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Plant–microbe interactions have evolved over hundreds of millions of years, generating a

diversity of interactions covering a broad continuum from pathogenic to mutualistic coexis-

tence. Although these different lifestyles have different needs, they all bear in common the use

of secreted molecules, termed “effectors”, that enable microbes to interact with their hosts and

to influence the outcome of the interaction. Effectors are not distinguished by sharing similar

chemical properties but are instead defined by their function within the biological context of

an interaction. To understand effectors, one needs to understand the coevolutionary forces

that shape them. The host defense system is a major selection force that eradicates pathogens

with a nonadapted effector repertoire. Reciprocally, host plants only survive the evolutionary

race if they have been selected to recognize and defend against invading pathogens. This

ongoing coevolution creates complex interdependencies between the effector repertoire of

microbes, their effectome, and the host susceptibility machinery and defense system of their

host plants. This review will summarize recent advances made in the field of effector studies in

filamentous plant-colonizing microbes.

Effector gene expression—Being in the right place at the right time

Each produced effector can be considered as an investment that needs to pay off by giving a

selective advantage to the invader, at least from time to time across generations, to be kept in

the population. As many effectors are tools that redirect host metabolism and development,

their dosage and timing should be controlled to achieve an optimal, balanced result, espe-

cially in the case of biotrophs, which need to retain the viability of their host. Evidence for

the tight control of effector synthesis and their place and mode of secretion has been pro-

vided from various filamentous pathogens [1–4]. Lifestyle switches, e.g., from biotrophic to

necrotrophic, or host switches require profound changes in the applied effector cocktail [5].

The same is true when changing environments within the host, e.g., by moving between

organs, as exemplified for the biotrophic maize pathogen Ustilago maydis [6]. Growing evi-

dence supports the view that adapting the composition of produced effectors to external cues

and developmental requirements is a general feature of interspecies interactions. Infection-

phase–specific expression of putative effectors has been demonstrated by transcriptomic

time-course experiments, among others, in the obligate biotrophic poplar leaf rust Melamp-
sora larici-populina [7]; the hemibiotrophic fungus Colletotrichum higginsianum, which

causes anthracnose during Arabidopsis thaliana infection [8]; the obligate biotrophic barley

fungus Blumeria graminis [9]; the root mutualistic fungus Serendipita indica (former Pirifor-
mospora indica) [5]; and the maize-infecting biotroph U. maydis [10]. Adaptation of effector

secretion and/or expression may even be cell-type-specific, although this hypothesis lacks

experimental support, likely because of technical challenges. An emerging concept is that

adaptation of effector expression is not limited to developmental programs of the pathogen

or infection strategies in different hosts or plant organs but also occurs when the host plant
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is challenged by abiotic stresses. Transcriptomic studies on rice under mild drought stress

showed that the hemibiotrophic fungus Magnaporthe oryzae transcriptionally downregulates

the majority of its putative effectors despite being more successful in colonizing the stressed

plants [11]. All these examples of adapted effector expression imply that specific environ-

mental signals must be perceived during colonization by the invading microbes. On the

pathogen side, very little is known about what these external signals are and how they are

perceived, especially after infection [12, 13]. As misregulation of effectors has been shown

to reduce pathogenicity in various pathogens, manipulating effector expression via these

external cues could be an elegant way to interfere with pathogen infections [4, 14]. Studying

the underlying regulatory networks controlling effector expression is an important future

research direction.

Enigmatic effector translocation and place of action

A common hallmark of effectors is that they are, in one way or the other, secreted. Their

place of action is therefore either in the interphase between the microbe and the host cell

(apoplastic effectors) or inside the host cell (translocated/symplastic effectors). The term

“symplastic effector” embodies the idea that translocated effectors might not be restricted to

a single cell and includes all possible places of action within plant cells. Similar to the spread-

ing of effectors within the symplast, effectors might diffuse within the apoplast and therefore

act on several cells. Within these two compartments, further subcompartments can be delim-

ited. Within the apoplast, effectors have been identified that bind fungal cell wall compo-

nents, potentially to protect their degradation or recognition by plant pattern-recognition

receptors [15, 16]. Other effectors act in the biotrophic interphase, e.g., as inhibitors of apo-

plastic proteases or to bind pathogen-associated molecular patterns (PAMPs) to reduce rec-

ognition [17, 18].

We are not aware of any effector being identified with targets associated with the host

plasma membrane from the apoplastic side, and only a few have been identified acting from

the cytosolic side at the membrane, likely because of technical limitations in identifying these

interactions [19–21].

Type III secretion signals from bacteria and RXLR-dEER or LXLFLAK motifs from

oomycetes are predicted to be translocation signals (although in case of RXLR-dEER, its role

in uptake is under debate [22]), which make the prediction of symplastic effectors possible in

these systems [23, 24]. For fungi, RXLR-like signals leading to translocation of fungal effec-

tors have been controversially discussed but have not been confirmed [25, 26]. Experimental

evidence for translocation has been generated either directly by fusing fluorescent proteins

to effectors [27] or through immunoelectron-microscopy approaches [28, 29] or are inferred

by cytosolic resistance gene (R-gene)–based recognition of avirulence (Avr) effectors [30].

Experimental results for the rust symplastic effector AvrM indicate a host-cell autonomous

translocation [29, 31], which implies that AvrM harbors intrinsic biochemical properties

mediating its translocation. In contrast to this, the effector Avr2 of Fusarium oxysporum
does not show such properties but instead requires a pathogen-derived trigger for transloca-

tion [32]. The differences observed between pathosystems make it likely that the mechanisms

of translocation into the host cell might differ between fungal species and potentially even

between different symplastic effectors within a species [27–29, 33]. After translocation into

the host cell, symplastic effectors might target specific host compartments. Transgenic pro-

duction of effector proteins without signal peptides in plant cells have indicated specific

localization for effectors in the nucleus, nucleoli, chloroplasts, mitochondria, and discrete

cellular bodies [34, 35].
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Effector functions—Avoid the alarm, activate what serves, and

inhibit what harms

The functions that need to be covered by an effectome reflect the challenges presented by

the host immune machinery and mirror the specific needs of the pathogen and its lifestyle.

While effectors of biotrophs often function in suppression of host immunity, the necrotrophic

fungus Cochliobolus victoriae targets a defense-associated thioredoxin TRX-h5 guarded by

the NB-LRR protein LOV1 via the toxin effector victorin. The LRR recognition leads to host

defense responses, conferring disease susceptibility to the necrotroph [36].

Looking at so-far-identified effector functions, one can identify different modes of action

serving the strategies for successful host invasion illustrated in Fig 1.

The self-binder and self-modifier

Effectors with a defensive mode of action either sequester potential microbe-associated molec-

ular patterns (MAMPs) or modify their cell walls upon penetration to minimize recognition.

Examples include the chitin-oligomer-chelating LysM effectors Ecp6 of Cladosporium fulvum
or the Slp1 LysM effector of M. oryzae [18, 37]. Another effector passively protects from anti-

microbial counter attack [16, 38].

The inhibitor

Many effectors have classic inhibitory activities, e.g., against immune-related proteases, gluca-

nases, or peroxidases, but also against intracellular signaling components to interfere with

defense-related signaling processes [39–42]. Inhibition of the Jasmonic-acid–triggered degra-

dation of PtJAZ6 by the MiSSP7 Laccaria bicolor effector is an example of signaling suppres-

sion by a mutualistic fungus [43].

The activator

Only a few effectors have been identified that clearly fall into the activator category, probably

as evolution of inhibitory activity is more likely. The NUDIX hydrolase effector Avr3b of

Phytophthora sojae and the deregulated, secreted chorismate mutase Cmu1 of U. maydis are

examples [28, 44]. Some activating effectors function by interfering with the deactivation or

degradation of their interacting host protein, thereby acting positively, although they are basi-

cally an inhibitor type of effector. One example is the U. maydis effector Tin2, which stabilizes

the maize kinase TKK1 by inhibiting its degradation [33].

Most effector functions are usually inferred via the host interaction partners, as many effec-

tors show low conservation on the sequence level because of high selection pressure to evade

host recognition. One conceptional restriction is that effectors might interact with host mole-

cules either to target and manipulate them or to use them as part of the host cellular machinery

to reach their final destination. For example, an effector with a nuclear localization signal

might interact with Importin α to enter the host nucleus, but its ultimate target might be the

inhibition of a specific host transcription factor. Some effectors have a broader target spec-

trum, as exemplified by EPIC2B, a cystatin-domain-containing, protease-inhibiting effector

from Phytophtora infestans [45]. Other effectors show a high degree of specificity even when

they target members of expanded protein families, as is the case for the M. oryzae effector Avr-

Pii, which targets specific vesicle-tethering Exo70 subunits involved in host immune responses,

or the P. infestans effector PexRD54, which targets a specific autophagy-modulating ubiquitin-

like ATG8 family member [46, 47].
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Large-scale effector/host ORFeome interaction screens demonstrated that effector targets

are usually well-connected cellular hubs [48, 49]. Furthermore, these and other studies

revealed that effectors often converge on the same host targets [50]. This goes hand in hand

with independent observations that many effector deletion strains do not show any observable

virulence defect, potentially a reflection of functional redundancy [51]. Functional redundancy

likely provides robustness to host-colonization success and could be considered a sign that the

target is of specific importance for a successful interaction. This is supported by a correlation

between converging effector-target–deletion plants often showing altered immune-response

phenotypes [49].

The decoy-domain fusions found in many nucleotide binding domain and leucine-rich

repeat receptor (NLR) proteins might represent effector-target mimics. This, among others,

has been experimentally validated for the WRKY domain containing NLR RRS1-R [52].

Therefore, sensor domains fused to NLRs might serve as an informative way to preselect

Fig 1. Strategies for successful host invasion. Plant-colonizing microbes employ effectors fulfilling various functions during the host invasion, which are

visualized symbolically in this cartoon. Different modes of action (self-binding and self-modifying, activating or inhibiting activities) of effectors described

in the text may be applied to serve the listed strategies (text on grey oval background).

https://doi.org/10.1371/journal.ppat.1006992.g001
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common effector targets [53]. While effectors also target directly defense components, they

more commonly target defense modulators, e.g., by exploiting antagonistic hormone pathways

that promote both growth and development, thereby inhibiting immunity [48]. This could be

a coevolutionary consequence of the host immune system being less able to detect manipula-

tion of modulators that are involved in various processes beyond immunity.

Outlook

Within the context of the host metabolism, effectors act as alien molecules, overrunning feed-

back control systems that usually maintain homeostasis [33]. For this reason, they are valuable

dominant acting molecular tools. Effectors teach us not only about the molecular defense

machinery of the host but often disclose the wiring between immunity, growth, and develop-

mental host pathways. Like a molecular language, effectors coevolve with the host population

the invader needs to communicate with. Our understanding of this language is still in the early

stages, and thousands of effectomes await to be understood. However, being able to translate

this language will likely reward us with immense payback both in strategies for preventing

pathogen infections and tools for understanding plant biology.
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