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The application of artificial intelligence (AI) systems is emerging in many fields in recent years,
due to the increased computing power available at lower cost. Although its applications in
various branches of medicine, such as pediatric oncology, are many and promising, its use
is still in an embryonic stage. The aim of this paper is to provide an overview of the state of
the art regarding the AI application in pediatric oncology, through a systematic review of
systematic reviews, and to analyze current trends in Europe, through a bibliometric analysis
of publications written by European authors. Among 330 records found, 25were included in
the systematic review. All papers have been published since 2017, demonstrating only
recent attention to this field. The total number of studies included in the selected reviews
was 674, with a third including an author with a European affiliation. In bibliometric analysis,
304 out of the 978 records found were included. Similarly, the number of publications began
to dramatically increase from 2017. Most explored AI applications regard the use of
diagnostic images, particularly radiomics, as well as the group of neoplasms most
involved are the central nervous system tumors. No evidence was found regarding the
use of AI for process mining, clinical pathway modeling, or computer interpreted guidelines
to improve the healthcare process. No robust evidence is yet available in any of the domains
investigated by systematic reviews. However, the scientific production in Europe is
significant and consistent with the topics covered in systematic reviews at the global
level. The use of AI in pediatric oncology is developing rapidly with promising results, but
numerous gaps and challenges persist to validate its utilization in clinical practice. An
important limitation is the need for large datasets for training algorithms, calling for
international collaborative studies.

Keywords: artificial intelligence, pediatric oncology, childhood cancer, machine learning, deep learning,
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INTRODUCTION

Childhood cancer is one of the priorities of the World Health
Organization (WHO) that in 2018 launched the WHO Global
Initiative on Childhood Cancer, aiming at achieving 60% survival
rate by 2030 (1). Cancer remains the leading cause of disease-
related mortality among children 1 to 14 years of age (2), and in
Europe, in 2020, over 15,500 children and adolescents were
diagnosed with cancer, and more than 2,000 young patients
died (2). Nonetheless, the fight against pediatric cancer is one of
the most successful stories in medicine over the last decades, with
an overall survival (OS) now exceeding 80% in high-income
countries (3).

Although the concept of artificial intelligence (AI) was born
decades ago (4), the increased availability of computational
power at affordable cost has been a significant impulse in its
application to several domains and AI may represent an efficient
solution for many unmet needs in pediatric oncology. Yet, AI in
medicine is underdeveloped, although the perspectives of its
application are wide and very promising (5, 6). The several
applications of AI in cancer are intuitive, as they may exploit all
data generated by patients including the integration of next
generation sequencing, the analysis of imaging and pathology,
and may accelerate drug discovery (7). These assumptions
represent the foundation of precision oncology, which aims at
precisely targeting and characterizing individual tumor cells.
However, many of these potential objectives have not yet been
achieved due to a number of challenges.

Another promising application of AI regards the
improvement of healthcare through process mining which may
inform clinical management, and ultimately affect the quality of
care (8). The large amount of data generated during the patient
journey and the high variability of patterns of care represent an
ideal area for creating AI models that can support process and
resource optimization. This is particularly true in pediatric
oncology where complexity of care is high due to severity of
cancer and comorbidity.

Although technical solutions for the development of AI
applications are largely available, AI algorithms require large
amounts of data from interoperable datasets for a widespread
application of AI that achieves a high accuracy (9). Moreover,
regulations regarding AI systems require appropriate risk
management and testing, technical robustness with sufficient
data training, and clear plans on data governance, transparency,
human control and cyber security, which may be hard to obtain
without a multidisciplinary approach and an investment of
resources (10).

In 2021, the European Union (EU) Commission issued the
Europe’s Beating Cancer Plan, including the flagship Helping
Children with Cancer Initiative, which highlights the value of
real word data and artificial intelligence as potential tools for
cancer prevention and care (11). The EU Commission also
underlined in its Review of the Coordinated Plan on AI, the
value of artificial intelligence in supporting cancer diagnosis and
therapy through the creation of appropriate infrastructures and
digital solutions (ANNEXES to the Communication from the
Commission to the European Parliament, the European Council,
Frontiers in Oncology | www.frontiersin.org 2
the Council, the European Economic and Social Committee and
the Committee of the Regions Fostering a European approach to
Artificial Intelligence) (12).

In this scenario of potential rapid development, designing
plans and addressing priorities in AI applications for pediatric
oncology requires an analysis of the current activities to identify
the achievements and the gaps in this field, including clinical and
management issues. To this aim, we drew the state of the art in
the field of AI applied in pediatric oncology through a systematic
review of reviews. In addition, to describe the existing scientific
trends in Europe, we performed a bibliometric analysis of
publications authored by European authors in the same field.
METHODS

We performed a systematic review of systematic reviews in the
field of AI applied on pediatric oncology. To this end, we set up a
search query based on a published strategy of the Cochrane
Childhood Cancer for PubMed (13) and a query translating
technical terms relevant to AI and radiomics. This query was
adapted and submitted to Web of Science and PubMed limiting
the search to reviews and to the time from January 2000 to
September 2021. The detailed search query is described in
Appendix 1 (available as Supplementary materials). We
manually selected those reviews which included studies a) with
individuals below 18 years of age; b) which focused on tumors
typical of pediatric age; c) reporting quantitative results. We
excluded the publications on tumors of adulthood even if
including some patients < 18. The list of included tumors is
available in the Supplemental material. Where the age range of
the studies was not indicated, papers containing information
potentially applicable in pediatrics were included, although some
studies were presumably conducted in adult populations (eg,
CNS tumors). From the publications selected, we manually
extracted the following information: disease on which AI was
applied, the number of studies included in the review, the type of
AI intervention, its aim, and the data source used for AI
development. We also summarized the key findings of each
review. Finally, we manually extracted the studies included in
these reviews and submitted them to Scopus to calculate the
proportion of those including authors with a European
affiliation. As in this review we covered a broad range of topics
in AI and pediatric oncology, we could not apply the
recommendations for reporting systematic reviews according
to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) (14).

In addition, we performed a bibliometric analysis on available
publications on AI and pediatric oncology from a search query
submitted to the Web of Science platform. We used the same
search string adopted for searching the reviews, but we selected
the original publications instead. We then manually reviewed the
selected records and included the original publications that
included quantitative results on AI interventions applied to
pediatric cancer. From these publications, we manually
extracted information on the disease in which AI was applied,
the aim of the work, the data source used for the AI application,
May 2022 | Volume 12 | Article 905770
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and if the performance of the AI algorithm was compared with a
natural human. Finally, we extracted information on the funding
source in Scopus.

The bibliometric analysis of this dataset included the annual
volume of scientific publications, the collaboration network
based on Authors’ affiliation, and the volume of publications
by journal. For this purpose, we used the Biblioshiny platform
(15). Descriptive statistics were performed through STATA 17.0
(Stata Corporation, College Station, Texas).
RESULTS

Systematic Review of Systematic Reviews
We found 330 unique records from the combination of results
from Web of Science and PubMed. We manually selected those
reviews which included studies a) with individuals below 18
years of age; b) which focused on tumors typical of pediatric age;
c) reporting quantitative results. We excluded the publications
on tumors of adulthood even if including some patients < 18. The
list of excluded tumors is available in the Supplemental material.

Finally, 25 records were eligible to be included in the
review (Figure 1).

Table 1 shows a summary of the 25 included reviews by
disease and type of data used for AI application (16–40).

Although we covered a 20-year time in the search strategy for
systematic reviews, none of them was published before 2017,
indicating only a recent proliferation of original publications in
this field. The included reviews included heterogeneous
publications and rarely showed a meta-analysis with a
quantitative summary of available evidence. The total number
of studies included in the reviews was 674, among them, 224
(33.2%) included an author with a European affiliation.

Most available reviews focused on the use of diagnostic images,
particularly radiomics. Only 4/25 reviewed the use of data sources
other than diagnostic images (namely pharmacokinetics,
Frontiers in Oncology | www.frontiersin.org 3
histopathologic, genomic, and demographic data) for the
development of AI applications. While, the use of AI systems to
optimize highly repetitive processes (such as image segmentation)
was widely investigated, an emerging trend involved the use of
radiomic features in predicting the histological and molecular
classification of tumors, with the aim to reduce the invasiveness of
the diagnostic process.

Sixteen out of the 25 reviews focused on central nervous
system (CNS) tumors, and seven of them investigated the
performance of radiomics. The majority of these reviews were
about the performance of AI applications in diagnosis,
segmentation and classification, while 4 investigated their
prognostic value. Finally, one review focused on the definition
of tumor infiltration, and one on quality of radiomics studies. All
reviews on CNS tumors concluded for a good performance of AI
applications for the specific aim of the review. In particular, in
the review by van Kempen et al., Jian et al., and Bhandari et al.,
the ability to predict the genomic profile of glioblastoma, namely
IDH status, MGMT promoter methylation status, and 1p/19q
codeletion status, was investigated with promising perspectives
(22, 25, 29). A satisfactory accuracy was also found in predicting
the prognosis of patients, with a sensitivity range of 78%–98%
and specificity range of 76%–95% reported in the review by
Sarkiss et colleagues (18). Of note, the genomic features
investigated by these studies are frequent in the adult
population but rare in childhood, since they were found
virtually in adolescents only (41, 42).

Three out of the 25 reviews were on AI applications for bone
and soft tissues sarcomas and focused on quality and
reproducibility of radiomics. These reviews agreed in
concluding that the quality of radiomics studies is still low and
that this may hamper their reproducibility and practical
clinical application.

Two reviews were on lymphomas and focused on radiomics
for diagnosis or prediction of outcome. Although the
performance of radiomics was good, the quality of the studies
FIGURE 1 | PRISMA flowchart describing the selection process for systematic reviews and for original papers included in the bibliometric analysis.
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TABLE 1 | Summary of reviews included in the systematic review.

Key Findings

to be better-refined, (ii) diagnostic precision should be
iomics is lacking, and (iv) quantitative radiomics needs
armacometabolomics: data regarding this topic in CNS

ervous system lymphoma from glioblastoma on
e lowest reported AUC being 0.878. In studies in
ith radiologists, ML performed better than or as well as
was applied to an external data set, it performed

ith a sensitivity range of 78%–98% and specificity
rithms show accuracy in diagnosing low-grade versus
% to 93% and 90% for diagnosing high-grade glioma

ing HGG was higher (96% (95% CI: 0.93, 0.98)) than
(90% (95% CI 0.85, 0.93)). Heterogeneity was

cificity. Metaregression confirmed the heterogeneity in
quence types (p = 0.02), and data sources (p = 0.01),
g set (p = 0.19), feature extraction number (p = 0.36),
0.18). The results of subgroup analysis indicate that
feature selection numbers less than the total sample
c performance in differentiating HGG from LGG.
ed higher score than diagnostic studies in comparison
alibration (P = .02), and cut-off analysis (P = .001). The
dies in neuro-oncology is currently insufficient.
rom their own institution. Specifics of convolution
not detailed extensively. The majority of overfitting was
a role in segmentation of brain tumors such as
cytomas.
s with conventional radiomics in combination with
d features (AUC = 0.95, 94.4% sensitivity, 86.7%
1p19q status occurred with texture-based radiomics
specificity). A meta-analysis showed high heterogeneity
ipelines.
ining molecular profiles, histological tumor grade, and
ed at the time that patients first present with a brain
f the evidence is of a low level, having been obtained
.
evaluated 59 models, of which only seven were

ient cohort. The predictive performance among these
he AUC (0.58–0.98), accuracy (0.69–0.98), and C-
f these models has been implemented into clinical

uracy for all subgroups, with the classification of 1p/
cantly poorer than other subgroups (AUC: 0.748, p =
n shows an overall AUC of 0.909 (95%-CI: 0.867–
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Studies

Cancer Group Data Source AI Application AIm

Katsila T, et al. (16) 2017 220 CNS tumors MRI Radiomics,
pharmacometabolomics

Diagnosis Radiomics: (i) tumor grading needs
improved, (iii) standardization in rad
to prove clinical implementation. Ph
tumors are scarce.

Nguyen A V, et al. (17) 2018 8 CNS tumors MRI Machine learning
algorithms

Differential
diagnosis

In differentiation of primary central n
imaging, ML performed well with th
which ML was directly compared w
the radiologists. However, when M
more poorly.

Sarkiss CA, et al. (18) 2019 29 CNS tumors Diagnostic
images, gene
expression

Machine learning
algorithms

Diagnosis,
prognosis

ML can predict patient outcomes,
range of 76%–95%. ML based algo
high-grade gliomas, ranging from 8
versus lymphoma.

Sohn CK, et al. (19) 2020 5 CNS tumors MRI Radiomics Diagnosis The pooled sensitivity when diagno
the specificity when diagnosing LG
observed in both sensitivity and sp
sample sizes (p = 0.05), imaging se
but not for the inclusion of the testi
and selection of feature number (p
sample sizes of more than 100 and
size positively affected the diagnost

Park JE, et al. (20) 2020 51 CNS tumors MRI Radiomics Quality of
radiomics
studies

Prognostic/predictive studies receiv
to gold standard (P <.001), use of
quality of reporting of radiomics stu

Bhandari AP, et al. (21) 2020 9 CNS tumors MRI Convolutional Neural
Networks algorithms

Brain tumors
segmentation

Only one study used a training set
layers (i.e. filtration of images) were
done via down sampling. CNN has
glioblastoma and lower grade astro

Bhandari AP, et al. (22) 2020 14 CNS tumors MRI Radiomics Classification The best classifier of IDH status wa
convolutional neural network–derive
specificity). Optimal classification of
(AUC = 0.96, 90% sensitivity, 89%
due to the uniqueness of radiomic

Booth TC, et al. (23) 2020 20 CNS tumors MRI, PET Radiomics Diagnosis,
prognosis and
treatment
response

Much research is applied to determ
prognosis using MRI images acqui
tumor. Although pioneering, most o
retrospectively and in single centers

Tewarie IA, et al. (24) 2021 27 CNS tumors Genomics, MRI,
clinical
information,
histopathology,
pharmacokinetics

Algorithmic prognostic
models

Prognosis The included studies developed an
externally validated in a different pa
studies varied widely according to
index (0.66–0.70). However, none
care

van Kempen EJ, et al.
(25)

2021 17 CNS tumors MRI Machine learning
algorithms

Prediction of
glioma
genotype

Meta-analysis showed excellent ac
19q codeletion status scoring signi
0.132). Classification of IDH mutati
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TABLE 1 | Continued

Key Findings

thylation status was estimated as 0.866 (95%-CI:
ble heterogeneity among some of the included studies.
studies showed an overall dice similarity coefficient
0.86). In addition, a DSC score of 0.83 (95% CI: 0.80–
was observed for the automated glioma segmentation
mas, respectively. However, heterogeneity was
studies, and publication bias was observed
hniques of DL is its computability and consistency with
ethods focusing on convolutional neural networks
-fields of medical image processing, such as
mentation.
ing was generally strong (AUC = 0.87 ± 0.09;
= 0.0.86 ± 0.10; precision = 0.88 ± 0.11).
rt vector machine and random forest algorithms were

for predicting isocitrate dehydrogenase (IDH)
.88 (95% CI 0.83-0.91) and 0.86 (95% CI 0.79-0.91),
idation sets. Use of data augmentation and MRI
ted with heterogeneity. Both O6-methylguanine-DNA
moter methylation and 1p/19q codeletion could be
nd specificity between 0.76 and 0.83 in training

prediction from MR images using the radiomics
reement about the radiomics pipeline, and the prior
rding the software used, the number of extracted
ine learning technique. Before the clinical
radiomics, more standardized research is needed.
o be of significant value for future clinical practice.
area under the curve of 0.74–0.91 reported in six
a sensitivity of 80.0%–100% and a specificity of
81.8% and a Pearson’s correlation coefficient of

(–5, 16). None of the included studies performed a
ies were regarded as having a moderate risk of bias.
redicting osteosarcoma response to neoadjuvant
ostic odds ratio 43.68 (95% CI 13.50–141.31) and the
CI 0.89–0.94), which indicates a high diagnostic

uality of radiomics studies in osteosarcoma was
ies was high suggesting that radiomics is far from a

nalysis of the radiomic features nor a phantom study.
designed. Thirty-eight out of 52 (73.1%) studies did
endent cohort. Median Radiomics Quality Score: 4,5
acted radiomic features was 65 (range: 9–210105).
ly performed an exploratory univariate analysis.
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0.951). AUC of MGMT promoter m
0.812–0.921). There was considera

van Kempen EJ, et al.
(26)

2021 8 CNS tumors MRI Machine learning
algorithms -based
glioma segmentation
tools

Accuracy of
brain tumor
segmentation

Overall, the MLAs from the included
(DSC) score of 0.84 (95% CI: 0.82–
0.87) and 0.82 (95% CI: 0.78–0.87
of the high-grade and low-grade gl
considerably high between included

Al-Galal SAY, et al. (27) 2021 92 CNS tumors MRI Deep learning
techniques for
classification and
segmentation

Brain tumors
segmentation,
classification

The significant advantage of the tec
many conventional techniques. DL
(CNN) are more applicable to all su
classification, identification, and seg

Buchlak QD, et al. (28) 2021 153 CNS tumors MRI Machine learning for
diagnosis and
classification

Diagnosis,
classification

Model performance of machine lear
sensitivity = 0.87 ± 0.10; specificity
Convolutional neural network, supp
top performers.

Jian A, et al. (29) 2021 44 CNS tumors MRI Radiomics Diagnosis,
prediction of
molecular
markers

The pooled sensitivity and specificit
mutation in training datasets were 0
respectively, and 0.83 to 0.85 in va
sequence type were weakly associa
methyltransferase (MGMT) gene pro
predicted with a pooled sensitivity a
datasets.

Tabatabaei M, et al.
(30)

2021 18 CNS tumors MRI Radiomics Classification Results appear promising for grade
techniques. However, there is no ag
studies are very heterogeneous reg
features, MR sequences, and mach
implementation of glioma grading b

d’Este SH, et al. (31) 2021 14 CNS tumors PET Combination of
multimodality imaging
with AI

Defining tumor
infiltration by
imaging

All studies concluded their findings
Diagnostic test accuracy reached a
studies. When AUC is not provided
69.2%–100%, an accuracy of 78%
0.74–0.88 were found.

Zhong J, et al. (32) 2020 12 Bone and soft
tissue sarcomas

MRI, PET Radiomics Quality of
radiomics
studies;
prognosis

Median Radiomics Quality Score: 5
phantom study. Most included stud
Meta-analysis of radiomics studies
chemotherapy showed a high diagn
area under the curve was 0.91 (95%
performance. The overall scientific q
insufficient and heterogeneity of stu
clinical applicable tool.

Crombé A, et al. (33) 2020 52 Bone and soft
tissue sarcomas

MRI, PET, CT,
Ultrasound

Radiomics Quality of
radiomics
studies

None of the study did a test-retest
Only two studies were prospectivel
not validate their results on an inde
(–7, 17). The median number of ext
Twelve of the 52 (23.1%) studies on
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Key Findings

w that the quality of sarcoma radiomics studies is low on average,
reproducibility of radiomics models on external cohorts and,
lications of these models.
9 studies included a reproducibility analysis of the radiomic
w. The intraclass correlation coefficient (ICC) was the statistical
f the papers reporting a reproducibility analysis. At least one
tion technique was used in 25 (51%) of the 49 papers. A clinical
ics-based prediction model was reported in 19 (39%) of the 49
arcoma radiomics studies is low, which may hamper performance
ic models on independent cohorts and, consequently, their

be used to effectively differentiate lymphoma from another disease
ies ranged from 0.730 to 1.000). Radiomics features are
r the outcome of patients with several types of lymphoma.
published radiomics studies in lymphoma has been suboptimal to

ility was reported in 5/20 DLBCL studies assessing SUVmax (PFS:
0.83–11.23), 17/19 assessing metabolic tumor volume (MTV)
OS: HR 2.40–10.32) and 10/13 assessing total lesion glycolysis
11.21, OS: HR 2.40–4.82). Significant predictive ability was
ies assessing SUVmax (HR not reported), 6/8 assessing MTV
S : HR 1.00–13.20) and 2/3 assessing TLG (HR not reported).
assessing the use of radiomics (4 DLBCL, 2 HL); 5/41 studies had
/41 included external validation. All studies had overall moderate or

e of DL models for the complete tumor in terms of the pooled Dice
pecificity was 0.8965 (95% confidence interval (95% CI): 0.76–
I: 0.71–0.994) and 0.9164 (95% CI: 0.78–1.00), respectively. The
he highest performance for classifying three types of gliomas,
ry tumors with overall accuracies of 96.01%, 99.73%, and
tratification of glioma tumors by high and low grading revealed
.32% and 94.23% for the DL methods, respectively.
ies provide encouraging but still limited and preliminary data that
to improve the decision-making processes in preventing and

uced toxicities.

used supervised ML, related to post-HSCT complications, but
mbers of patients. None of the studies provided robust evidence
l ML technique for HSCT or minimal number of variables required
els. However, our results suggest that ADT could be applicable in
heir interpretability.
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Overall, our results sho
which may hamper the
therefore, practical app

Gitto S, et al (34) 2021 49 Bone and soft
tissue sarcomas

MRI, CT Radiomics Reproducibility
and prediction
of diagnosis

Eighteen (37%) of the
features in their workflo
method used in most o
machine learning valida
validation of the radiom
papers. The quality of
generalizability of radio
practical application.

Wang H, et al. (35) 2020 45 Lymphomas MRI, CT, PET Radiomics Diagnosis,
prognosis,
quality of
radiomics
studies

Radiomics features ca
(AUC values of the stu
prognostic predictors f
However, the quality o
date.

Frood R, et al. (36) 2021 41 Lymphomas PET; CT Quantitative imaging
parameters derived
from pretreatment FDG
PET/CT; radiomics

Prognosis,
treatment
outcome

Significant predictive a
HR 0.13–7.35, OS: HR
(PFS: HR 2.09– 11.20
(TLG) (PFS: HR 1.078–
reported in 1/4 HL stu
(PFS: HR 1.2–10.71, O
There are 7/41 studies
internal validation and
high risk of bias.

Badrigilan S, et al. (37) 2021 30 Head and neck
cancer

MRI AI assisted classification
and segmentation

Tumor
segmentation,
classification

The overall performanc
score, sensitivity, and
0.9994), 0.9132 (95%
DL methods achieved
meningioma, and pituit
96.58%, respectively.
overall accuracies of 9

Carbonara R, et al. (38) 2021 8 Head and neck
cancers

MRI, PET, CT Radiomics Prediction of
radiation-
induced side
effects

Published radiomic stu
require further validatio
managing radiation-ind

Gupta V, et al. (39) 2020 27 HSCT Clinical data,
imaging,
genomic and
demographic
data

Machine learning
techniques

Prognosis The majority of studies
were limited by small n
to determine an optima
to build predictive mod
HSCT settings due to
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was suboptimal and the risk of bias in these studies was moderate
or high.

Two reviews on head and neck cancers evaluated the
performance of radiomics and other AI applications: one on
tumor segmentation and classification of tumors showed a high
performance of AI applications, the other investigated the
prediction of radiation-induced side effects through radiomics
and showed the existence of preliminary data only that need
validation. Again, although head and neck cancers are rare in
childhood, these studies were included because one includes
brain tumors, which are relatively frequent in children, while the
other focuses on radiation damage, an important issue especially
during the developmental stage.

The remaining reviews focused on AI applications for
predicting prognosis in hematopoietic stem cell transplantation
(HSCT) that yielded only weak evidence supporting machine
learning (ML) techniques mainly due to small sample size, and
AI applications for diagnosis of leukemia (mostly qualitative)
that recommended further validation of the models. None of the
reviews focused on AI applications for process analysis of
patients with cancer.

Almost all the reviews underlined the limitations of the
investigated studies due to small data samples for training,
heterogeneous methodologies, lack of external validation, and
questionable quality of the available papers included in
the reviews.

Bibliometric Analysis
We found 978 records, and we selected 304 for the analysis by
manual revision applying the same selection criteria used for the
reviews. Bibliometric data were extracted from the selected
publications and processed to obtain information on temporal
trends of publications, most used scientific journals for
publication, and geographic trends according to authors’
affiliation. Manually annotated information allowed for the
analysis of most frequent diseases, scope, data source,
comparison of performance with humans, and funding source.

These original papers were published in 172 different journals
and had an average number of citations of 32.9. The number of
articles regarding AI and pediatric cancer has been modest until
2017, and then sharply raised with a nearly tenfold increase in
2020 compared with 2017 (Figure 2). This trend corresponds to
the increasing availability of computational resources and the
popularity of AI solutions in other healthcare domains and
parallels the availability of systematic reviews.

Most of the scientific publications in the field of AI and
pediatric cancer are available in journals that are not specific for
oncology such as Scientific Reports and PLoS One (Table 2). Of
note, most papers published before 2015 were in generic
scientific journals or those about medical imaging.

Not only the scientific production included in the analysis was
scattered through several different scientific journals, but also
according to the bibliometric indexes, the number of citations
was modest, being higher for those journals that started to host
publications on AI in pediatric oncology in early years.

The most represented author countries were the UK,
Germany and Spain, accounting for 37% of all authors.
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International collaborations between different countries based on
the affiliation of authors is shown in Figure 3.

Separate networks including different European countries
exist with dense collaboration links. The most evident cluster is
between the USA, Germany, several other European countries
and Canada (Figure 3 - red cluster). A second collaboration
network is evident among the UK, China and other various
countries (Figure 3 - purple cluster). Additional collaboration
networks include France and other Mediterranean and Eastern
countries (Figure 3 - green cluster), Portugal, and Brazil
(Figure 3 - blue cluster).
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The distribution of clinical diseases in which the AI
intervention was applied is illustrated in Table 3. The majority
of AI applications studied in selected papers were on brain
tumors and leukemia (241/334). However, the list of childhood
tumors in these papers does not include many common
oncologic diagnoses.

When looking at the scope of the AI application in these
papers, the domains in which AI has been studied in pediatric
cancer included most frequently classification (109/304, 35.9%)
and diagnosis (80/304, 26.3%) of pediatric cancer. Much less
frequently, the papers focused on AI for planning treatment (20/
FIGURE 2 | Number of original papers included in the bibliometric analysis by year of publication.
TABLE 2 | Scientific journals hosting original papers on AI in pediatric oncology.

Sources n. articles h_index g_index m_index TC NP PY_start

PLOS ONE 10 1 1 0,250 107 1 2018
CANCERS 8 1 1 0,250 13 1 2018
IEEE ACCESS 8 2 2 0,250 63 2 2014
JOURNAL OF MEDICAL IMAGING 8 1 1 0,167 35 1 2016
IEEE TRANSACTIONS ON MEDICAL IMAGING 7 1 1 0,059 9 1 2005
MEDICAL HYPOTHESES 7 1 1 0,500 1 1 2020
SCIENTIFIC REPORTS 7 1 1 0,077 55 1 2009
APPLIED SCIENCES-BASEL 6 4 6 1,000 86 6 2018
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 6 1 1 0,071 120 1 2008
SENSORS 6 4 4 0,222 270 4 2004
BMC BIOINFORMATICS 5 1 1 0,250 5 1 2018
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS 5 1 1 1,000 3 1 2021
COMPUTERS IN BIOLOGY AND MEDICINE 5 2 2 0,125 156 2 2006
CYTOMETRY PART A 5 1 1 0,333 1 1 2019
ARTIFICIAL INTELLIGENCE IN MEDICINE 4 3 3 0,750 48 3 2018
BIOMEDICAL SIGNAL PROCESSING AND CONTROL 4 1 1 0,250 5 1 2018
DIAGNOSTICS 4 2 2 0,333 23 2 2016
NMR IN BIOMEDICINE 4 1 1 0,333 8 1 2019
AMERICAN JOURNAL OF NEURORADIOLOGY 3 1 1 0,500 1 1 2020
BIOLOGY DIRECT 3 2 3 0,182 19 3 2011
May 202
2 | Volume
 12 | Artic
The Table includes the first 20 journals in order of number of publications. H-index: The Hirsch index (H-index) is a journal’s number of published articles (h), each of which has been cited in
other papers at least h time(s). m-index: The m-index is defined as H/n, where H is the H-index and n is the number of years since the first published paper of the journal. The g-index is an
improvement of H-index. TC, Total number of Citations; NP, Net Production; PY_start, starting year of the journal.
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304, 6.3%). Some papers also had multiple scopes (2.0%). We
also investigated which data source was used to train the AI
intervention in each of the papers under review (Table 3). The
large majority of existing papers focused on AI applied to
diagnostic images in brain cancer, followed by studies using
-omics and other data sources on histopathology or blood. The
most frequent category of data used in AI applications is
diagnostic images, particularly magnetic resonance imaging
(MRI). Some data sources, such as ultrasound images and data
from metagenomics, are less frequent in these reviewed papers.
Multiple data sources were rarely combined in the European
reviewed papers accounting for only 5% only of the total
publications. The most frequent combinations were different
Frontiers in Oncology | www.frontiersin.org 9
diagnostic images sources such as MRI, computed tomography
(CT) and positron emission tomography (PET). None of the
reviewed publications investigated the use of AI in process
analysis of management of pediatric oncologic diseases

We also explored how frequently the AI application was
compared to human capacity in terms of concordance and
accuracy for external validation. The total number of papers
including such a comparison with a human counterpart was 31/
304 papers (10.2%). Finally, information regarding the use of any
research funding was available in 294/304 papers; among them,
173 (58.8%) acknowledged a funding source for the research
activity and 40 of them (13.6%) reported a European funding
source, while the remaining 121 (41.2%) we not supported by
FIGURE 3 | Country collaboration network based on country of authors in the original papers included in the bibliometric analysis.
TABLE 3 | Distribution of diagnosis and source of information for the AI application in publications selected for the bibliometric analysis.

Images Omics Hystopathology/Blood Other

n % n % n % n %

CNS tumor (n=186) 146 78.5 20 10.8 17 9.1% 6 3.2
Leukemia (n=55) 1 1.8 22 40.0 27 49.1 7 12.7
Lymphoma (n=24) 6 25.0 10 41.7 6 25.0 2 8.3
Neuroblastoma (n=15) 4 26.7 10 66.7 2 13.3 0 –

Bone and soft-tissue sarcoma (n=13) 0 – 4 30.8 8 61.5 1 7.7
Wilms Tumor (n=11) 7 63.4 3 27.3 1 9.1 0 –

Hematopoietic stem cells transplantation (n=3) 0 – 1 33.3 0 – 2 66.7
Other tumors (n=27) 6 22.2 16 59.3 5 18.5 1 3.7
May 2022 | Volume 12
 | Article 90
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any research fund. European funding supporting the work
reported in these publications were from the FP6, FP7,
Horizon 2020, ERDF, and ESF Programmes.
DISCUSSION

We searched for existing evidence and the trends in publications
regarding the application of AI in pediatric tumors. Our work,
which combined a systematic review of systematic reviews and a
bibliometric analysis, applied a detailed search string to find the
existing contributions in the domain of AI and pediatric tumors
screening the existing publications over a long period of time.
Although the inclusion of other publication sources than Web of
Science and PubMed databases may have increased the number
of publications in this field, our analysis has captured the vast
majority of existing scientific production in the field of AI and
pediatric oncology.

Our review focused on Europe, showed that AI in pediatric
oncology is still in its infancy and, although many publications on
this topic have been issued, the available evidence is still poor and
mostly limited to proof-of-concept studies. No robust evidence is
available yet in any of the clinical domains investigated in the
available systematic reviews. On the other hand, the scientific
production generated in Europe is significant and consistent with
the topics covered in systematic reviews at the global level. Most of
the literature generated in Europe is on AI applications for
imaging in brain cancer. Radiomics, the most developed area of
research, still suffers from a low degree of reproducibility and
repeatability due to the paucity of existing studies and the rarity of
multicentric initiatives in this field (43). However, there is a
growing body of evidence exploring the use of AI in other
cancers, although studies of AI applications are much more
limited. Various reasons may explain this discrepancy. First,
CNS tumors, although representing the most common solid
neoplasms in childhood, are not exclusive to this age group
since a significant percentage of diagnoses occur in adulthood.
In contrast, other pediatric solid tumors are rarely found in
adulthood, making it more difficult to have large enough cohorts
for algorithm training. Similarly to CNS tumors, leukemias can
also be found among adults, albeit with different phenotypic
characteristics; therefore, one would expect more studies
regarding the use of AI for these malignancies. Conversely,
leukemias do not benefit from diagnostic images in which AI is
mostly applied. Several authors, however, have explored the use of
AI to integrate different data sources particularly for prognostic
purposes. Finally, at a more general level, AI may help shorten the
time consumed in repetitive tasks and this may explain why
automatic tumor segmentation is a frequent topic of research.

Although the scientific production on AI and pediatric cancer
significantly increased in the last years, still most of published
works remain proofs of concept. Indeed, most studies used
datasets from single centers, with a small sample size, and did
not perform any external validation of their model, limiting their
applicability and generalizability. Data-sharing privacy concerns
and several other barriers preventing data linkage andmulticentric
Frontiers in Oncology | www.frontiersin.org 10
collaborations result in low inter- and intra-observer variability of
AI algorithms and ultimately decrease their generalizability.
Moreover, ensuring external validation through comparison of
AI algorithms with humans, remains essential.

Our focus on Europe showed a very active network of
collaborating centers across countries in Europe and other
continents. According to our bibliometric analysis, Germany
and the UK, two among the most represented countries in the
field investigated in this review, have strong collaborations with
the US and China that co-authored several published papers.
Finally, almost half of the publications from European authors
included in this review did not acknowledge any funding source
for their research suggesting that many of these studies are based
on single center initiatives. Although authors may have missed to
report a funding source, only 13% of these studies acknowledged
funding from research projects of the EU Commission. The
recent Horizon Europe research programme already includes
several calls for proposals on AI and pediatric cancer, which
hopefully will be instrumental to fill in the existing gaps in this
field and to explore the existing opportunities. Several topics in
this respect deserve attention.

Cancer in children may result from genetic changes that are
currently unknown, linked either to inherited genetic changes or
exposure to diagnostic or therapeutic radiation (44). In essence,
identification of conditions that can predispose to cancer, or
polymorphisms of different genes that, if associated with each
other, can increase the risk of neoplasms, represent a priority in
pediatric oncology. AI can help to identify high-risk populations
and prescribe the most appropriate screening test for each
individual (45).

In terms of diagnostic strategies, minimally invasive
diagnostic tools with a broadened spectrum should be
developed integrating different biometric data (46). Moreover,
with the same approach, it would be helpful to identify early
disease markers, both for diagnosis and disease relapse. Most AI
applications in pediatric oncology have been developed for
imaging. However, there is still the need to find novel imaging
biomarkers for different types of tumors (43). The efforts to use
non-invasive strategies for disease classification are of utmost
importance. Indeed, tumors require a histopathologic
classification that can be obtained with a surgical approach
only. Predicting the prognosis of a tumor from images may
help to avoid surgical demolition in low progressing cancers.
Through AI it is possible to better classify pediatric tumors and
precisely tailor therapeutic approaches to the biology of the
tumor and the genotype of the host (47). Personalized
therapies and prediction of the impact of genomic variations
on the sensitivity of normal and tumor tissue to chemotherapy or
radiation therapy are certainly attainable with AI.

AI can also improve the understanding of tumor spread by
comparing molecular/anatomical features of primary tumors
and metastases or by comparing multiple metastases in the
same person and explore genetic, molecular and physiological
factors associated with spontaneous tumor regression.

The development of new treatments and drug repurposing is
also an important issue (48). Interesting studies with initial evidence
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in this respect have recently been published (49). More tolerable and
safe treatments would significantly improve the quality of life in this
population. Among novel treatments, the identification of new
opportunities for immunotherapy and the evaluation of
combination therapies deserve attention. Moreover, there is a
need to rapidly forecast intrinsic resistance and to monitor for the
emergence of acquired resistance. Investigating complex pathways
to identify combination therapies that minimize the likelihood of
disease recurrence, and of genes associated with an increased
sensitivity to certain medications or that expose a greater drug
toxicity may also help.

Additional opportunities of AI in pediatric oncology are in
supporting and accelerating randomized clinical trials for novel
therapies, and integrating data from wearable sensors, patient
reported outcomes and data from electronic health records.

To achieve these objectives, an acceleration of research efforts is
required in the implementation of AI in pediatric oncology at all
levels. Most importantly, this effort cannot be pursued in limited
geographic areas, but has to be developed at a global scale to take
advantage of a collective scientific effort and the largest possible
amount of data. The strong international research activities in this
field that Europe has been conducting with other continents
represent an excellent starting point in this respect.

Additionally, with the exception of some work aimed at
applying AI for diagnostic image segmentation, we did not
find publications investigating the use of AI to analyze and
improve healthcare processes, although we applied a
comprehensive search strategy in our review. This observation
is in line with the scarce maturity of research in the field of AI in
pediatric oncology while future applications may certainly
include stratification of patients undergoing invasive
procedures and actions that may speed up the patient journey
with an impact on quality of care, patient satisfaction, and costs.

Finally, the ethical dimensions of AI in pediatric cancer are of
paramount importance not only because of the intrinsic issues of
AI, but also because such a technology should be applied in a
vulnerable population affected by rare diseases, as cancers in this
age group are, severe and potentially fatal, and where genetic
information may play an important role. The vast majority of the
published literature on AI for pediatric cancer does not address
the specificity of these circumstances yet. Notably, a systematic
effort on achieving models for a trustworthy AI is ongoing in
many international projects (50). It must be underlined that the
ethical dimension of AI is multifaceted and includes the
explainability of algorithms, their equity, and their safety.
These attributes have special implications for children (51) and
affect regulatory policies.
Frontiers in Oncology | www.frontiersin.org 11
CONCLUSIONS

AI has the potential to represent an efficient solution for many
unmet needs in pediatric oncology. The work presented in this
review shows several potential areas of development and
improvement that can match these needs. One central issue
for achieving this goal regards the availability of large datasets
that should be continuously updated. The future progress of AI
in pediatric oncology, as in other fields, will greatly depend on
the development of technical solutions that will allow
streamline data sharing across different stakeholders while
preserving privacy.
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