HR-proficient cancers can repair those “clean” DSBs. Persistent PARP trapping is toxic to HR-proficient cells but more to HR-deficient cells 
(reflected in the size of cartoons)

F I G U R E  3  Highly significant correlation of drug response in the Genomics of Drug Sensitivity in Cancer (GDSC) database between 
cisplatin and PARP inhibitors (talazoparib, olaparib, and veliparib). The data were obtained using the public resource CellMinerCDB17 (https://
disco​ver.nci.nih.gov/cellm​inerc​db/). Pearson's correlation (r), P value (p), number of the samples (n), and regression line (black line) are shown

https://discover.nci.nih.gov/cellminercdb/
https://discover.nci.nih.gov/cellminercdb/
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HR, such common factors are assumed to be HR-associated genes. 
A recent report revealed associations between genome-wide loss 
of heterozygosity (gLOH) and alternation of HR-associated genes 
in 160,790 tumors.32 Known/likely deleterious alterations in HR-
associated genes were found in 18.9% of cases. HR-associated 
genes include BRCA1, BRCA2, PALB2, BRAD1, ATR, ATRX, ATM, BAP1, 
RAD51B, RAD51C, RAD51D, BRIP1, NBN, CHEK1, CHEK2, FANCA, 
MRE11, and others. Hence, the ~20% of cases showing high sensitiv-
ity to both drugs can be explained by altered HR-associated gene 
mutations. However, it is important to point out that cancer cells can 
be sensitive to PARPis or cisplatin without such repair gene muta-
tions. In the NCI-60 cell lines, about 30 cell lines are susceptible to 
talazoparib, while the rest are resistant.33 According to the mutation 
analysis of repair genes,34 15 cell lines are sensitive to talazoparib 
without apparent DNA repair mutations in the list (data not shown). 
However, we may miss unlisted repair factors involved in the cross-
sensitivity. Hence, we need to find a way to identify the patients 
who do not carry HR gene mutations but are yet sensitive to PARPis 
and platinum agents.

5  |  SLFN11  IS  A COMMON SENSITIZER TO 
PL ATINUM DERIVATIVES AND PARPIS IN 
C ANCER MODEL S

We raise the issue of why each cell line dot in Figure 3 is along the re-
gression line but does not exhibit bipolar distribution. HR deficiency 
drastically sensitizes cancer cells to PARPis with orders of magni-
tude in IC50 values, possibly leading to bipolar distribution if the 
cross-sensitivity is majorly attributed to HR deficiency. The linear 
distribution implies the presence of determining factors controlled 
by expression level. One such factor is most likely SLFN11, a member 
of the SLFN family,35 with a DNA/RNA helicase domain and a nuclear 
localization signal. In 2012, using different cell line databases, two 
independent laboratories identified that SLFN11 expression is highly 

correlated with sensitivity of the TOP1 inhibitor topotecan.36,37 The 
high correlation also applies to cisplatin and DNA replication inhibi-
tors such as cytarabine.36 Although the initial actions are different, 
these drugs commonly induce replication blocks, activate S-phase 
checkpoint, and generate abnormal (stressed) replication forks. 
Replication stress38 activates the kinase ataxia telangiectasia and 
Rad3-related (ATR) that mediates S-phase checkpoint to support 
cell survival by reducing replication speed and transiently inhibiting 
origin firing. Our recent studies demonstrated that SLFN11 blocks 
the elongation of stressed replicons in parallel to ATR and induces 
cell death contrary to the effect of ATR.39 Recent studies have re-
vealed more actions for SLFN11, including tRNA cleavage leading 
to insufficient ATR synthesis,40–42 chromatin opening,43 degrada-
tion of the replication initiation factor CDT1,44 degradation of re-
versed replication forks45 and protection from proteotoxic stress.46 
These actions do not seem cell type–dependent but rather general 
activities of SLFN11 regardless of tissues of origin. While the mecha-
nisms of SLFN11-mediated cell killing are not fully understood, the 
importance of SLFN11 in drug sensitivity is validated in various 
settings47–50 (see recent reviews38,51). Patient data are also accu-
mulating with a broad type of cancers including breast cancer,50,52 
ovarian cancer,53 gastric cancer,54 bladder cancer,55 small cell lung 
cancer,56 esophageal cancer,57 and prostate cancer.58 Notably, most 
of these data have been obtained without considering the presence 
or absence of BRCA or HR deficiency. Thus, several independent 
clinical protocols are being initiated to validate whether SLFN11 
confers high sensitivity to DNA-damaging agents independently of 
HR status in cancer patients.

The correlation between SLFN11 expression and drug sensitiv-
ity is also applicable to PARPis. We previously showed that SLFN11 
expression is significantly correlated with sensitivity to talazoparib 
in the NCI-60.59 The significant correlation is also validated in the 
GDSC database for talazoparib, olaparib, and veliparib (Figure  4). 
Again, the P values were correlated with the PARP-trapping po-
tency. We showed that SLFN11 enhances sensitivity to olaparib 

F I G U R E  4  Highly significant correlation of drug response in the Genomics of Drug Sensitivity in Cancer (GDSC) database between 
SLFN11 expression and PARP inhibitors (talazoparib, olaparib, and veliparib). The data were obtained using the public resource 
CellMinerCDB17 (https://disco​ver.nci.nih.gov/cellm​inerc​db/). Pearson's correlation (r), P value (p), number of the samples (n), and regression 
line (black line) are shown

https://discover.nci.nih.gov/cellminercdb/
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and talazoparib using genetically modified isogenic cell lines and 
that SLFN11 and BRCA deficiency independently contribute to the 
PARPi sensitivity.59 Two independent groups revealed the relevance 
of SLFN11 for PARPi sensitivity in patient-derived xenograft (PDX) 
models.60,61 These facts make sense because PARP-DNA com-
plexes cause replication stress, activating SLFN11 toward cell death. 
Together, the observations and conclusions listed above explain why 
SLFN11 can be a primary common sensitivity factor for platinum 
drugs and PARPis.

6  |  DOES SLFN11 NEED B RC A  MUTATION 
TO ENHANCE OL APARIB SENSITIVIT Y IN 
THE CLINIC AL SET TING?

Recently, the group of AstraZeneca examined the effect of 
SLFN11 on olaparib sensitivity.56 They first showed that pa-
tients with high-SLFN11 tumors had significantly longer overall 
survival when treated with first-line platinum and etoposide in 
small cell lung cancer. Although the role of SLFN11 was uncer-
tain in their cohort of high-grade serous ovarian cancers treated 
with paclitaxel-platinum, they found that high levels of SLFN11 
were associated with improved clinical outcomes with olaparib 
treatment. Intriguingly, subgroup analyses revealed that only the 
patients with BRCA mutation benefited from the high SLFN11 ex-
pression under the olaparib treatment, which is inconsistent with 
the series of in vitro data where SLFN11 sensitizes cancer cells 
regardless of BRCA status. Yet, a timely report by Cong62 may pro-
vide an answer. Accordingly, BRCA-deficient cells harbor excess 
single-strand DNA gaps in response to sub-micromolar concentra-
tions of olaparib due to an Okazaki fragment–processing defect 
(Figure 5A). RPA protects the excess single-strand DNA gaps, but 

the exhaustion of RPA increases unprotected single-strand DNA, 
leading to genome instability63 (Figure 5A). Because SLFN11 is re-
cruited on chromatin via RPA binding, SLFN11 can enhance cell 
death in BRCA-deficient cancer at the sub-micromolar olaparib 
treatment condition (Figure 5A). HR-proficient cells should be in-
tact from SLFN11-mediated cell death without the DNA gaps and 
PARP trapping under the sub-micromolar concentration of olapa-
rib.8 This scenario may explain the clinical outcome with olapa-
rib being more effective in BRCA mutant and high-SLFN11 cells 
and may provide a “hyper synthetic lethal strategy” (Figure  5A). 
As SLFN11 induces cell death under replication stress, niraparib 
and talazoparib that can maintain PARP trapping possibly activate 
SLFN11 also in BRCA-proficient cancers (Figure  5B). Hence, re-
sults of the analyses of clinical data of niraparib and talazoparib 
are warranted.

7  |  CONCLUSION

Eight years have passed since olaparib was first approved as a clini-
cally available PARPi, followed by other PARPis. Once the clinical in-
dications are set, the mechanisms of action are usually not discussed 
anymore. However, the variety of clinical outcomes from different 
PARPis give us chances to reconsider the therapeutically relevant 
molecular mechanisms of action of PARPis in cancer patients and 
reconnect them to the basic research.
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F I G U R E  5  Schematic representation to interpret the better clinical outcomes of olaparib in SLFN11-positive and BRCA-deficient cancers 
than in SLFN11-negative and BRCA-deficient ones. (A) BRCA-deficient cells harbor replication gaps (single-strand DNA gap) under the 
treatment of sub-micromolar concentration of olaparib. The single-strand binding protein replication protein A (RPA) protects the replication 
gaps, but exhaustion of RPA results in genome instability, leading to synthetic lethality62 (left). In SLFN11-positive cells, SLFN11 likely binds 
the DNA-bound RPA, possibly leading to SLFN11-mediated cell death named “hyper synthetic lethal.” (right, the smaller cartoon indicates 
more shrunk cancer). Note that the sub-micromolar concentration of olaparib is not supposed to generate a PARP-DNA complex based on 
our previous report but is enough to inhibit the catalytic activity of PARP.8 (B) Continuous PARP trapping is likely a key for the sensitivity 
of SLFN11-positive cancer cells to PARP trappers. Continuous PARP trapping induces replication stress that activates SLFN11 toward cell 
death
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