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Nanoparticles (NPs) are widely used in a variety of fields, including those related to

consumer products, architecture, energy, and biomedicine. Once they enter the human

body, NPs contact proteins in the blood and interact with cells in organs, which

may induce cytotoxicity. Among the various factors of NP surface chemistry, surface

charges, hydrophobicity levels and combinatorial decorations are found to play key

roles inregulating typical cytotoxicity-related bioeffects, including protein binding, cellular

uptake, oxidative stress, autophagy, inflammation, and apoptosis. In this review, we

summarize the recent progress made in directing the levels and molecular pathways

of these cytotoxicity-related effects by the purposeful design of NP surface charge,

hydrophobicity, and combinatorial decorations.
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INTRODUCTION

Due to their unique physicochemical properties, nanoparticles (NPs) with various compositions
(metals, metal oxides, semiconductors, and organic molecules) are widely used in various materials,
including those in the consumer product, architecture, energy, and biomedicine fields (De Volder
et al., 2013; Peng et al., 2014; Lane et al., 2015; Chen et al., 2016). NPs may enter the human
body through oral administration, implantation, intravenous injection, transdermal absorption,
etc., eliciting public concerns about the adverse effects of NPs (Zhang et al., 2014). Once entering the
human blood circulation system, NPs spontaneously adsorb proteins, which reduce their surface
free energy (Cedervall et al., 2007; Lundqvist et al., 2008; Monopoli et al., 2012; Su et al., 2016).
Moreover, NPs can interact with the cell membrane (Lin et al., 2010; Jing and Zhu, 2011; Lesniak
et al., 2013), lipids (Leroueil et al., 2008), proteins (Mahmoudi et al., 2011), and DNA (Asharani
et al., 2009; Xie J. et al., 2019), eliciting various bioeffects, such as the disruption of the cell
membrane, oxidative stress, apoptosis, inflammation, and autophagy, which may ultimately lead
to cytotoxicity. Elucidation of NP-induced cytotoxicity is crucial for human health.

Interactions between NPs and biosystems are critically determined by surface chemistry. Surface
modification of NPs may be made during the synthesis process or environmental exposure
(Bystrzejewska-Piotrowska et al., 2009; Wang et al., 2013). For example, charged ligands such as
cetyl trimethyl ammonium bromide (CTAB) and citrate acid are frequently used as protective
agents in NP synthesis processes (Nikoobakht and El-Sayed, 2003; Lim et al., 2009). Surface
decorations can regulate the physicochemical properties of NPs to ultimately affect their various
biological effects. For example, a decoration comprising positively charged and hydrophobic
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ligands on NPs can enhance the cellular uptake level (Su et al.,
2012; Li et al., 2015a). A decoration consisting of poly(ethylene
glycol) (PEG) can reduce protein binding in the blood and avoid
recognition by the reticular endothelial system (RES) (Zhang
T. et al., 2019). Moreover, surface chemistry is one of the key
factors that can trigger adverse effects in biosystems. The role of
surface functionality in determining nanobiological interactions
has been well reviewed in some excellent recent literature (Verma
and Stellacci, 2010; Albanese et al., 2012; Kim et al., 2013; Nam
et al., 2013; Zhu et al., 2013). To establish a distinct relationship
between the surface chemistry of NPs and cytotoxicity, in
this review, we systematically summarize our research and
that of others on the latest progress in understanding the
impact of typical surface chemistry, including surface charge,
hydrophobicity, and combinatorial decorations, on various
cytotoxicity-related bioeffects, including protein binding, cellular
uptake, oxidative stress, autophagy, inflammation, and apoptosis.
The surface chemistry driver of bioeffect levels and molecular
pathways is discussed in detail. These findings may be used to
predict adverse cellular responses of NPs and guide the design
of environmentally safe NPs, including medical NPs that could
potentially be used in the treatment of diseases.

PROTEIN BINDING

NPs can enter the human body through multiple pathways and
be distributed to different organs through circulating blood. In
blood, NPs progressively and selectively adsorb proteins and
form protein coronas that reduce their surface free energy.
According to binding strength and relative position, a protein
corona can be divided into a hard part and a soft part. The
hard corona binds to the surface of the NP tightly, where
it forms a near-monolayer. The soft corona is formed over
top of the hard corona, and the interactions between the soft
corona and NPs are weak (Monopoli et al., 2012). The protein
corona on NPs can be analyzed by atomic force microscope
images, fluorescence spectroscopy, circular dichroism, sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE),
and mass spectrometry (Cedervall et al., 2007; Ge et al., 2011).

The formation of protein corona can result in undesired
cellular uptake, nanoparticle aggregation, or immune responses
(Karmali and Simberg, 2011). However, it can also alleviate
cytotoxicity. For example, in THP-1 and human umbilical
vein endothelial cells (HUVECs), the adsorption of bovine
fibrinogen, bovine serum albumin (BSA), transferrin, or gamma
globulin formed compact layers onNPs’ surface, which effectively
shield cells from the exposure of NPs’ surfaces and alleviate
the cytotoxicity induced by single-walled carbon nanotubes
(SWCNTs) (Ge et al., 2011). In another study, serum protein
adsorption significantly reduced the cytotoxicity of graphene
oxide (GO) in A549 cells (Hu et al., 2011). In addition, protein
binding can drastically alter the physicochemical properties of
NPs and affect their behavior in vivo (Albanese et al., 2012).

In this section, we summarize recently published literatures
related to the regulation of protein binding by NPs’ surface
charge, hydrophobicity, and combinatorial surface modifications

(Table 1), which are generally considered as important factors
that characterize NPs’ surface coating.

Surface Charge
Compared to neutral NPs, charged NPs tend to adsorb
more proteins from serum. For example, poly(N-(2-
aminoethyl)acrylamide) and poly(acrylic acid)-decorated
gold nanoparticles (GNPs, 5–20 nm), which exhibit positive and
negative charge, respectively, adsorbed large amounts of plasma
proteins; however, relatively few proteins adsorbed onto neutrally
charged poly(N-(2,3-dihydroxypropyl)acrylamide)-GNPs
(Deng et al., 2012).

Regarding charged NPs, positive and negative charges exhibit
different protein binding capacities. For example, silica NPs
(50 nm) decorated with amine or carboxyl groups exhibited
different protein binding levels, with the negatively charged silica
NPs adsorbing more proteins from human serum than were
adsorbed by their positively charged counterparts (Kurtz-Chalot
et al., 2017). In another study, it was also found that polystyrene
(PS) NPs (140 nm) decorated with carboxyl or amine group
exhibited different binding capacities to human serum protein.
The total number of corona proteins on carboxyl-decorated PS
NPs was higher than the number on their amine-decorated
counterparts (Kokkinopoulou et al., 2017). The surface charge
of silica NPs (100 nm) affected the recruitment of transforming
growth factor (TGF)-β1 to the NP surface. Positively charged
aminated- and polyetherimide (PEI)-silica NPs completely
failed to adsorb TGF-β1 in a mouse lung tissue homogenate
supernatant, while negatively charged hydrogenated, dextran-
silica, and gelatin-silica NPs largely adsorbed TGF-β1 (Wang
et al., 2017). The surface charge of nanodiamonds (5 nm) could
regulate protein binding speed. The adsorption rate of BSA on
negatively charged nanodiamonds is higher than the rate on
positively charged counterparts (Aramesh et al., 2015). Therefore,
negatively charged NPs are more liable to adsorb proteins
compared to positively charged NPs.

For NPs with a negative charge, the protein binding could
also be tuned by other factors, including charge densities and
ligand species. For example, libraries of silica NPs (170 ±

20 nm) with continuously changing surface charge densities
were synthesized by tuning the surface density of negatively
charged succinic anhydride ligand. The overall amounts of serum
protein, BSA, and apolipoprotein 1 adsorbed onto silica NPs
decreased with the increase in negative charge density (Beck
et al., 2017). Both sulfonated and carboxylated PS NPs (50 nm)
have negatively charged surfaces. Although the composition of
the protein corona isolated from these PS NPs was the same,
some proteins, including A2M, AFP, APOA2, APOH, and HBB
were significantly less adsorbed onto the sulfonated PS NPs
(Abdelkhaliq et al., 2018). In another study, it was found that
negatively charged poly(methacrylic acid)-decorated iron oxide
NPs (10 nm) tended to adsorb more proteins from fetal bovine
serum (FBS) than were adsorbed by citric acid-decorated iron
oxide NPs (Mekseriwattana et al., 2019).

In addition to protein levels, surface charge could also
define the protein species adsorbed onto NPs. For example,
more total and complement protein species were adsorbed on
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TABLE 1 | Protein binding regulated by NPs’ surface chemistry.

Composition Size Surface chemistry/Zeta potential/LogP Protein binding capacity References

Gold 5–20 nm Poly(N-(2-aminoethyl) acrylamide) (PAEA, 46–

57mV),

poly(acrylic acid) (PAA, −25 to −60mV),

poly(N-(2,3-dihydroxypropyl)acrylamide)

(PDHA, slightly negatively charged)

PAEA>PAA>PDHA Deng et al., 2012

Gold 17 nm Methoxy-PEG-alkyl-thiol, methoxy-PEG-thiol Methoxy-PEG-thiol>methoxy-

PEG-alkyl-thiol

Larson et al., 2012

Gold 14–22 nm Mercaptosuccinic acid, N-4-thiobutyroil

glucosamine, PEG5000 and alkyl-PEG600

(Mercaptosuccinic acid and

N-4-thiobutyroil

glucosamine)>(PEG5000 and

alkyl-PEG600 )

Silvestri et al., 2017

Gold 5 nm PEG, citric-, phosphine-,

poly(isobutylene-alt-maleic anhydride)

[Citric-, phosphine-,

poly(isobutylene-alt-maleic

anhydride)]>PEG

Johnston et al.,

2017

Gold 13 nm PEG (−13.5mV), tannic acid (−28.1mV) Tannic acid>PEG Braun et al., 2016

Gold 15, 30, 60, 90 nm PEG (5 kDa) Negatively correlated with

PEG density

Walkey et al., 2012

Gold 45 nm PEG (2, 5, 10, 20 kDa), −5.4mV to −25.4mV Positively correlated with PEG

chain length

Su et al., 2018

Silver 30 nm PEG (−16.2mV), citrate (−22.9mV),

polyvinylpyrrolidone (−22.1mV)

(Citrate,

polyvinylpyrrolidone)>PEG

Pang et al., 2016

Silica 50 nm COOH (−42mV), NH2 (25mV) COOH>NH2 Kurtz-Chalot et al.,

2017

Silica 100 nm Hydration (−34.63mV), dextran (−17.54mV),

gelatin (−23.52mV), amination (14.91mV), PEI

(15.84mV),

(Hydration, dextran,

gelatin)>(amination, PEI)

Wang et al., 2017

Silica 170 nm Succinic anhydride (−5mV to −40mV) Decreased with the increase

in negative charge density

Beck et al., 2017

Iron oxide 10 nm Methacrylic acid, citric acid Methacrylic acid>citric acid Mekseriwattana

et al., 2019

Iron oxide 12 nm Glucose, PEG Glucose>PEG Stepien et al., 2018

ZnO 39nm PEG (10mV), bare (30mV) Bare>PEG Luo et al., 2014

SWCNTs Diameter: 6-8 nm COOH (hydrophilic, −23.27mV), CH3

(hydrophobic, 12.63mV)

COOH>CH3 Li et al., 2013

MWCNTs Diameter: 10–20 nm,

length: 5–15µm

Pristine (−14.97mV), PEG (−15.60mV) Pristine>PEG Zhang T. et al., 2019

Nanodiamonds 5 nm Hydrogen-terminated (49mV),

oxygen-terminated (−51mV)

Oxygen-terminated>

hydrogen-terminated

Aramesh et al., 2015

Polystyene 140 nm COOH (−7.21mV), NH2 (7.58mV) COOH>NH2 Kokkinopoulou

et al., 2017

Polystyrene 50 nm Sulfonated (−13.3mV), carboxylated

(−10.2mV)

Carboxylated>sulfonated Abdelkhaliq et al.,

2018

N-isopropylacrylamide-

co-N-tert-butylacrylamide

copolymer

70 nm NIPAM:BAM=85:15 (more hydrophilic), 65:35,

and 50:50 (more hydrophobic)

50:50>65:35>85:15 Cedervall et al.,

2007

positively charged silica NPs (50 nm) than were adsorbed on their
negatively charged counterparts (Kurtz-Chalot et al., 2017). In
another study, the protein binding of amine-functionalized and
bare PS NPs (100 nm) was compared. The proteins adsorbed
on the positively charged PS NPs were more hydrophobic than
those adsorbed on the bare PS NPs (Kendall et al., 2015).
For pristine, amine-modified and carboxyl-modified silica NPs
(22.4 ± 2.2 nm), the surface charge affects the adsorption of
the proteins species related to immune responses, transport,
regulation of proteolysis, hyaluronan metabolic processes, and

other functions (Mortensen et al., 2013). Citric acid, poly(acrylic
acid), and oleic acid decorations all endow iron oxide NPs with
a negative charge; however, the protein corona composition
and structure were influenced by these three kinds of surface
decoration (Jedlovszky-Hajdú et al., 2012).

Hydrophobicity
Cedervall et al. (2007) used a series of copolymer NPs to
investigate the impact of NP hydrophobicity on protein binding.
They found that the number of protein molecules adsorbed
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FIGURE 1 | The influence of PEG density on serum protein adsorption to gold nanoparticles. The top panel shows as-synthesized gold nanoparticles grafted with

PEG at increasing density. As PEG density increases, PEG volume decreases as a result of PEG–PEG steric interactions. The lower panel illustrates how PEG density

determines the amount and relative abundance of serum proteins adsorbed to the gold nanoparticle surface after serum exposure. Adapted with permission from

Walkey et al. (2012).

onto NPs increased with NP hydrophobicity. However, in
other papers, an opposite conclusion was drawn. For example,
hydrophilic COOH- and hydrophobic CH3-SWCNTs exhibited
different affinities for recombinant human bone morphogenetic
protein-2 (rhBMP-2). The amount of rhBMP-2 adsorbed onto the
COOH-SWCNTs was higher than the amount adsorbed onto the
CH3-SWCNTs (Li et al., 2013). In another study, incorporating
an alkyl linker between the PEG and thiol moieties enhanced the
hydrophobicity of the ligands, which resulted in a decrease in
protein binding onto GNPs (17 nm) (Larson et al., 2012).

Due to the presence of hydrophilic group, such as ether bond
in the middle of the polymer chain and hydroxyl at the end,
PEG modification on NPs could reduce surface hydrophobicity
(Kleemann et al., 2005; Sheng et al., 2009; Xiong et al., 2012;
Jiang et al., 2016). PEG decoration on GNPs and silver NPs
leads to lower protein binding compared to other decorations.
For example, compared to mercaptosuccinic acid and N-4-
thiobutyroil glucosamine, PEG5000 and alkyl-PEG600 decorations
on GNPs (14–22 nm) induced lower levels of protein adsorption
from FBS (Silvestri et al., 2017). In another comparative study,
PEG-GNPs (5 nm) were found to adsorb fewer proteins than
were adsorbed by citric-, phosphine-, or poly(isobutylene-alt-
maleic anhydride)-GNPs (Johnston et al., 2017). Moreover, PEG
decoration on GNPs (13 nm) was also found to bind fewer
proteins than were bound by the tannic acid decoration (Braun
et al., 2016). For silver NPs (30 nm), PEG decoration led to
lower adsorption of BSA than was adsorbed by citrate and
polyvinylpyrrolidone decorations (Pang et al., 2016).

The PEG density and length can tune protein binding on
GNPs. For GNPs of four different sizes (15, 30, 60, 90 nm), the
total serum protein adsorption was negatively correlated with
PEG density (Figure 1) (Walkey et al., 2012). Furthermore, as the
molecular weight of the PEG decoration increased from 2 to 20K,
the amount of adsorbed protein on the GNPs (45 nm) showed an
increasing trend (Su et al., 2018).

PEG decoration on other NPs can also reduce protein
adsorption. For example, PEG decorated ZnO NPs (39 ±

4 nm) exhibited a lower level of protein adsorption from FBS
compared to bare ZnO NPs (Luo et al., 2014). Compared to

NPs with glucose decoration, PEG-iron oxide NPs (12 nm)
bound fewer proteins (Stepien et al., 2018). PEG decoration
was also found to reduce the adsorption of BSA and IgG
compared to pristine multi-walled carbon nanotubes (MWCNTs,
with an average diameter of 10–20 nm and length of 5–15µm)
(Zhang T. et al., 2019).

Combinatorial Surface Modifications
Combinatorial chemistry could efficiently afford a vast number
of structurally related molecules and materials. The synthesis of
surface-modified nanoparticle libraries has been considered as a
powerful tool to modulate nanoparticle properties (Zhou et al.,
2008). Combining with both experimental and computational
methods, the NP libraries could be used to rapidly discover
nanoparticles with specific activity and reveal structure-activity
relationship at the same time (Gao et al., 2011; Zhou et al., 2011;
Wu et al., 2014; Liu Y. et al., 2015; Zhang et al., 2016).

For examples, Zhou et al. synthesized combinatorial libraries
of surface-modified MWCNTs and GNPs to investigate the
relationships between NP surface chemistry and their ability to
bind proteins. They found that surface chemistry could tune the
binding affinity of MWCNTs for four typical proteins, namely,
BSA, carbonic anhydrase, chymotrypsin, and hemoglobin and for
proteins in human plasma and a cell culture medium (Zhou et al.,
2008). Furthermore, chemical modifications on the MWCNT
surface could perturb the enzymatic activity of CYP3A4 in
human liver microsomes by binding to the protein and altering
its conformation. Based on a QSAR analysis, Zhang et al. found
that long and complex hydrophobic or aromatic side chains on
MWCNT surfaces were responsible for inducing the inhibitory
effects of f-MWCNTs on CYP3A4, while pharmacophores with
lower aromaticity and fewer tertiary nitrogen atoms were more
likely to generate safe MWCNTs (Zhang et al., 2016). Moreover,
Liu et al. also found that the surface chemistry of the GNPs
could dramatically affect both non-specific binding (away from
the peripheral site) and specific binding to acetylcholinesterase
(AChE), which resulted in the inhibition of the enzyme
(Liu Y. et al., 2015).
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CELLULAR UPTAKE

NPs can enter into cells through multiple pathways, including
macropinocytosis and clathrin-, and caveolae-dependent
endocytosis et al (Sahay et al., 2010). For macrophages,
phagocytosis is the predominant mechanism, while non-
professional phagocytes, including epithelial cells, fibroblasts,
and endothelial cells, may also undertake phagocytosis relatively
less frequently (Hillaireau and Couvreur, 2009). Multiple
endocytosis inhibitors could be used to distinguish the uptake
pathways, including cytochalasin D, methyl-β–cyclodextrin,
nocodazole, etc. (Saha et al., 2013). However, non-specificity
and cytotoxicity are inherent disadvantages of these inhibitors.
Therefore, multiple inhibitors for a certain pathway are usually
used simultaneously, and the dose is carefully chosen.

The cellular uptake level of NPs are usually determined by
inductively coupled plasma-mass spectrometry and transmission
electron microscopy (TEM) (Su et al., 2012; Saha et al., 2013;
Wu et al., 2014; Van Haute et al., 2018). For fluorescent NPs
and NPs decorated with fluorescent ligand, the uptake level
and subcellular localization can also be analyzed by fluorescence
microscope, laser scanning confocal microscopy, and flow
cytometry (Zhang et al., 2002; Mahmoud et al., 2010).

The cellular uptake of NPs is strongly associated with
various cytotoxicity-related bioeffects, including oxidative stress,
apoptosis, autophagy, and inflammation (Xia et al., 2008;
Foldbjerg et al., 2011; Stern et al., 2012; Sun et al., 2018). For
example, Xia et al found that ZnO NPs (13 nm) internalized
by RAW264.7 cells elicited oxidative stress, inflammation, and
cell death (Xia et al., 2008). In our previous study, cellular
uptake level of hydrophobic and positively charged GNPs (6 nm)
was positively correlated with oxidative stress level in A549
cells. Inhibition of GNPs’ internalization led to the decrease of
oxidative stress level, indicating that oxidative stress induced by
GNPs is internalization-dependent (Sun et al., 2018). Therefore,
for certain NPs, cellular uptake is positively correlated with
cytotoxicity. In this section, we summarize recently published
literatures related to the regulation of cellular uptake by
NPs’ surface charge, hydrophobicity, and combinatorial surface
modifications (Table 2).

Surface Charge
The surface charge of GNPs can tune the cellular uptake
level. In primary human dermal microvascular endothelial cells,
positively charged ethanediamine-decorated GNPs (18, 35, and
65 nm) were internalized to a greater extent than were neutral
or negatively charged GNPs (Freese et al., 2012). In another
study, the zeta potential of poly(diallyldimethyl ammonium
chloride) (PDDAC), CTAB, and polystyrene sulfonate (PSS)-
decorated gold nanorods (GNRs) (33 × 30 and 55 × 14 nm)
in aqueous solutions was found to decrease from ∼50 to
−40mV, and the cellular uptake level by these GNRs in MCF-
7 cells decreased with the decrease in zeta potential (Qiu et al.,
2010). Positively charged branched polyethyleneimine-decorated
GNPs (40, 80 nm) were more likely than negatively charged
lipoic acid-GNPs to be endocytosed by HUVECs (Chandran
et al., 2017). In monocytes and macrophages, positively charged

cysteamine-GNPs (10, 20, and 40 nm) were internalized at a
higher level than were negatively charged or zwitterionic GNPs
(Oh and Park, 2014). More GNPs (15 and 45 nm) decorated with
positively charged poly(allyamine hydrochloride) than neutral
GNPs were internalized in SK-BR-3 breast cancer cells (Cho
et al., 2010). More cationic poly(allylamine hydrochloride)-
coated GNPs (20 nm) than anionic GNPs underwent endocytosis
in human dermal fibroblast cells (Yang et al., 2014). A
library of GNPs (6 nm) with continuously changing positive
charge/negative charge density was constructed by varying the
ratio of positively/negatively charged ligands to neutrally charged
ligands. In HeLa, HEK293, and A549 cells, Su et al. (2012)and
Sun et al. (2018) found that the level of GNP endocytosis was
positively correlated with a positive charge density, while negative
charge density had no significant influence on cellular uptake
(Figure 2). Therefore, in multiple immune and non-immune
cells, positively charged GNPs are more prone to endocytosis
than are neutral and negatively charged GNPs.

In addition to the cellular uptake level, the surface charge
can also tune the endocytosis pathway of GNPs. For example,
in HeLa cells, positively charged GNPs (2, 4, and 6 nm) were
endocytosed through multiple pathways, including the clathrin-
and caveolae/lipid raft-dependent pathways. Zwitterionic GNPs
(2 and 4 nm) were prone to entering cells through membrane
fusion, and zwitterionic GNPs (6 nm) were endocytosed through
the caveolae/lipid raft-mediated pathway. Negatively charged
GNPs (2 and 4 nm) displayed a similar endocytosis pathway
to that of positively charged GNPs, while negatively charged
GNPs (6 nm) were internalized through the caveolae/lipid raft-
mediated pathway (Figure 3) (Jiang et al., 2015). GNRs (aspect
ratio = 3) exhibited different endocytosis mechanisms in
HaCaT cells on the basis of their decoration with positively
or negatively charged ligands. Positively charged peptide-GNRs
were internalizedmainly throughmacropinocytosis and clathrin-
mediated endocytosis, while negatively charged COOH-GNRs
were endocytosed through macropinocytosis and caveolae-
related mechanisms (Untener et al., 2013).

The surface charge of oxide NPs can impact the level of
their cellular uptake. For example, positively charged NH2-TiO2

NRs (50–65 × 8 nm) were endocytosed by rat bone marrow
mesenchymal stem cells at a much higher level than were
negatively charged COOH-TiO2 NRs (Shrestha et al., 2016).
ZnO NPs (15 nm) decorated with both (1,2-dioleoyl-sn-glycero-
3-phosphocholine) (DOPC) and amine-propyl chains exhibited
a positive charge in water. However, DOPC-ZnO NPs were
internalized at a significantly higher level than were NH2-ZnO
NPs in HeLa cells, a distinction that may be due to the difference
in positive charge (Dumontel et al., 2017). Moreover, the uptake
level that is affected by surface charge may vary with cell type.
For example, positively charged silica NPs (20, 30, 50, 80 nm) are
more likely to be endocytosed than their pristine or negatively
charged counterparts in A549 cells (Ojea-Jiménez et al., 2016);
however, in RAW264.7 cells, 50 nm silica NPs with either a
positive or a negative charge exhibited similar uptake levels
(Kurtz-Chalot et al., 2017). In HepG2 cells, the cellular uptake
of positively charged 3-aminopropyltrimethoxysilane (APTES)-
ZnONPs (10–30 nm) was greater than the uptake of pristine ZnO
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TABLE 2 | Cellular uptake regulated by NPs’ surface chemistry.

Composition Size Surface chemistry/Zeta

potential/LogP

Cell line Cellular uptake level References

Gold 18, 35, 65 nm Ethanediamine, glucosamine,

hydroxypropylamine, taurine, linear

PEG

Primary human dermal

microvascular endothelial

cells

Ethanediamine>the rest

decorations

Freese et al., 2012

Gold 33 × 30 nm, 55

× 14 nm

Poly(diallyldimethyl ammonium

chloride) (50mV), CTAB (40mV),

polystyrene sulfonate (−40mV)

MCF-7 Poly(diallyldimethyl

ammonium

chloride)>CTAB>polystyrene

sulfonate

Qiu et al., 2010

Gold 40, 80 nm Polyethyleneimine (63.1mV), lipoic

acid (−73.3mV)

HUVECs Polyethyleneimine>lipoic

acid

Chandran et al.,

2017

Gold 10, 20, 40 nm Cysteamine (26.33 to 47.12mV),

citrate (-29.28 to −38.4mV), cysteine

(0.13 to −0.92mV)

Monocytes and

macrophages

Cysteamine>(citrate,

cysteine)

Oh and Park, 2014

Gold 15, 45 nm Poly(allyamine hydrochloride) (20.9,

30.1mV), PEG (−2.1, −1.0mV)

SK-BR-3 breast cancer

cells

Poly(allyamine

hydrochloride)>PEG

Cho et al., 2010

Gold 20 nm Poly(allylamine hydrochloride) (PAH,

16.6mV), 1-palmitoyl-2-oleoyl-sn-

glycero-3-phospho-L-serine/1-

palmitoyl-2-hydroxy-sn-glycero-3-

phosphocholine (L-PAH 48.7mV, HL

−51.9mV)

Human dermal fibroblast

cells

PAH>(L-PAH, HL) Yang et al., 2014

Gold 6 nm Lipoic acid and derivatives (−40mV

to 60mV)

HeLa, HEK293, and A549 Positively correlated with

positive charge density

Su et al., 2012; Sun

et al., 2018

Gold 6 nm Derivatives of lipoic acid (zeta

potential: −5mV to −20mV, LogP:

−2.7 to 2.4)

HEK293, A549, THP-1 Hydrophobic

GNP>hydrophilic GNP

Li et al., 2015a; Sun

et al., 2018

TiO2 50–65 × 8 nm NH2 (35.2mV), COOH (-20.9mV) Rat bone marrow

mesenchymal stem cells

NH2 >COOH Shrestha et al., 2016

TiO2 300 nm PEG, pristine A549, H1299 Pristine>PEG Tedja et al., 2012

TiO2 length:

50–65 nm,

width: 8 nm

PEG (−25.8mV), NH2 (35.2mV),

COOH (−20.9mV)

Rat bone marrow

mesenchymal stem cells

(NH2, COOH)>PEG Shrestha et al., 2016

ZnO 15nm 1,2-dioleoyl-sn-glycero-3-

phosphocholine) (DOPC), NH2

HeLa DOPC>NH2 Dumontel et al.,

2017

ZnO 10–30 nm 3- aminopropyltrimethoxysilane

(APTES), pristine

HepG2 3-

aminopropyltrimethoxysilane

(APTES)>pristine

Bartczak et al., 2015

ZnO 39nm APTES (40mV), pristine (30mV) THP-1 and differentiated

THP-1 cells

APTES=pristine Luo et al., 2014

ZnO 39nm PEG (10mV),

3-aminopropyltriethoxysilane (APTES,

40mV)

THP-1, differentiated

THP-1

APTES>PEG Luo et al., 2014

Silica 20, 30, 50,

80 nm

Amine, L-Ser, pristine A549 Amine>(L-Ser, pristine) Ojea-Jiménez et al.,

2016

Silica 50 nm NH2 (25mV), COOH (−42mV) RAW264.7 NH2 =COOH Kurtz-Chalot et al.,

2017

Silica 50 nm PEG (−29mV), COOH (−42mV),

NH2 (25mV)

RAW264.7 (COOH, NH2)>PEG Kurtz-Chalot et al.,

2017

Iron oxide 20 nm PEG (−29.74mV) HUVECs, macrophages Inhibited cellular uptake Orlando et al., 2015

Iron oxide 150 nm Carboxymethyl dextran (CMX,

−11.6mV), PEG (−10.6mV)

Microglia, astrocytes,

oligodendrocyte precursor

cells, neural stem cells

CMX>PEG Jenkins et al., 2016

SWCNTs Length: 240 nm NH2 (52.8mV), COOH (−66.8mV) HeLa NH2 >COOH Budhathoki-Uprety

et al., 2017

MWCNTs Diameter:

10–20 nm,

length: 5–15µm

COOH (−31.93mV), pristine

(−14.97mV)

RAW264.7 COOH>pristine Zhang T. et al., 2019

(Continued)
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TABLE 2 | Continued

Composition Size Surface chemistry/Zeta

potential/LogP

Cell line Cellular uptake level References

MWCNTs Diameter:

10–20 nm,

length: 5–15µm

PEG (−15.6mV), pristine (−14.97mV) RAW264.7 Pristine>PEG Zhang T. et al., 2019

Cellulose 10–20 ×

120–300 nm

Rhodamine B isothiocyanate (RBITC,

8.7mV), FITC (−46.4mV)

HEK293 RBITC>FITC Mahmoud et al.,

2010

Polymer <100 nm Poly[2-(diisopropylamino)ethyl

methacrylate], PEO

Telo-RF Poly[2-

(diisopropylamino)ethyl

methacrylate]>PEO

De Castro et al.,

2018

PLGA 170nm PEI (40mV), BSA (−20mV) Human endothelial cells

(CRL-1730)

PEI>BSA Yu et al., 2012

Polystyrene 100 nm NH2 (56mV), COOH (−46mV) THP-1 NH2 =COOH Lunov et al., 2011

QDs 6 nm Lipoic acid (−15mV) and derivatives

(zwitterionic −5mV, cationic 20mV)

HeLa (Cationic,

anionic)>zwitterionic

Park et al., 2011

FIGURE 2 | Positive charge density could tune the cellular uptake level of GNPs in HeLa cells. Reproduced with permission from Su et al. (2012).

FIGURE 3 | Interplay of size and surface functionality on the cellular uptake

pathway of GNPs. Reproduced with permission from Jiang et al. (2015).

NPs (Bartczak et al., 2015). However, in THP-1 and differentiated
THP-1 cells, the cellular uptake of positively charged APTES-
ZnO NPs (39 nm) was similar to that of pristine ZnO NPs (Luo
et al., 2014).

In addition to the uptake level, the surface charge of oxide
NPs can also modulate the uptake pathway. For example, an
enhanced carboxyl group ratio on iron oxide NPs (33–45 nm)
led to an increase in the negative charge density. In CaCo-2 cells,
iron oxide NPs with a lower negative charge density were prone
to internalization through a macropinocytosis mechanism, while
iron oxide NPs with a higher negative charge density tended to be
endocytosed through clathrin- and caveolae-dependent pathways
(Ayala et al., 2013).

The surface charge can tune the cellular uptake level
and pathway of carbon-based NPs. Positively charged amine-
SWCNTs (mean length of 240 nm) were internalized at a higher
level than were negatively charged carboxy-SWCNTs (mean
length of 177 nm) in HeLa cells cultured in complete media.
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FIGURE 4 | (A) GNP library with a continuous change in hydrophobicity. (B) Hydrophobicity regulates the cellular uptake level of GNPs in macrophages. Adapted with

permission from Li et al. (2015a).

The absence of serum in the medium did not affect the uptake
of positively charged amine-SWCNTs; however, the absence of
serum significantly enhanced the internalization of negatively
charged carboxy-SWCNTs in HeLa cells (Budhathoki-Uprety
et al., 2017). In RAW264.7 cells, the cellular uptake of carboxyl-
MWCNTs (average diameter of 10–20 nm and length of 5–
15µm) was greater than that of pristine MWCNTs, and the BSA
and IgG corona could alleviate the internalization of the carboxy-
MWCNTs and enhance the uptake of the pristine MWCNTs
(Zhang T. et al., 2019). The internalization of carbon NPs
(CNPs) smaller than 50 nm was systematically investigated in
breast cancer cells in different stages (including the early and
late metastatic stages). The internalization levels of anionic and
neutral CNPs were higher than the level of cationic CNPs
as the cancer progressed from the early to late metastatic
stage, and the endocytosis pathway was also different for the
positively/negatively/neutrally charged CNPs in different cancer
stages (Srivastava et al., 2017).

For polymer NPs, the surface charge can also affect cellular
uptake. Cellulose nanocrystal (CNC) is a novel material
applied in regenerative medicine and drug delivery. CNCs
(10–20 × 120–300 nm) with a positive surface charge were
significantly endocytosed by HEK293 cells, while negatively
charged CNCs were not significantly internalized by these cells
(Mahmoud et al., 2010). NPs decorated with zwitterionic poly[2-
(diisopropylamino)ethyl methacrylate] ligands were internalized
at a higher level than their neutral counterparts (De Castro
et al., 2018). Poly(D,L-lactide-coglycolide) (PLGA) is widely used
in biomedical fields. The level to which human endothelial
cells (CRL-1730) internalized PLGA NPs (170 nm) coated
with positively charged PEI ligand was higher than the level
to which they internalized BSA-PLGA NPs. The endocytosis
mechanism was similar for both kinds of surface decorations,
with macropinocytosis and clathrin-mediated endocytosis being
the predominate mechanisms (Yu et al., 2012). The uptake level
of NH2-PS NPs (100 nm) and COOH-PS NPs (100 nm) by THP-
1 cells were similar, while COOH-PS NPs were more likely
to be endocytosed by macrophages than were NH2-PS NPs.
Moreover, the internalization mechanism was different for the

NH2-PS and COOH-PS NPs taken up bymacrophages compared
to mechanism by which they were internalized by THP-1 cells,
indicating that cell type should also be considered in determining
cellular uptake (Lunov et al., 2011).

The surface charges of quantum dots (QDs) can determine
the cellular uptake levels and pathways. Positively and negatively
chargedQDs could bemassively endocytosed byHeLa cells, while
QDs with zwitterionic surfaces were internalization to a lesser
extent. Moreover, positively charged QDs were endocytosed
by energy-dependent and energy-independent pathways, while
negatively charged QDs were only endocytosed by energy-
dependent pathways (Park et al., 2011). Cationic CdSe/ZnS
QDs (4–5 nm) induced clathrin-mediated endocytosis in HeLa
cells, while zwitterionic–lipophilic QDs mainly interacted with
lipid rafts in the cell membrane, which led to lipid raft-
mediated endocytosis (Chakraborty and Jana, 2015). In another
study, COOH-PEG-QDs were found to be internalized through
lipid raft- and SRA-mediated mechanisms in A549 cells, which
were associated with the activated NF-κB pathway, while NH2-
PEG-QDs were mainly internalized through lipid raft-mediated
endocytosis and activated p38 MAPK/AP-1 signaling cascades
(Zhang et al., 2013).

Hydrophobicity
The hydrophobicity of GNPs can tune the cellular uptake level.
By varying the ratio of hydrophobic ligands to hydrophilic
ligands on the NP surface, a GNP library (6 nm) with
continuously changing hydrophobicity was synthesized. In
HEK293, A549, and THP-1 cells, the cellular uptake levels were
found to be positively correlated with the hydrophobicity of the
GNPs (Figure 4) (Li et al., 2015a; Sun et al., 2018).

To improve the bioavailability of NPs, PEG has been
frequently used to modify the NP surfaces. PEG decorations
could enhance NP hydrophilicity, dispersibility, and inhibit
opsonization, thus significantly reducing the internalization of
various types of NPs. For example, PEG reduced the uptake
level of iron oxide NPs (∼20 nm) in HUVECs and macrophages,
and this PEG decoration-reduced uptake was more noticeable in
macrophages than it was in HUVECs (Orlando et al., 2015). In
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another study, PEG decoration on iron oxide NPs alleviated the
internalization inmultiple (immune and non-immune) brain cell
types, including microglia, astrocytes, oligodendrocyte precursor
cells, and neural stem cells (Jenkins et al., 2016). PEG decoration
on positively and negatively charged silica NPs (50 nm) reduced
the level of NP internalization into RAW264.7 cells (Kurtz-
Chalot et al., 2017). Few TiO2 NPs decorated with PEG-like
polymers were internalized into A549 and H1299 cells (Tedja
et al., 2012). In another study, PEG decorated TiO2 NRs (50–
65 nm in length and 8 nm in width) were internalized to a lesser
extent into rat bone marrow mesenchymal stem cells compared
to the internalized levels of NRs with NH2 or COOH decorations
(Shrestha et al., 2016). PEG decoration on ZnO NPs (39 nm)
reduced the internalization into THP-1 and differentiated THP-
1 cells compared to levels of NPs with APTES decoration
that were internalized (Luo et al., 2014). Regarding MWCNTs
(average diameter of 10–20 nm and length of 5–15µm), PEG
decoration reduced the number taken up by RAW264.7 cells
(Zhang T. et al., 2019).

Combinatorial Surface Modifications
The impact of surface chemistry on cellular uptake was
investigated based on a combinatorial MWCNT library. Gao
et al. found that modification of COOH-MWCNTs could redirect
them from binding to mannose receptors to binding to scavenger
receptors (Gao et al., 2011). In addition, the impact of surface
chemistry on folate targeting was investigated by Zhou et al.,
who used a dual-ligand GNP array to assess Hela, KB, and
HepG2 cells. The secondary ligand on GNPs may interact with
the receptors surrounding the folate receptors according to their
different intensities, resulting in a specific, unique level of cellular
uptake (Zhou et al., 2011).

OXIDATIVE STRESS

Reactive oxygen species (ROS), including O−

2 , OH
., and H2O2,

are the derivatives of oxygen in physiological environments. ROS
are generated mainly from mitochondria and NADPH oxidase
in cells. The electron leakage in the mitochondrial respiratory
chain is captured by oxygen, which leads to ROS generation
(Murphy, 2009). NADPH oxidase is found in both phagocytic
and non-phagocytic cells. Parts of the subunits are located on the
cell membrane, and the other parts are located in the cytoplasm
under quiescent conditions. Once activated, subunits in the
cytoplasm will translocate to the cell membrane, resulting in
the assembly of all the subunits (Bedard and Krause, 2007).
The overproduction of ROS leads to oxidative stress, which is
considered to be a main mechanism of nanotoxicity in recent
years (Nel et al., 2006).

Intracellular ROS and oxidative stress could be determined
by various methods. For example, fluorescent probes, including
dichlorodihydrofluorescein and its derivatives, dihydroethidium,

MitoSOX
TM

Red, etc., are the most convenient and widely used
methods (Xia et al., 2006; Karlsson et al., 2008; Passagne et al.,
2012). According to the hierarchical oxidative stress model,
ROS stimulate the production of antioxidases. Therefore, the

expression of an antioxidase, such as heme oxygenase-1, could
be used to detect oxidative stress (Nel et al., 2006; Yu et al., 2012).
Moreover, intracellular ROS induce a decrease in the GSH level
and GSH/GSSG ratio, which are also used as oxidative stress
markers (Piao et al., 2011; Nguyen et al., 2013). In this section, we
summarize recently published literatures related to the regulation
of oxidative stress by NPs’ surface chemistry (Table 3).

Surface Charge
To investigate the impact of surface charge on cellular oxidative
stress, we constructed two libraries of GNPs (6 nm) that exhibit
continuously changing in positive and negative charges. After
exposing GNPs to A549 andHEK293 cells, we found that positive
charge density was positively correlated with ROS level, while
negative charge density exhibited no impact on intracellular
ROS level. Studies on ROS-related mechanisms indicated that
the cellular uptake of positively charged GNPs induced cell
membrane depolarization and calcium channel opening and
ultimately stimulated mitochondria to generate intracellular
oxidative stress (Figure 5A) (Sun et al., 2018). In another study,
it was also found that positively charged PEI-GNRs (55.7 ×

13.2 nm) led to a decrease in intracellular GSH levels and
GSH/GSSG ratios in A549 cells, while negatively charged PSS-
GNRs exhibited no influence on GSH levels (Liu et al., 2016).

The surface charge of oxide NPs could also regulate the
cellular oxidative stress level. For example, positively charged
ZnO NPs (29 nm) induced the highest ROS level in WIL2-
NS human lymphoblastoid cells, followed by negatively charged
oleic acid and poly(methacrylic acid) decorated ZnO NPs
(Yin et al., 2010). In A549 cells and human skin fibroblasts
(HSFs), it was also determined that positively charged ZnO NPs
(98 nm) were more prone to inducing ROS and mitochondria
membrane depolarization than were their negatively charged
counterparts (Keleştemur et al., 2017). Iron oxide NPs decorated
with neutrally charged glucose ligands elicited higher ROS levels
in CT26 colorectal cancer cells than did their citrate-decorated
counterparts with a negative surface charge (Wydra et al., 2015).
In rat bone marrow mesenchymal stem cells, pristine and NH2-
TiO2 NRs (60 × 8 nm) induced ROS production, while COOH-
TiO2 NRs had no significant impact (Shrestha et al., 2016).
Therefore, it seems that the positively charged and neutral oxide
NPs described above are more likely to induce ROS than are
their negatively charged counterparts. However, in another study,
it was found that negatively charged silica NPs induced ROS
in RAW264.7 cells, while positively charged silica NPs had no
influence on ROS production (Liu T.-P. et al., 2015).

COOH-MWCNTs induced higher ROS levels than neutrally
charged MWCNTs induced in macrophages (Gao et al., 2011).
However, in HUVECs, both pristine and COOH-MWCNTs
elicited similar levels of ROS and decreased GSH levels (Long
et al., 2018). As to graphene, GO and COOH-graphene induced
similar amounts of ROS in HepG2 cells (Lammel et al., 2013).
In macrophages, a positively charged PEI decoration on
graphene led to the highest level of ROS, followed by a neutral
decoration (Luo et al., 2015). As to nanodiamonds, the impact of
surface charge on intracellular ROS level was also investigated.
For example, decoration of negatively charged ligands on
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TABLE 3 | Oxidative stress regulated by NPs’ surface chemistry.

Composition Size Surface chemistry/Zeta

potential/LogP

Cell line Oxidative stress level References

Gold 6 nm Lipoic acid and derivatives (−40mV

to 60mV)

HEK293, A549 Positively correlated with

positive charge density

Sun et al., 2018

Gold 55.7 × 13.2 nm PEI, poly sodium-p-styrene sulfonate

(PSS)

A549 PEI>PSS Liu et al., 2016

Gold 6 nm Derivatives of lipoic acid (zeta

potential: −5mV to −20mV, LogP:

−2.7 to 2.4)

HEK293, A549 Hydrophobic

GNP>hydrophilic GNP

Sun et al., 2018

Gold 2 nm Hydrophobic alkyl ends HeLa Positively correlated with

the length of alkyl

Chompoosor et al.,

2010

ZnO 29nm Pristine (4.49mV), oleic acid

(10.15mV), poly(methacrylic acid)

(-40.21mV)

WIL2-NS human 364

lymphoblastoid cells

Pristine>[oleic acid,

poly(methacrylic acid)]

Yin et al., 2010

ZnO 98nm 3-Aminopropyl triethoxysilane

(APTES, 11.1mV), pristine (-30.4mV)

A549, human skin

fibroblasts (HSFs)

APTES>pristine Keleştemur et al.,

2017

Iron oxide 70 nm Glucose, citric acid CT26 colorectal cancer

cells

Glucose>citric acid Wydra et al., 2015

TiO2 60 × 80 nm Pristine (21.4mV), NH2 (35.2mV),

COOH (-20.9mV)

Rat bone marrow

mesenchymal stem cells

(Pristine, NH2)>COOH Shrestha et al., 2016

Silica 45 nm 3-trihydroxysilyl)propylmethyl-

phosphonate (THPMP, −52mV),

N-Trimethoxysilylpropyl-N,N,N-

trimethylammonium chloride (TMAC,

38.9mV)

RAW264.7 THPMP>TMAC Liu T.-P. et al., 2015

Silica 50 nm Hydrophobic linker/ hydrophilic linker

(-1.53mV to −13.6mV)

RAW264.7 Hydrophobic

linker>hydrophilic linker

Chen et al., 2017

MWCNTs N.A. COOH, neutral ligand Macrophage COOH>neutral ligand Gao et al., 2011

MWCNTs Diameter:

20–30 nm

COOH, pristine HUVECs COOH=pristine Long et al., 2018

Graphene <50 nm Graphene oxide (−8.3mV), carboxyl

grapheme (−55.1mV)

HepG2 Graphene oxide=carboxyl

grapheme

Lammel et al., 2013

Graphene 200 nm PEI (40.4mV), pristine (−7.36mV) macrophage PEI>pristine Luo et al., 2015

Nanodiamonds 5 nm OH (−12.2mV), pristine (1mV) A549 OH=pristine Solarska-Sciuk

et al., 2014

Nanodiamonds 6–7 nm NH3
+ (0.3mV), COOH (−37.3mV) Rat bone mesenchymal

stem cells

NH3
+ >COOH Zhang Y. et al., 2019

Nanodiamonds 50–60 nm COOH (−25mV), PVP (−15mV), OH

(−10mV), imidazolium (IM, 10mV),

tertiary methyl ammonium ethyl

methacrylate cation (TMAEA, 20mV)

HeLa IM>TMAEA>COOH, PVP,

OH)

Vankayala et al.,

2014

Polystyrene 50 nm NH2 (43mV), COOH (−46.7mV),

pristine (−50.5mV)

Human alveolar epithelial

type I-like cells (TT1),

primary human alveolar

macrophages, primary

human alveolar type 2

(AT2) cells

NH2 >(COOH, pristine) for

the first two cell lines.

NH2 =COOH= pristine for

the last cell line

Ruenraroengsak

and Tetley, 2015

Polystyrene 60 nm NH2 (40.3mV), COOH (−27.6mV) RAW264.7 NH2 >COOH Xia et al., 2006

N.A., not available.

nanodiamonds (10 nm) could not enhance the ROS level in
A549 cells (Solarska-Sciuk et al., 2014). However, in another
paper, it was found that both positively and negatively charged
nanodiamonds (6–7 nm) could elicit ROS production in rat bone
mesenchymal stem cells, and the former induced higher ROS
level than the latter (Zhang Y. et al., 2019). Moreover, Vankayala
et al. also found that positively charged nanodiamonds (50–
60 nm) induced higher ROS level than negatively charged,

zwitterionic, and neutral nanodiamonds in HeLa cells
(Vankayala et al., 2014).

Unmodified PS NPs and PS NPs with amine and carboxyl
groups (50 nm) could regulate ROS levels in different cell lines.
In human alveolar epithelial type I-like cells (TT1) and primary
human alveolar macrophages, amine-PS NPs induced the highest
ROS level, followed by unmodified and carboxyl-PS NPs. In
primary human alveolar type 2 (AT2) cells, however, these three
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FIGURE 5 | (A) Positively charged GNPs induce cell membrane depolarization and calcium channel opening, and stimulate mitochondria to generate intracellular

oxidative stress. (B) Hydrophobic GNPs induce oxidative stress by perturbing NADPH oxidase. Adapted with permission from Sun et al. (2018).

kinds of decorations elicited similar levels of intracellular ROS
(Ruenraroengsak and Tetley, 2015). In another study, it was
found that amine-PS NPs (60 nm) elicited mitochondrial ROS
production, while carboxyl-PS NPs with the same size had no
impact on intracellular ROS levels (Xia et al., 2006).

Hydrophobicity
By varying the ratio of hydrophobic/hydrophilic ligands on the
GNP surface, we synthesized a GNP library in which the NPs had
continuously changing hydrophobicity. In A549 and HEK293
cells, GNP hydrophobicity was positively correlated with ROS
level. Moreover, hydrophobic GNPs were found to elicit the
translocation of P47phox subunits to the cell membrane, leading
to NADPH oxidase-dependent oxidative stress (Figure 5B) (Sun
et al., 2018). In other studies, hydrophobic decorations on NPs
were also more likely to elicit ROS production. For example,
the length of hydrophobic alkyl ends on positively charged
ligands was positively correlated with the ROS level induced
by the GNPs (2 nm) in HeLa cells (Chompoosor et al., 2010).
A hydrophobic linker decorated on silica NPs (50 nm) induced
higher ROS production than did a hydrophilic linker decoration
(Chen et al., 2017).

AUTOPHAGY

Autophagy is a self-eating process that leads to the degradation
of dysfunctional cellular components. Autophagy can be divided
into three categories: macroautophagy, microautophagy, and
chaperone-mediated autophagy (Levine and Kroemer, 2008;
Mizushima et al., 2008). Various approaches can be used to
determine autophagy the cell undergoes. For example, TEM can
reveal the morphology of autophagic structures (Yu et al., 2014).
The conversion of LC3-I to LC3-II is a biomarker of autophagy
and is usually determined by Western blotting. Moreover, green
fluorescent protein (GFP)-LC3 transfected cell lines can be

used for high-throughput screening of autophagy (Wu et al.,
2014). A high level of autophagy induced by NPs may lead
to autophagy-related cell death or cytotoxicity (Chen et al.,
2005; Liu et al., 2011). In this section, we summarize recently
published literatures related to the regulation of autophagy by
NPs’ surface charge, hydrophobicity, and combinatorial surface
modifications (Table 4).

Surface Charge
Positively charged CTAB-GNRs could induce ROS and the
transformation of LC3-I to LC3-II in HCT116 cells. However,
negatively charged PSS decoration did not significantly induce
autophagy (Wan et al., 2015). In another study, it was also found
that CTAB-GNRs (55 × 14 nm) could induce autophagy, as
evidenced by LC3-II conversion and p62 degradation, in A549
and MRC-5 cells. Moreover, the autophagy pathway stimulated
by CTAB-GNRs is AKT-mTOR dependent. However, PSS and
PDDAC decorations negligibly induced autophagy (Figure 6)
(Li et al., 2015b). In addition to GNRs, the surface charge of
carbon-based NPs can also tune autophagy levels and stimulate
the related pathways. In A549 cells, NH2-graphene quantum
dots (GQDs) induced cellular autophagy as evidenced by LC3
fluorescence tracking, LC3-II conversion, and autophagosome
accumulation, while COOH-GQDs had no impact of autophagy
(Xie Y. et al., 2019). In another study, the autophagy level induced
by GO-decorated NPs with neutrally charged ligands was slightly
higher than that of the negatively charged decorated NPs in
RAW264.7 cells (Park et al., 2015). Therefore, it seems that
positively and neutrally charged NPs are more likely to induce
autophagy than are negatively charged NPs.

Hydrophobicity
Hexane decoration on positively charged GNPs (10 nm) could
elicit autophagy in HUVECs, and the number of hydrophobic
hexanes in the ligand was positively correlated with the
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TABLE 4 | Autophagy regulated by NPs’ surface chemistry.

Composition Size Surface chemistry/Zeta

potential/LogP

Cell line Autophagy level References

Gold N.A. CTAB (40mV), polystyrene sulfonate

(PSS, −60mV)

HCT116 CTAB>PSS Wan et al., 2015

Gold 55 × 14 nm CTAB, PSS, poly

(diallyldimethylammonium chloride)

(PDDAC)

A549, MRC-5 CTAB>(PSS, PDDAC) Li et al., 2015b

Gold 10 nm Hexane HUVECs Enhanced autophagy level Manshian et al.,

2014

ZnO 100, 130 nm Triethoxycaprylylsilane (hydrophobic,

−16.67mV), pristine (−19.53mV)

A549-macrophage

co-culture

Triethoxycaprylylsilane<pristine Liu et al., 2019

Graphene 3.5–5 nm NH2, COOH A549 NH2 >COOH Xie Y. et al., 2019

Graphene N.A. Dodecylamine, sodiumdodecyl sulfate RAW264.7 Dodecylamine>sodiumdodecyl

sulfate

Park et al., 2015

SWCNTs N.A. COOH, PEG A549 COOH>PEG Liu et al., 2011

N.A., not available.

autophagy level (Manshian et al., 2014). However, hydrophobic
ZnO NPs (130 nm) elicited lower expression of ATG7 gene than
pristine ZnO NPs (100 nm) in A549-macrophage co-culture (Liu
et al., 2019). COOH decorated SWCNTs induce autophagy-
related cell death in A549 cells, while PEG decoration on
SWCNTs could significantly reduce the autophagy level (Liu
et al., 2011).

Combinatorial Surface Modifications
We found that the surface modification on MWCNTs could tune
autophagy in U87 andHEK293 cells. A total of 84 kinds of surface
modification on MWCNTs could tune cell autophagy to various
levels. Moreover, MWCNTs with diverse decorations could bind
to different cell surface receptors and subsequently induced
autophagy by activating diverse intracellular signaling pathways,
including mTOR-dependent or -independent pathways (Wu
et al., 2014).

INFLAMMATION

NP-induced bioeffects, including the induction of intracellular
oxidative stress and the activation of receptors on cell
membranes, may subsequently lead to the activation of the
MAPK and NF-κB pathways, which results in the release of
inflammation-related cytokines. A high level of inflammation
could elicit cytotoxicity (Xia et al., 2006; Gao et al., 2011).
In this section, we summarize recently published literatures
related to the regulation of inflammation by NPs’ surface
charge, hydrophobicity, and combinatorial surface modifications
(Table 5).

Surface Charge
GNRs (50 × 15 nm) decorated with PEG-NH2, PEG-OH, or
PEG-COOH were exposed to primary human blood phagocytes,
and the release of proinflammatory cytokines was measured.
PEG-COOH and PEG-OH could enhance the production of IL-
1β and CCL2, while PEG-NH2 did not affect the production
of IL-1β or CCL2. PEG-COOH could enhance the production

of IL-6, and the remaining decorations exerted no influence
on IL-6 production (Bartneck et al., 2010). In RAW264.7
macrophages, negatively charged silica NPs (50 nm) induced the
highest secretion of proinflammatory TNF-α, followed by neutral
and positively charged silica NPs (Kurtz-Chalot et al., 2017).
Therefore, for these NPs, negatively charged decorations are
more prone to elicit the release of proinflammatory cytokines
than are positively charged decorations.

Surface decoration on QDs (8–10 nm), namely, negatively
charged COOH-PEG or COOH, positively charged NH2-PEG,
and neutrally charged HO-PEG and CH3O-PEG, could regulate
the mRNA levels of IL-1β, TNF-α, and CCL5 in A549- and THP-
1-derived macrophages. In A549 cells, COOH-PEG and COOH
decorations enhanced the mRNA levels of IL-1β and CCL5, and
COOH-PEG, NH2-PEG, and COOH decorations enhanced the
mRNA levels of TNF-α. In macrophages, COOH-PEG, NH2-
PEG, HO-PEG, and COOH decorations enhanced the expression
of IL-1β; COOH-PEG and COOH decorations enhanced the
expression of TNF-α; and COOH-PEG enhanced the expression
of CCL5 (Zhang et al., 2013).

A neutral decoration on MWCNTs is more likely to
elicit the secretion of proinflammatory cytokines than is a
negatively charged decoration. For example, inHUVECs, pristine
MWCNTs did not affect the secretion of TNF-α, while COOH-
MWCNTs slightly inhibited the release of TNF-α (Long et al.,
2018). In another study, pristine MWCNTs elicited higher levels
of IL-1β and IL-18 secretion in the C57Bl/6 alveolar macrophage
model than did COOH-MWCNTs (Hamilton et al., 2013).

The protein corona could also affect the secretion of
proinflammatory cytokines. For example, without BSA or IgG
coronas, COOH-MWCNTs induced higher levels of IL-1β and
TNF-α release than the pristine MWCNTs in RAW264.7 cells.
With BSA coronas, pristine MWCNTs induced higher levels of
IL-1β than did COOH-MWCNTs, and both kinds of MWCNTs
induced similar levels of TNF-α. With IgG coronas, pristine
MWCNTs induced higher levels of TNF-α than did COOH-
MWCNTs, and both kinds of MWCNTs induced similar levels
of IL-1β (Zhang T. et al., 2019).
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FIGURE 6 | CTAB-GNRs induce autophagy through mTOR-dependent pathway while PSS- and PDDAC-GNRs do not cause an obvious autophagy process.

Reproduced with permission from Li et al. (2015b).

Except for these in vitro investigations mentioned above, a
series of in vivo experiments were also conducted to investigate
the impact of surface charge on inflammation. For example,
positively charged GNPs (10.4 ± 2.5 nm) administrated in
mice led to inflammatory lesions (Bogdanov et al., 2015).
Rats treated with positively charged graphene nanoplatelets
(<5 nm thick, <2µm in diameter) induced greater pulmonary
inflammation than negatively charged counterparts (Lee et al.,
2017). Mice treated with cationic liposomes (100–150 nm)
triggered pulmonary inflammation, while neutral and anionic

liposomes exhibited normal pulmonary histology (Wei et al.,
2015). Cationic nanostructured lipid carriers (NLCs, <200 nm)
led to the diffusion of inflammatory cells in the underlying
lamina propria, however, rats treated with anionic NLCs
exhibited normal structure of the lining epithelium (Gabal
et al., 2014). TiO2 nanowires (diameter: 200–400 nm) with
different negative charges could regulate inflammation in
vivo. TiO2 nanowires with lowest negative charge induced
the highest level of cytokines in the BAL fluid of mice
(Park et al., 2013).
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TABLE 5 | Inflammation regulated by NPs’ surface chemistry.

Composition Size Surface chemistry/Zeta

potential/LogP

Cell line/Animal model Inflammation level References

Gold 50 ×15 nm PEG-NH2, PEG-OH (−4.5mV),

PEG-COOH (−23.2mV)

Primary human blood

phagocytes

(PEG-OH,

PEG-COOH)>PEG-NH2

Bartneck et al., 2010

Gold 10.4 nm Methoxypoly-ethylene glycol-graf

t-poly(L-lysine) copolymer

(MPEG-gPLL, 3.7mV)

Mice Induced inflammatory

lesions

Bogdanov et al.,

2015

Gold 2 nm Hyamine (LogP of end group:

0.63–5.35)

Splenocytes Positively correlated with

hydrophobicity

Moyano et al., 2012

Gold 35 ×10 nm Mercaptohexadecanoic acid

(−46.2mV), PEG (−11.1mV)

HaCaT Mercaptohexadecanoic

acid > PEG

Grabinski et al.,

2011

Silica 50 nm NH2 (25mV), COOH (−42mV), PEG

(−29mV)

RAW264.7 COOH>(NH2, PEG) Kurtz-Chalot et al.,

2017

TiO2

nanowires

Diameter:

200–400 nm

−1.6 to −15.9mV Mice Positively correlated with

zeta potential

Park et al., 2013

ZnO 100, 130 nm Triethoxycaprylylsilane (hydrophobic,

−16.67mV), pristine (−19.53mV)

A549-macrophage

co-culture

Triethoxycaprylylsilane<

pristine

Liu et al., 2019

Iron oxide 10 nm Pristine, PEG A549 Pristine>PEG Griffete et al., 2012

Carbon Diameter:

60–200

N.A. IC-21 murine

macrophages

Hydrophobic>hydrophilic Chun et al., 2011

MWCNTs Diameter:

20–30 nm

COOH, pristine HUVECs Pristine>COOH Long et al., 2018

MWCNTs N.A. COOH (−13.8mV), pristine

(−9.76mV)

C57Bl/6 alveolar

macrophage

Pristine>COOH Hamilton et al., 2013

MWCNTs <500 nm Pristine (−6.8mV), COOH (−12.2 to

−32.2mV)

Mice Pristine>COOH Jain et al., 2011

MWCNTs Diameter:

10–20 nm,

length: 5–15µm

Pristine (−15.5mV), PEG (−12.8mV) Mice Pristine>PEG Zhang et al., 2017

Graphene Thickness:

<5 nm,

diameter: <2µm

NH2 (15.5mV), COOH (−35mV) Rats NH2 >COOH Lee et al., 2017

Graphene Lateral

dimension of

∼100–200 nm

COOH, PEG Mice COOH>PEG Sasidharan et al.,

2015

Liposome 100–150 nm Cationic, neutral, anionic ligand Mice Cationic>(neutral, anionic) Wei et al., 2015

Lipid <200 nm Cationic, anionic ligand Rats Cationic>anionic Gabal et al., 2014

Nanogels 50–60 nm PEG (-2.46mV), poly(sulfobetaine)

(PSB, −2.01mV), and

poly(carboxybetaine) (PCB,

−1.89mV)

PBMCs (PSB, PCB)>PEG Li et al., 2018

Polymer 160 nm Polyvinyl acetate (−3mV) Mice Positively correlated with

hydrophobicity

Dailey et al., 2015

Polymer 20–25 nm PEG (1.7mV, 8.8mV, 15.4mV) Mice Negatively correlated with

PEG length

Ibricevic et al., 2013

N.A., not available.

Hydrophobicity
Hydrophobic NPs are prone to inducing the release of cytokines.
For example, in IC-21murine macrophages, hydrophobic carbon
fibers induced higher levels of IL-6 and TNF-α secretion than
did hydrophilic carbon fibers (Chun et al., 2011). Ligand
hydrophobicity on GNPs (2 nm) could regulate the gene
expression of pro-inflammatory cytokines, with hydrophobic
GNPs inducing higher levels of TNF-α and IL-6 gene expression
in splenocytes (Moyano et al., 2012). However, in another
study, hydrophobic ZnO NPs (130 nm) elicited lower expression

of ER stress-apoptosis genes compared to pristine ZnO NPs
(100 nm) in A549-macrophage co-culture (Liu et al., 2019).
Hydrophilic NPs could also alleviate inflammation. For example,
three kinds of nanogels (50–60 nm) were synthesized with PEG,
poly(sulfobetaine) (PSB), and poly(carboxybetaine) (PCB). PCB
nanogels, which is themost hydrophilic, could efficiently alleviate
inflammation responses induced by LPS, followed by PSB and
PEG nanogels (Li et al., 2018).

In vivo experiments demonstrated that hydrophobic
polymeric NPs (160 nm) could elicit inflammation in mice.
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TABLE 6 | Apoptosis regulated by NPs’ surface chemistry.

Composition Size Surface chemistry/Zeta

potential/LogP

Cell line Apoptosis References

Gold 1.5 nm Trimethylammoniumethanethiol

(TMAT,), mercaptoethanesulfonate

(MES), mercaptoethoxyethoxyethanol

(MEEE)

HaCaT (TMAT, MES)>MEEE Schaeublin et al., 2011

Gold 1–10 nm Poly(quaternary ammonium), sodium

polyacrylate

Human neutrophils Sodium polyacrylate>

poly(quaternary

ammonium)

Durocher et al., 2017

Gold 20–25 nm Cysteamine conjugated cholic acid

(DCaC), dicationic cysteamine

conjugated deoxycholic acid

(DCaDC), dicationic cysteamine

conjugated lithocholic acid (DCaLC)

A549 DCaLC> DCaDC>DCaC Muthukumarasamyvel

et al., 2017

Gold

nanowires

Diameter:

200 nm

NH2 (11.4mV), COOH (-25.5mV) Fibroblast, HeLa NH2 >COOH Kuo et al., 2007

Graphene 3.5–5 nm OH, COOH, NH2 A549 OH>(COOH, NH2) Xie J. et al., 2019

Graphene 200 nm PEI (40.4mV), pristine (−7.36mV),

BSA (−33.3mV), PEG (−18.3mV)

J774A.1 PEI> the rest Luo et al., 2015

Polystyene 110 nm NH2, COOH THP-1, differentiated

THP-1

NH2 >COOH Loos et al., 2014

Polystyene 60 nm NH2 (40.3mV), COOH (−27.6mV) RAW264.7 NH2 >COOH Xia et al., 2006

Polystyene 200 nm NH2, PEG-NH2 RAW264.7 NH2 >PEG-NH2 Lee K. et al., 2011

The hydrophobicity of polymeric NPs was positively correlated
with neutrophilia and pro-inflammatory cytokine levels (Dailey
et al., 2015). Mice treated with hydrophobic pristine-MWCNTs
induced inflammatory cell infiltration in the portal region of
liver, however, hydrophilic f-MWCNTs induced slight or no
inflammation in liver (Jain et al., 2011). PEG decoration can
alleviate the inflammation induced by NPs. In HaCaT cells,
GNRs (35 × 10 nm) decorated with mercaptohexadecanoic acid
upregulated the IL-1α and Serpine1 genes, which corresponded
to pro-inflammatory and anti-inflammatory effects, respectively.
GNRs decorated with PEG had no impact on these genes
(Grabinski et al., 2011). Both pristine and PEG-decorated iron
oxide NPs (10 nm) could induce the release of proinflammatory
chemokine IL-8 in A549 cells. The secretion level of IL-8 induced
by PEG decoration was low compared to that induced by pristine
iron oxide NPs (Griffete et al., 2012). In a 28 days repeated
dose toxicity study, pristine-MWCNTs caused higher levels of
inflammation in lung and liver of mice than PEG-MWCNTs
(Zhang et al., 2017). Few-layer graphene (FLG, 2–4 layers, lateral
dimension of ∼100–200 nm) and FLG-COOH elicited acute
and chronic lung inflammation in mice. PEG decoration on
FLG could effectively alleviate lung inflammation (Sasidharan
et al., 2015). In another in vivo study, it was also found that PEG
decoration on shell-crosslinked-knedel-like NPs (20–25 nm)
could ameliorate the acute inflammation in the lung, and
the length of PEG chain was positively correlated with the
anti-inflammatory effects (Ibricevic et al., 2013).

Combinatorial Surface Modifications
Based on a combinatorial MWCNT library, Gao et al
found that surface chemistry on MWCNTs could tune the
inflammatory response in vivo and in vitro. The in vivo

experiments demonstrated that surface chemistry could
regulate the IL-1β and TNF-α levels in the lung and liver.
The in vitro experiments indicated that surface chemistry
could steer macrophage recognition from the mannose
receptor to the scavenger receptor, resulting in the alleviation
of the NF-κB pathway and proinflammatory chemokines
(Gao et al., 2011).

APOPTOSIS

Apoptotic pathways could be classified into two types: extrinsic
and intrinsic pathways. Extrinsic apoptotic pathways could
be triggered through the activation of the death receptor
superfamily proteins, including CD95 and tumor necrosis factor
receptor I. Intrinsic apoptotic pathways are primarily mediated
through the mitochondria or the endoplasmic reticulum
(Hengartner, 2000; Szegezdi et al., 2006).

There are many approaches to determining apoptosis.
For example, the expression level of proapoptotic and
antiapoptotic genes can be determined by RT-PCR (Cho
et al., 2009b; Schaeublin et al., 2012). Western blotting
and immunofluorescence can be used to determine the
expression level of proapoptotic and antiapoptotic proteins
(Hengartner, 2000). TEM images can also provide apoptosis-
related information at the cell level (Elmore, 2007). In this
section, we summarize recently published literatures related
to the regulation of apoptosis by NPs’ surface charge and
hydrophobicity (Table 6).

Surface Charge
Positively and negatively charged GNPs (1.5 nm) increased the
expression of caspase-3 and led to the apoptosis of HaCaT
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FIGURE 7 | After being phagocytized, PEI-GO was more apt to interact with mitochondria and activate the apoptotic pathway. Reproduced with permission from Luo

et al. (2015).

cells, while neutrally charged GNPs induced necrosis instead of
apoptosis (Schaeublin et al., 2011). In another study, negatively
charged GNPs (1–10 nm) induced apoptosis in freshly isolated
human neutrophils, while positively charged GNPs did not elicit
apoptosis (Durocher et al., 2017). In fibroblast and HeLa cells,
positively charged gold nanowires (diameter: 200 nm) induced
greater cytotoxicity than negatively charged counterparts (Kuo
et al., 2007).

GQDs (3.5–5 nm) with different surface charges can
tune apoptosis in A549 cells. Neutrally charged OH-
GQDs induced higher levels of apoptosis than did either
negatively charged COOH-GQDs or positively charged
NH2-GQDs (Xie Y. et al., 2019). In J774A.1 macrophages,
positively charged PEI-GO NPs induced the highest level
of apoptosis, followed by pristine, BSA, and PEG decorated

GO NPs, which all had a negative zeta potential (Figure 7)
(Luo et al., 2015).

In THP-1 and differentiated THP-1 cells, positively charged
NH2-PS NPs (110 nm) induced apoptosis, while negatively
charged COOH-PS NPs did not induce apoptosis (Loos et al.,
2014). In RAW264.7 macrophages, NH2-PS NPs (60 nm) was
found to elicit apoptosis, but not COOH-PS NPs (Xia et al.,
2006). Therefore, on PS NPs, positively charged decorations
are more likely to induce apoptosis than are negatively
charged decorations.

Hydrophobicity
The hydrophobicity of GNPs (20–25 nm) could regulate
apoptosis in A549 cells, with hydrophobic GNPs inducing
higher levels of apoptosis than induced by hydrophilic GNPs
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FIGURE 8 | Regulation of cytotoxicity-related bioeffects by surface chemistry.

(Muthukumarasamyvel et al., 2017). The apoptosis levels
in RAW264.7 cells induced by NH2- and PEG-NH2-PS
NPs (200 nm) were compared. PEG decoration significantly
reduced apoptosis levels compared to those of NH2-PS
NPs (200 nm) in the RAW264.7 cells (Lee K. et al., 2011).
However, in vivo experiments demonstrated that PEG-
decorated NPs could also induce apoptosis. For example,
PEG- GNPs (4, 100 nm) induced apoptosis in liver tissue
after intravenous administration to BALB/c mice (Cho et al.,
2009b). In another paper, PEG- GNPs (13 nm) was found to
accumulate in liver and induced apoptosis 7 days after injection
(Cho et al., 2009a).

SUMMARY AND PERSPECTIVE

By summarizing recent literature, we found that the decoration
of PEG, ligands of different charge and hydrophobicity,
and combinatorial surface decoration could tune various
cytotoxicity-related bioeffects. Generally, positively charged and
hydrophobic NPs are more likely to be internalized by cells
and induce oxidative stress, autophagy, and apoptosis than are
negatively charged or hydrophilic NPs, and negatively charged
NPs are more likely to adsorb proteins than are positively
charged NPs. PEG decoration on NPs can alleviate these
cytotoxicity-related bioeffects (Figure 8). Adding combinatorial
surface decoration was proven to be an effective strategy

to reveal the impact of various types of surface chemistry
on bioeffects.

In addition to the bio-effect levels, molecular pathways can
also be regulated by surface chemistry, especially for differently
charged, hydrophobic, and combinatorial surface decorations. In
our study, we found that oxidative stress induced by positively
charged and hydrophobic GNPs is endocytosis-dependent.
The endocytosis of positively charged and hydrophobic GNPs
elicited oxidative stress through different signaling pathways,
including elevated calcium level, activation of mitochondria and
NADPH oxidase. Moreover, oxidative stress is considered to
be an important upstream mechanism that positively regulate
autophagy, inflammation, and apoptosis (Circu and Aw, 2010;
Reuter et al., 2010; Lee J. et al., 2011). Given that surface
charge and hydrophobicity are non-specific interactions between
NPs and biomolecules (Kim et al., 2013; Nam et al., 2013),
binding of specific key proteins may not be the main mechanism
for surface charge or hydrophobicity induced cytotoxicity
response. From the published papers, we can see that the
mechanism is complicated, from affecting the protein binding,
the internalization pathways and subcellular localization of NPs
to the interaction with the cell membrane, lipids, proteins, and
DNA, and the induction of oxidative stress as well.

For NPs of different compositions, sizes and shapes, the rules
by which surface chemistry regulates bioeffects are sometimes
inconsistent. Moreover, the surface chemistry modulation of
bioeffects sometimes varies by cell line. Therefore, caution should
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be exercised when extrapolating conclusions obtained from a
certain sized, shaped, or composited NP and/or a cell line.
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