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Abstract We performed numerical investigations of sur-
face plasmon excitation and propagation in structures
made of a photochromic polymer layer deposited over a
metal surface using the finite-difference time-domain
method. We investigated the process of light coupling
into surface plasmon polariton excitation using surface
relief gratings formed on the top of a polymer layer and
compared it with the coupling via rectangular ridges
grating made directly in the metal layer. We also
performed preliminary studies on the influence of refrac-
tive index change of photochromic polymer on surface
plasmon polariton propagation conditions.
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Introduction

Quasiparticles that can propagate at the interface between
conductor and dielectric due to collective charge oscilla-
tions are known as surface plasmon polaritons (SPP).
Various forms of them have been recognized ranging from
freely propagating electron density waves along metal
surfaces to localized electron oscillations on metal nano-
particles. Unique properties of surface plasmons, i.e., their
sensitivity to a changing environment at a nanoscale, enable
a wide range of practical applications, including light

guiding [1], manipulation at nanoscale [2], biodetection
[3, 4], high-resolution optical imaging [5], optical switching
[6, 7], and many others [8].

We limit ourselves to plasmon excitation on metallic
surface in contact with photochromic polymer. There are
many ways to excite the SPP on a metal surface [9]: using
prism coupling in Otto or Kretschmann configurations,
near-optical field excitation, highly focused optical beam
technique, excitation on discontinuities, and imperfections
in metallic layers like holes, ridges, or their arrays. In this
work, we focused our attention to light coupling into SPP
occurring on a periodic array of corrugated polymer surface
and rectangular metallic ridges that could be fabricated on a
metal surface [10]. Light diffracted on periodic structures
can fulfill necessary conditions of momentum matching
with SPP and increase the plasmon excitation efficiency.
Grating excitation method limits the dispersion distribution
of excited SPP to a very narrow frequency range being
precisely defined by the grating parameters and metal
dielectric permittivity. Generally, grating structures offer a
possibility of tuning frequency of the excited SPP by
changing grating geometrical parameters, like grating
period, ridge height or grating duty factor [11], and
properties of dielectric medium. Recent studies [12] have
shown that an efficiency of SPP excitation by grating
method can reach ∼22%, what usually is sufficient for
experimental observations of plasmons as well as for
fabrication of plasmonic sensors [13] and light switching
devices [8]. In this work, we investigate the possibility of
SPP excitation on finite metal and polymeric gratings and
plasmon frequency shift caused by an external stimulus in
the form of light which changes the polymer refractive
index.
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Excitation of SPP and FDTD Method Description

Light coupling on the grating and subsequent excitation of
the SPP requires energy and momentum conservation of the
photon and surface plasmon polariton:

h�wlight ¼ h�wSPP; ð1Þ

k � sin qð Þ þ mK ¼ �b; ð2Þ
where k=2π/λ is a propagation vector of light, β is an SPP
propagation vector, K ¼ 2p=Λ is a wavevector of an infinite
grating and m is an integer number. The same conditions
must be fulfilled when the SPP is excited in a flat metallic
layer due to light diffraction on a surface relief grating (SRG)
formed in a thin polymeric layer deposited over the metal
surface. The surface relief grating on polymer layer can be
made by a holographic method, and in that case, its shape
could be described by a cosine function.

In fact, we performed calculations for a few different
shapes of ridges and found that differences are not
significant, therefore in this article we limit our study only
to sinusoidal shapes of the grating that can be easily
prepared by holographic laser illumination. In Fig. 1, we
schematically show the rectangular metallic grating over
bulk metal together with the chosen coordinate system and
grating (K), light (k), and SPP (βSPP) wavevectors. The
surface relief grating formed in a polymeric layer covering
the flat metal surface is also shown in Fig. 1. It is well-
known [8] that for a flat metal–dielectric interface, an SPP
wave vector β fulfills a dispersion equation:

b wð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"d � "m wð Þ
"d þ "m wð Þ

s

; ð3Þ

where εd is a dielectric permittivity of a polymer or air
assumed as nondispersive ones in the respective frequency
range and εm(ω) is a complex permittivity of a metal which
can be described within the Drude–Lorentz oscillator
approximation [8] as:

"m wð Þ ¼ "1 � w2
p
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where wp ¼
ffiffiffiffiffiffiffiffi

Ne2

"0me

q

is the plasma frequency and γ is the
dumping constant of a free electron gas, fj, ωj, γj are
strength, frequency, and dumping constants of the jth
Lorentz’s oscillator. We use the two-dimensional (2D)
finite-difference time-domain (FDTD) method with auxil-
iary differential equation for Lorentz-like media having
permittivity in the form given by an equation (Eq. 4). The
FDTD method relies on the numerical solving of the
Maxwell equations for electromagnetic wave propagation
on the so-called Yee grid based on the second-order central
differences [14]. The FDTD method is successfully used in
simulation of plasmonic and optical switching structures
[15–17].

In order to model the dielectric permittivity for pure gold
(Au) layer we used a dielectric permittivity at infinite
frequencies, plasma frequency, and damping coefficient as
given in Ref. [18, 19], i.e., ε∞=6.2136, ωp=1.3323×10

16

Hz, and γ=1.3235×1014 Hz. For the sake of simplicity (to
shorten calculation time) we limited metal permittivity just
to the Drude model, i.e., neglecting all Lorentz’s terms in
Eq. (4). We also assumed that the polymer layer is
dispersionless and lossless, so its dielectric permittivity is
constant and real, therefore for optical frequencies we took:
"d ¼ n2d where nd is a refractive index of the polymer.

The 2D structure is covered with the uniform Yee grid.
The period of the Yee grid is dx=dy=5 nm and the time
period, dt=10−17 s. The light source is taken as a sum of
linear monochromatic sources with wavelengths ranging
from 300 to 1,000 nm every 10 nm which are what defines
a discrete polychromatic light source. Incoming light
polarization is TM with a magnetic field component parallel
to the z-axis. The electromagnetic wave was calculated either
using Bloch boundary conditions for grating infinitely in the x
direction or without it for finite gratings having several ridges
along the x-axis. The structure is surrounded by the properly
chosen boundary conditions represented here by Berenger’s
perfect matching layers for uniaxial mediums with refraction
factor R=10−4 [14]. A light beam has been assumed to have a
Gaussian intensity profile in calculations of finite grating
structures and a flat profile in calculations of infinite gratings.

An example of SPP excitation in a finite grating
structure with EM field components calculated by the
FDTD method is shown in Fig. 2. The FDTD method gives

Fig. 1 Schematic view of metal
grating and surface relief grating
in polymer over a flat metal.
Momentum conservation condi-
tions of light coupling into SPP
on metal grating with left
(βLSPP) and right (βRSPP) SPP
propagation constants are given
as well
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a time dependence of the electric and magnetic field
components within the structure. In order to obtain results
in the function of wavelength, the Fourier transformation of
the electric or magnetic fields were calculated: H lð Þh i ¼
F HðtÞf g for the magnetic field or E? lð Þh i ¼ F E?ðtÞf g for
the electric field perpendicular to the metal surface, where
λ=2πc/ω is the light wavelength in the vacuum.

Results of Simulation of the SPP Excitation on Different
Gratings

The SPP resonance peak spectrum for a purely metallic
(Au) grating formed by rectangular protrusion ridges of Λ=
700 nm period is shown in Fig. 3. We calculated a magnetic
field strength in a small distance from the metal surface and
light source position which illuminated the sample at an
incidence angle θ=15°. The three main peaks correspond to
momentum conservation laws as shown in Fig. 3. The
central peak corresponds to the forward SPP propagation
with respect to the position of the light source while the
remaining two to the back SPP propagation. The absorption
of incident photon energy in metal makes the amplitudes of
the respective plasmons differ significantly depending on
their wavelengths λSPP. Plasmons could be excited in a flat
metal layer also due to light diffraction on a surface relief
grating made on the top of the photochromic polymer film.
It was interesting to compare, for the same light source, the
efficiency of SPP excitation on metal surface due to metal
ridges and due to surface relief of the same period inscribed
in the top of the polymer layer. The dielectric SRG has been
assumed to have a sinusoidal shape because such a shape
can easily be obtained in azo-substituted polymers by laser
holographic method [20]. In all simulations, the refractive
index of the photochromic polymer is assumed to be n=1.5.
Calculating the SPP excitation efficiency on metal grating
with a rectangular shape, we kept the same height of the
ridges h as was the amplitude of a relief grating.
Preliminary calculations of the electric field distribution in
metal–polymer–air (MPA) structure resulted in the obser-

vation of several resonances (cf. Fig. 4). Their appearance
is connected with light wave guiding properties of the
polymer layer itself. Therefore, it was necessary to
distinguish between purely electromagnetic wave-guided
p-polarized modes (dielectric modes) in polymer and true
SPP modes characteristic for the metal–dielectric interface.
To do this, we precisely calculated the light energy
distribution in the bulk of metal, polymer, and air after
the illumination of the structure with polychromatic light.
The structures were made of infinite thickness metal with a
polymer layer over it (having a mean thickness H from 100
to 1,000 nm and refractive index nd=1.5). Additionally, the
polymer layer had an infinite surface relief grating of period
Λ=500 nm with a relief amplitude of h=100 nm. For
comparative purposes, we calculated similar wave guiding
structures with air instead of a metal, i.e., classic air–
polymer layer–air (APA) planar waveguide. For structures
with relatively thick polymer layers H we have found a
series of well-defined modes (c.f. Fig. 4c) propagating at
various frequencies or wavelengths. Four among the modes
appeared both in the MPA and APA structures, what is
demonstrated in Fig. 4a, b. The profiles of field distribution
are characteristic for the lowest and subsequent higher
planar waveguide modes. We concluded that these modes
are not the SPP modes, but dielectric ones [21] and labeled
them from m0 to m3. Their characteristic wavelengths
evolved together with polymer thickness H (cf. Fig. 4c).
Exclusively for MPA structures, two additional modes
appear, which we consider as SPP ones: for λ=330 nm
and for λ=690–790 nm (cf. Fig. 4d inset). The former SPP
330 nm mode is highly confined in metal with very short
characteristic propagation distance L=(2 Im(β))−1 equal to
0.58 μm. The latter SPP mode is much less confined in the
metal, and its propagation distance is considerably larger,
L=11.66 μm. Both plasmonic modes have maximum of

Fig. 2 Plot of calculated electromagnetic field intensity of normally
incident light with wavelength in vacuum λ=600 nm coupled into the
SPP on the dielectric layer (n=1.5) with surface relief grating and a
flat metal surface underneath. Parameters of SRG are H=100 nm, h=
100 nm, and Λ=500 nm (cf. Fig. 1)

Fig. 3 Plot calculated by FDTD method. SPP resonance bands for
metal grating with a period of Λ=700 nm and at light incidence angle
θ=15°. For each band, a corresponding momentum conservation
relation is indicated
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electric field at the metal–dielectric interface and both
decay exponentially in the direction y perpendicular to the
metal and polymer interface. An electric field amplitude for
the SPP at 790 nm in the vicinity of the metal–polymer
interface in the function of distance y from the interface is

shown in Fig. 4d; the field penetration depths are dAu=
50 nm and dpolym=200 nm, respectively. In the forthcoming
calculations presented in this paper, we will investigate the
properties of the SPP mode characterized by a larger
propagation length, L.

Fig. 4 Calculated by FDTD method. Profiles of electric field
distribution in air–polymer–air (a) and metal–polymer–air (b) struc-
tures with H=950 nm. Modes labeled m0, m1, m2, and m3 are the
light-guided modes in the polymer layer. Dependence of the mode

frequency on the polymer layer thickness, H (c). The electric field
distribution close to the gold–polymer interface for SPP at 790 nm;
inset: electric field distribution profiles for two SPP modes (d)

Fig. 5 Plot of electric field amplitude perpendicular to the metal
surface F{E⊥} inside the infinite grating. Comparison of electric field
amplitudes for two exemplary grating periods Λ=400 nm and Λ=

550 nm (a) and dependence of excited SPP wavelength on period of
the grating Λ (b) for metallic and dielectric gratings
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In order to investigate the properties of SPP excited via
SRG grating inscribed on a polymer surface and directly on
a metal grating, we performed numerical investigations for
the case of finite gratings having only N=8 ridges and
infinite gratings to which the Bloch boundary conditions
were applied. Calculations were performed for two exem-
plary grating periods Λ=400 nm and Λ=550 nm. For these
calculations, the constant grating parameters were kept:
ridge height, h=50 nm; polymer layer thickness, H=
100 nm; polymer refractive index, nd=1.5. The respective
results are gathered in Figs. 5 and 6. Upon analyzing them,
we have found that the same period of dielectric and metal
grating results in obtaining different wavelengths of SPP
excitation (cf. Fig. 5). For example, the SRG grating on the
dielectric with a period of Λ=400 nm couples the SPP at a
wavelength of λ=675 nm, and a metallic ridge grating of
the same period couples SPP at a much longer wavelength
of λ=745 nm. For a finite number of ridges, N=8, the

plasmon wavelength almost does not change, and efficien-
cies of its coupling for dielectric and metal gratings are
comparable (cf. Fig. 6). Obviously, an increase of plas-
monic band width with respect to that observed for the
infinite grating case is observed.

Results are distinctively different when infinite gratings
are involved. The coupled SPP wavelengths agree with the
trend observed for the finite grating case, but large
differences can be observed in their electric field ampli-
tudes (cf. Fig. 5). Dielectric infinite grating couples light
into SPPs with ten times lower efficiency than does metal
grating (cf. Fig. 5a). However, the electric field measured
inside the grating (for the infinite grating this is the only
possibility) is composed of the SPP and light propagating
and scattered in all possible directions. Also, the infinitely
expanded light source can affect the results. Therefore, we
conclude that the observation of SPP at some distance after
the grating end should give more reliable results. In this

Fig. 6 Plot of electric field amplitude perpendicular to the metal
surface F{E⊥} for the finite grating at a constant distance from the
grating end. Comparison of electric field amplitudes for two
exemplary grating periods Λ=400 nm and Λ=550 nm (a) and

dependence of maximal field amplitude perpendicular to the metal
surface F{E⊥} of excited SPP on period of the grating Λ (b) for
metallic and dielectric gratings

Fig. 7 a Plot of electric field amplitude perpendicular to the metal
surface F{E⊥} peak at a constant distance from the grating. SPP was
coupled via dielectric grating, Gaussian beam diameter, D=3 μm. b

Plot of maximal perpendicular component of electric field F{E⊥} and
FWHM of excited SPP band for two Gaussian beam diameters, D=
3 μm (solid line) and D=6 μm (dashed line)
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case, the SPP excitation efficiency is similar for metal and
polymer gratings—what is shown in Fig. 6a, b.

Furthermore, using the FDTD method, we investigated
how the number of ridges influences the coupled SPP peak
shape, e.g., its intensity and spectral width. The exemplary
SPP bands calculated for the different number of ridges are
shown in Fig. 7. One can notice that for N=6, an SPP peak
is already well characterized. In Fig. 7b, we plotted the SPP
peak intensity and the full width at half maximum (FWHM)
of the band in function of a number of ridges for excitation
with two different Gaussian light beams with diameters,
D=3 μm and D=6 μm, respectively. It can be seen that the
SPP peak intensity reaches the maximum value for a certain
number of ridges, N, which are related to the diameter D
of the light beam. Let us define this number of ridges as
the efficient number (EN) of ridges and the cumulative
length corresponding to it as the efficient length (EL) of
the grating. We suppose that for the EN ridges, the
efficiency of SPP coupling and reflection plus decoupling
are equal. Any supplementary ridge makes that reflection
or/and decoupling of SPP start to dominate. The FWHM
decreases with the number of ridges and reaches a minimal
value that depends on the excitation beam radius or more
precisely on the EN. For the most effective coupling, the
EL of grating is larger than the used Gaussian beam
diameter. For D=3 μm, the beam diameter EN=12 and
EL=6 μm; for D=6 μm, EN=24 and EL=12 μm. It can
be seen that the EN and EL scale linearly with the
Gaussian beam diameter D, and EL is about two times
larger than D.

By the FDTD method, we have shown that the
wavelength of the coupled SPP is nearly a linear function
of the nd refractive index of the polymer layer. In the range
of 1.45–1.6, the SPP wavelength shifts from 680 nm to
770 nm for Λ=500 nm.

In conclusion, we have presented a numerical investiga-
tion of the excitation of surface plasmon polaritons using
infinite and finite grating inscribed in a polymer layer
deposited over a flat gold surface. The geometrical
parameters of the gratings have been optimized for the
enhanced excitation of SPP showing that a grating
amplitude of less than 100 nm is sufficient for an effective
light coupling into plasmon excitation even for a small
number of ridges not exceeding ten. The excitation
efficiency of SPP for finite dielectric grating is comparable
with similar gratings made in metal. Studies of SPP
excitation on a different number of ridges show that light
beam diameter and number of ridges should carefully be
adjusted to achieve efficient SPP excitation.
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