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The accurate and efficient segmentation of coronary arteries in X-ray angiograms represents an essential task for computer-aided
diagnosis. This paper presents a new multiscale Gaussian-matched filter (MGMF) based on artificial neural networks. The
proposed method consists of two different stages. In the first stage, MGMF is used for detecting vessel-like structures while
reducing image noise. The results of MGMF are compared with those obtained using six GMF-based detection methods in
terms of the area (Az) under the receiver operating characteristic (ROC) curve. In the second stage, ten thresholding methods of
the state of the art are compared in order to classify the magnitude of the multiscale Gaussian response into vessel and
nonvessel pixels, respectively. The accuracy measure is used to analyze the segmentation methods, by comparing the results with
a set of 100 X-ray coronary angiograms, which were outlined by a specialist to form the ground truth. Finally, the proposed
method is compared with seven state-of-the-art vessel segmentation methods. The vessel detection results using the proposed
MGMF method achieved an Az = 0 9357 with a training set of 50 angiograms and Az = 0 9362 with the test set of 50 images. In
addition, the segmentation results using the intraclass variance thresholding method provided a segmentation accuracy of
0 9568 with the test set of coronary angiograms.

1. Introduction

Coronary angiography is the standard X-ray imaging proce-
dure used by cardiologists in diagnosing and monitoring vas-
cular abnormalities. In recent years, the development of
computational methods to perform image analysis along
with computer-aided diagnosis (CAD) has begun to attract
more attention. Automatic segmentation of coronary arteries
is the main image processing step in cardiology CAD systems
and is also a challenging and complex task. The main disad-
vantages in X-ray angiograms are the uneven illumination
and weak contrast between coronary arteries and image
background. Given that these two disadvantages generate
multimodal histograms, the segmentation task has been
commonly addressed in two stages: vessel enhancement also

called detection and binary classification also known as seg-
mentation. The first stage is performed to enhance vessel-
like structures from the image background while removing
image noise, and the second stage focuses on using a soft clas-
sification method to differentiate vessel and nonvessel pixels.

Since the automatic coronary artery segmentation stage is
an essential task for a number of CAD systems, different
computational methods have been introduced for this
purpose. In literature, several techniques for working in the
spatial image domain with diverse types of vessel detection
strategies have been reported. The most basic strategy is
based on mathematical morphology [1–5], where the top-
hat operator represents the main idea of these methods,
obtaining a low performance to detect small vessels. Another
types of vessel detection methods are based on the
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eigenvalues of the Hessian matrix to compute a vesselness
measure [6–11]. However, because the Hessian matrix is
based on the second-order derivative of a Gaussian kernel,
the detection performance can be highly sensitive to noise.

On the other hand, based on the idea of a Gaussian
kernel, the Gaussian-matched filters (GMF) [12] were intro-
duced and have been successfully applied in different prob-
lems such as image registration [13, 14], retinal vessel
detection [15–17], and coronary artery detection [18, 19].
The GMF method is based on a Gaussian template matching
used for the detection of vessel-like structures at different ori-
entations. GMF works on the assumption that by using a
Gaussian curve, the shape of vessel-like structures can be
approximated. To form the Gaussian template, four different
parameters have to be tuned. The main parameter is the
continuous σ value that represents the spread of the inten-
sity profile. The remaining three parameters are defined in
the discrete domain. The parameter L is the length of the
vessel segment to be processed, T is the position where the
Gaussian curve trails will cut, and κ represents the number
of orientations in the directional filter bank.

The detection performance of the GMF is directly related
to the appropriate selection of the parameter values. Chaud-
huri et al. [12] establish the following parameters: σ = 2 0,
T = 13, L = 9, and κ = 12. Kang et al. [18–21] modified the
number of oriented filters (κ = 6) along with the σ parameter
to adapt the GMF to the coronary artery detection problem.
Cinsdikici and Aydin [16] increased the number of oriented
filters κ = 18. To avoid empirical values, Al-Rawi et al.
[15, 22] proposed a search space to establish a training step
by using an exhaustive search and genetic algorithms, respec-
tively. The search space was used to set the L, T , and σ param-
eters in the retinal vessel detection problem. Cruz et al. [23]
introduced a comparative analysis of four nature-inspired
algorithms to obtain the optimal set of parameters of the
GMF, tobeapplied inautomaticdetectionof coronary arteries.

In general, the state-of-the-art GMF-based methods
mentioned above assume that by using the average width of
blood vessels to form a single-scale GMF, all the vessels in
the input image can be detected. To overcome this disadvan-
tage, in the present work, a novel multiscale Gaussian-
matched filter (MGMF) based on artificial neural networks
is introduced. The proposed method consists of detection
and segmentation steps of coronary arteries in X-ray angio-
grams. In the detection step, MGMF is used to improve the
contrast of blood vessels, and it is compared with six GMF-
based methods in terms of the area (Az) under the ROC
curve. In the segmentation step, a comparative analysis of
ten thresholding methods of the state of the art is performed
using the multiscale Gaussian filter response. Finally, the seg-
mentation results of the proposed method are compared and
discussed with those obtained using seven specialized vessel
segmentation methods in terms of the accuracy measure.

The remainder of this paper is organized as follows. In
Section 2, the fundamentals of the Gaussian-matched filters,
artificial neural networks, and the proposed MGMF method
are described in detail. The experimental results are pre-
sented and discussed in Section 3, and conclusions are given
in Section 4.

2. Methods

Given the suitable performance of the Gaussian-matched fil-
ters for detecting coronary arteries in X-ray angiograms, a
new multiscale Gaussian-matched filter based on a multi-
layer neural network is proposed in the present work; this
method is described in detail in the present section.

2.1. Gaussian-Matched Filters. The Gaussian-matched filters
(GMF) were originally proposed by Chaudhuri et al. [12]
for detecting vessel-like structures in medical imaging. The
main idea behind the GMF is to approximate the shape of
vessel-like structures in the spatial image domain by applying
a Gaussian template. This template is formed by a Gaussian
curve, which can be defined as follows:

G x, y = −exp −
x2 + y2

2σ2
, y ≤

L
2
, 1

where the variable L is used to set the length in pixels of the
vessel segment to be detected, and σ represents the average
width of the vessel-like structures. To establish the width in
pixels of the matching template, a discrete parameter T must
be introduced to define the position where the Gaussian
curve trails will cut.

Since the vessel-like structures can appear at different
orientations, the Gaussian kernel G x, y can be also rotated
by using a geometric transformation at different angles θ
as follows:

κ =
cos θi −sin θi

sin θi cos θi
, 2

where κ represents the number of evenly spaced directional
filters κ = 180/θ in the range −π/2, π/2 . To obtain the
Gaussian filter response, these oriented kernels are convolved
with the input image, and the pixels with maximum response
over all orientations are preserved.

On the other hand, a tuning step for the four GMF
parameters plays an essential role for each application. In
Figure 1, an X-ray angiogram along with the ground truth
image outlined by a specialist is illustrated. Figure 1(c) pre-
sents the Gaussian filter response obtained using the param-
eter values proposed by Chaudhuri et al. [12] (σ = 2 0, L = 9,
T = 13, and κ = 12). Figures 1(d)–1(f) present the Gaussian
matching templates with the aforementioned values and with
θ = 0∘, θ = 45∘, and θ = 90∘, respectively.

2.2. Artificial Neural Networks. Artificial neural networks
(ANN) are machine learning techniques inspired by neuron
connections in the brain and they are commonly used for
classification problems. ANN consists of multiple computing
units that resemble to biological neurons connected in a net-
work capable of approximating unknown functions [24].
This network consists of multiple computing units, also
called artificial neurons, which perform the weighted sum
of their corresponding inputs to be evaluated into an activa-
tion function [25]. For each artificial neuron, the evaluation
of the activation function is passed as an input for following
computing units in the network. This computing units can be
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arranged in layers that receive the same inputs but use dif-
ferent weights. For a single layer, the weights can be
arranged into a matrix W of size n ×m, where n is the
number of neurons and m is the number of inputs in the
current layer. The computation of one ANN layer can be
seen as the evaluation of a matrix-vector product in the
continuous activation function g · as follows:

F x = g WTx , 3

where W is the matrix of weight values and x is the input
vector.

In classification problems, a threshold value for the acti-
vation function can be set in order to differentiate between
classes. However, the continuous evaluation of the activation
function can be used as an universal function approximator.

The performance of the ANN depends on the architec-
ture of the network defined by the number of layers. Each
layer contains a number of neurons which are defined by
an activation function and an associated weights vector.
Commonly, the weights are fitted through a training

process while the architecture and the activation functions
remain unchanged. For the training of the network
weights, the back-propagation method with gradient descent
has been widely employed [26]; however, other optimiza-
tion schemes inside the back-propagation step such as
Levenberg–Marquardt algorithm have proved to be more
efficient [27].

Figure 2 illustrates the architecture of an ANN with three
different layers. The first layer, also called input layer, con-
sists of m input values x = x1, x2,… , xm , where the input
information directly depends on the problem to be solved.
In the diagram, the second layer is conformed by n neurons:
1, 2,… , n with activation function g · , and it is called a
hidden layer because is not relevant to know the result of
the function g · for each neuron. The third layer contains
one neuron and has an activation function h · , and it is
called the output layer because it returns the evaluation value
of the input x in the function F · .

2.3. Proposed Multiscale Gaussian-Matched Filters. To over-
come the main disadvantage of the single-scale GMF-based

(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) Original X-ray coronary angiogram. (b) Ground truth of angiogram in (a). (c) Gaussian filter response applying 12
directional kernels on the angiogram in (a). (d), (e), (f) Gaussian templates with θ = 0∘, θ = 45∘, and θ = 90∘, respectively, as proposed
by Chaudhuri et al. [12].
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methods in detecting vessels of different calibers, the pro-
posed method takes advantage of Gaussian curves at different
scales in a predefined range σ = 1,… , n .

The flowchart of the proposed method is illustrated in
Figure 3. As it can be observed, the procedure of the proposed
MGMF vessel detection method consists of four different steps.
Firstly, a number of Gaussian scales σi ∣ i = 1, 2,… , n
must be defined to form a set of Gaussian matching tem-
plates. The set of Gaussian scales was determined by using a
global search on the training set of images in terms of the
area under the ROC curve. In the second step, the Gaussian
templates at different values of the σ parameter are gener-
ated in order to be convolved with the X-ray angiogram
input images. Each template is formed according to the T
and L parameters and rotated using the number of direc-
tional filters κ with angular resolution θ. Since the ANNs
represent a supervised machine learning technique, in the

third step, the resulting Gaussian filter responses and the
ground truth images can be arranged as an input data
matrix of n columns and label vector, respectively. Finally,
in the last step of the proposed method, the ANN is trained
by a predefined number of hidden layers (the ANN archi-
tecture is discussed in Section 3.1). From the ANN, the
resulting image represents the vessel detection response,
which can be evaluated using a ground truth image and a
metric for binary classification.

In the present work, the area (Az) under the ROC curve is
used to select the most suitable set of parameters for the ANN
as well as to assess their performance in vessel detection using
the training set of angiograms. This measure is explained in
the following Section 2.4.

2.4. Evaluation Metrics. To assess the performance of the
vessel enhancement and vessel segmentation methods,
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Figure 2: Representation of an artificial neural network with one layer of m input values, a hidden layer with activation function g · and n
neurons, and an output layer with one neuron and activation function h · .
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Figure 3: Flowchart of the proposed MGMF vessel detection method.
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the area (Az) under the receiver operating characteristic
(ROC) curve for gray-scale images and the accuracy met-
ric for binary images have been adopted in this work.

Both evaluation measures are in the range 0, 1 , where
the value 1 is acquired when the vessel pixels and back-
ground image obtained from the computational experiments
are completely superimposed with the ground truth pro-
vided by the specialist; otherwise, the obtained value corre-
sponds to 0.

The ROC curve is a measure that evaluates the perfor-
mance of a classification method. This measure is a plot of
the true-positive fraction (TPF) also called sensitivity and
the false-positive fraction (FPF). TPF represents the rate
of correctly classified pixels (vessel pixels) and FPF repre-
sents the rate of nonvessel pixels incorrectly classified by
the computational method. To compute the ROC curve,
a sliding threshold over the gray-scale filter response is
computed, and the area Az under the curve is calculated
through the Riemann sum method.

The accuracy measure [28] has been widely used to eval-
uate the performance of binary classifiers; consequently, it
has been adopted to assess the performance of the vessel seg-
mentation results (binary images). This measure is defined as
the rate of correctly classified pixels regarding the number of
pixels in the input image as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, 4

where TP and TN represent the subsets of correctly classified
vessel and nonvessel pixels, respectively, and FN and FP rep-
resent the subsets of incorrectly classified pixels.

In Section 3, the vessel segmentation results obtained
from the proposed MGMF method using a database of 100
X-ray angiographic images are analyzed by the evaluation
metrics.

3. Results and Discussion

In this section, the vessel enhancement and segmentation
results obtained from the proposed MGMF method are pre-
sented and analyzed. The computational experiments of the
MGMF method based on an artificial neural network were
implemented on a computer with an Intel Core i3, 4GB of
RAM, and a 2.13GHz processor using the Matlab software
version 2016a.

The database of gray-scale images used in the present
work consists of 100 X-ray coronary angiograms of size
300 × 300 pixels from different patients. Each angiogram
was outlined by a specialist to form the ground truth
images for evaluation purposes. An ethics approval letter
was provided by the Mexican Social Security Institute,
UMAE Leon. In the experiments, the whole set of X-ray
angiograms was divided into the training and testing sets
with 50 images in each one in order to assess the vessel
enhancement and segmentation methods.

3.1. Optimization of the ANN Architecture. A four layered
ANN is proposed to detect coronary arteries using the multi-
scale Gaussian filter response of the X-ray coronary

angiograms. The first layer is the input layer, which receives
the responses of the GMF at 10 different σ values. The second
and third layers are hidden layers, which respective number
of neurons is defined through an optimization process,
described later on this section. The fourth layer is the output
layer, responsible for generating the MGMF response.

Considering that the performance of the proposed
ANN rely on the two hidden layers, an exhaustive search
was used to define the number of neurons inside each of
them. The search was performed within the space: n1st,
n2nd ∈ 1, 2,… , 10 , where n1st and n2nd are the number
of neurons inside the first and second hidden layers, respec-
tively. The objective of the exhaustive search was to design
the optimal ANN architecture, which must maximize the
area under the ROC curve (Az) using the multiple responses
of the MGMF in the training set of angiograms. The param-
eters of the MGMF were assigned as l = 13 and T = 15, using
K = 12 kernel orientations. Those parameters were defined
according to the design of the GMF obtained by Cruz et al.
[23], using a nature-inspired algorithm to optimize the l, T ,
and σ parameters, which reported a high detection perfor-
mance. The average width of the vessels σ on the proposed
MGMF is defined in the range: 1 5,1 6,… , 2 5 , giving a
multiscale approach to the detection method. The search
space of the Az values with respect to the number of neurons
inside the two hidden layers is illustrated in Figure 4.

From the exhaustive search results, the optimal ANN
architecture was designed to use 3 neurons in the first hidden
layer and 8 in the second hidden layer. This optimal architec-
ture will be referred as ANN(3-8) in the remaining of this
article. Table 1 presents a statistical analysis of the proposed
MGMF/ANN(3-8) behaviour in the training set of coronary
angiograms. The statistical results show a high robustness
of the MGMF/ANN(3-8) method according to the low stan-
dard deviation of its performance after 30 runs.

3.2. Results of Vessel Enhancement. Table 2 presents a com-
parative analysis between the resulting performance of the
proposed MGMF/ANN(3-8) method and six GMF-based
methods from the state of the art. In this analysis, the
whole set of coronary angiograms was used. The analysis
was performed using 7 methods. First, the proposal by
Chaudhuri et al. [12] was that the authors defined the GMF
parameters experimentally as l = 9, σ = 2 0, and T = 13, with
κ = 12 orientations. The approach of Cinsdikici and Aydin
[16] uses the same set of parameters as proposed by Chaud-
huri et al. [12], but changes the number of kernel orientations
to κ = 18 in order to increase the range of directions of the
GMF response. The method of Kang et al. [18, 20, 21]
defines the GMF parameters as l = 9, T = 13, and κ = 6
and modifies σ to 1 5 according to the experiments per-
formed by the authors. The approach of Al-Rawi et al.
[15, 22] proposes the GMF parameters optimization through
a full search and later through a genetic algorithm. The
search space defined by Al-Rawi et al. [15, 22] was established
as l = 7,7 1,… , 11 , T = 2,2 25,… , 10 , σ = 1 5,1 6,… , 3 ,
and keeping κ = 12 orientations. The method of GMF-Evol
[23] compared four algorithms from the evolutionary
computation family and defined the parameters for the
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GMF as the optimal set obtained by the differential evolu-
tion algorithm within the search space of l = 8, 9,… , 15 ,
T = 8, 9,… , 15 , σ = 1,1 01,… , 5 , and keeping κ = 12
kernel orientations. Finally, the method GMF-Entropy [19]
replaced the area (Az) under the ROC curve with a nature-
inspired optimization algorithm by using an entropy-based
objective function for the GMF parameter optimization.

According to the comparative analysis of the computa-
tional experiments, the method GMF-Entropy [19] pre-
sented the lowest detection performance in both image
sets. Also, it can be noticed that the methods of Kang et al.
[18, 20, 21], Chaudhuri et al. [12], and Cinsdikici and Aydin
[16] that defined the GMF parameters experimentally pre-
sented a similar behaviour. The methods of Al-Rawi et al.
[15, 22] and GMF-Evol [23] that searched the optimal
parameters for the GMF show a slight increment on the Az

response. Moreover, the proposed method achieved the best
detection with an Az rate of 0 9357 in the training set and
0 9362 in the testing set of coronary angiograms.

The vessel detection response of the six GMF-based
methods and the proposed MGMF/AN(3-8) are presented
in Figure 5 for a subset of five coronary angiograms from
the testing set. The MGMF/ANN(3-8) responded with a
greater visible contrast between the detected coronary artery
and the background than the comparative GMF methods.

3.3. Results of Vessel Segmentation. The extraction of the cor-
onary artery is completed through the classification of the
MGMF response into vessel and nonvessel pixels. The classi-
fication of the detection response has been commonly carried
out by a thresholding algorithm, which defines a limit value
with the purpose of separating the vessel pixels from the
background image. In order to take advantage of the high
detection performance of the MGMF response, ten different
thresholding methods from the state of the art were tested
with the interest of defining the ideal coronary artery seg-
mentation method.

Methods based on the entropy, such as the method of
Kapur et al. [29] and the method of Pal and Pal [30], optimize
the location of the value t which separates the histogram of
the gray-scale image into two classes, with the objective of
maximize the entropy of the two resulting classes. The
moment-preserving method introduced by Tsai [31] assumes
that the first three moments of the resulting binary image
must be preserved. The threshold value t is defined as the
location in the histogram of the gray-scale image which
solves four predefined equations. The method of Rosenfeld
and De la Torre [32] referred as the histogram concavity
algorithm, which works with the convex hull of the

Table 1: Statistical analysis using 30 runs of the MGMF over the training set of X-ray angiograms.

Method Maximum Minimum Mean Std. dev. Median

MGMF/ANN(3-8) 0.9357 0.9155 0.9203 0.002 0.9169

Table 2: Comparative analysis of vessel detection performance
using the training and testing sets in terms of the area under the
ROC curve.

Area under ROC curve (Az)

Vessel detection method Training set Testing set

GMF-Entropy [19] 0.8849 0.8812

Kang et al. [18, 20, 21] 0.8901 0.8852

Chaudhuri et al. [12] 0.9012 0.8963

Cinsdikici and Aydin [16] 0.9087 0.9002

Al-Rawi et al. [15, 22] 0.9104 0.9123

GMF-Evol [23] 0.9142 0.9171

Proposed method (MGMF) 0.9357 0.9362
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histogram of the gray-scale image. The threshold value t is
defined as the location of the local maxima of the difference
between the convex hull and the image histogram. The
Rutherford-Appleton threshold selection (RATS) method
[33] defines a maximum gradient image from the deriva-
tives in the x and y directions of the input image. The
threshold value t is defined as the division of the sum of
every element of the dot product between the maximum

gradient image and the input image, divided by the sum
of every element of the maximum gradient image. In a
probability distribution approach, the method of Otsu
[34] proposes the selection of the threshold value t as
the location in the histogram of the gray-scale image
which maximizes the between-class variance of the result-
ing two classes. In a similar approach, Ridler and Calvard
[35] model the two classes of the binary image using two

Figure 5: First row: subset of angiograms from the test set. Second row: ground truth of images. The remaining seven rows present the GMF
response of the methods of GMF-Entropy [19], Kang et al. [18, 20, 21], Chaudhuri et al. [12], Cinsdikici and Aydin [16], Al-Rawi et al.
[15, 22], GMF-Evol [23], and the proposed method (MGMF), respectively.
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Gaussian distributions. The resulting classes are separated
by a threshold value t, defined as the average of the loca-
tion parameters of the two Gaussian distributions, which
are estimated through an iterative search. The method of
White and Rohrer [36] classify each pixel using a local
threshold value, which is defined as the expected intensity
value of the corresponding neighborhood. Niblack [37]
proposed the use of a similar neighborhood-defined
threshold value, which also considers the local standard
deviation. Finally, the method of Sauvola and Pietikäinen
[38] defines a threshold value for each pixel according to
the magnitude of the local standard deviation. This
approach increases the threshold value for neighborhoods
with low spread of the intensity and decreases the thresh-
old value in neighborhoods with high standard deviation.

Table 3 presents the accuracy of the ten thresholding
methods; the MGMF response of the testing set of
angiograms was used as input. The comparative analysis
shows that the thresholding method proposed by Otsu
[34] produces the most accurate segmentation among
the ten comparative methods; therefore, the method of
Otsu [34] is used to binarize the MGMF response in
further analysis.

The proposed MGMF/Otsu method for coronary artery
segmentation was compared with seven vessel segmentation
methods from the state of the art using the testing set of cor-
onary angiograms. Table 4 presents the comparative analysis
of the vessel segmentation accuracy of the proposed MGMF/
Otsu method and seven state-of-the-art methods. The exper-
imental results of the comparative analysis show that the
MGMF/Otsu outperforms the state-of-the-art methodolo-
gies in terms of the vessel extraction accuracy.

Finally, the execution time of the proposed MGMF/
Otsu method and the seven state-of-the-art methods is
shown in Table 5. The methods of Eiho and Qian [1]
and Chanwimaluang et al. [13, 14] present the two lower
execution times; however, those methods also produce
low accurate segmentation of the coronary arteries from
the testing set. The methods of Li et al. [9] and Wang
et al. [8] were executed, respectively, in the third and
fourth lower times, although those methods performed

similarly and obtained an accuracy below to 94%. The
proposed MGMF/Otsu method provides the best trade-
off between accuracy and computational time, according
to the experimental results, with an execution time of
1 73 seconds.

Figure 6 shows the segmentation responses of the pro-
posed MGMF/Otsu method and the seven state-of-the-art
methods. The methods of Tsai et al. [10], Li et al. [9],
and Chanwimaluang et al. [13, 14] present a high number
of false positives, represented by the white pixels classified
as vessels that are absent in the ground truth. Conversely,
the methods of Kang et al. [21], Wang et al. [8], and Kang
et al. [18] fail to extract thin vessels that are present in the
ground truth, producing a high rate of false negative pixels.
By visual examination of the Eiho and Qian [1] method
responses, it noticed the presence of jagged edges, which
reduce the segmentation accuracy. On the other hand, the
segmentation responses of the proposed MGMF/Otsu
method present smooth edges with an acceptable compro-
mise of true-positive and false-negative pixels.

The comparative results of the performed experi-
ments suggest that the proposed MGMF/Otsu method
is robust for the coronary arteries detection and is capable
of providing accurate segmentations from X-ray coronary
angiograms, within a competitive computational time. The
efficiency of the proposed MGMF/Otsu method encourages
its usage to aid the decisions making in the medical practice.

Table 3: Comparative analysis of ten thresholding methods of the
state of the art using the multiscale Gaussian response over the
test set of X-ray angiograms.

Thresholding method Accuracy

Otsu [34] 0.9568

Moments [31] 0.9561

Ridler and Calvard [35] 0.9560

RATS [33] 0.9533

Kapur et al. [29] 0.9514

Sauvola and Pietikäinen [38] 0.9290

Histogram concavity [32] 0.9254

Pal and Pal [30] 0.8982

Niblack [37] 0.8644

White and Rohrer [36] 0.8304

Table 4: Comparative analysis of the proposed method (MGMF)
with respect to seven state-of-the-art vessel segmentation methods
using the test set of 50 X-ray images.

Segmentation method Accuracy

MGMF/Otsu 0.9568

Kang et al. [21] 0.9417

Tsai et al. [10] 0.9402

Li et al. [9] 0.9394

Wang et al. [8] 0.9386

Eiho and Qian [1] 0.9271

Chanwimaluang et al. [13, 14] 0.9150

Kang et al. [18] 0.8843

Table 5: Average execution time for the proposed method as
compared with to the state-of-the-art segmentation methods using
the test set of angiograms.

Segmentation method Execution time (seconds)

MGMF/Otsu 1.73

Kang et al. [21] 2.51

Tsai et al. [10] 1.91

Li et al. [9] 1.52

Wang et al. [8] 1.63

Eiho and Qian [1] 1.05

Chanwimaluang et al. [13, 14] 1.24

Kang et al. [18] 2.01
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4. Conclusion

In this paper, a novel method based on multiscale Gaussian-
matched filters and artificial neural networks approach has
been introduced. The statistical results show the robustness
of the optimal architecture found for the ANN, which uses
3 neurons in the first hidden layer, and 8 neurons in the
second. The optimal design reached a detection rate of

0 9357 in terms of the area (Az) under the ROC curve,
using the training set of 50 angiograms. Further analysis
showed that the proposed MGMF/ANN(3-8) method per-
forms better than six GMF-based methods from the state
of the art, presenting an Az = 0 9362 using the testing set
of 50 images. The segmentation of the MGMF/ANN(3-8)
response carried out by the thresholding method of Otsu
[34] has proven to be the most efficient from ten of the

Figure 6: First row: subset of angiograms from the test set. Second row: ground truth of images. The remaining eight rows present the
segmentation results of the proposed MGFM method, Kang et al. [21], Tsai et al. [10], Li et al. [9], Wang et al. [8], Eiho and Qian [1],
Chanwimaluang et al. [13, 14], and Kang et al. [18], respectively.

9Journal of Healthcare Engineering



state-of-the-art segmentation techniques. According to the
experimental results, the application of an artificial neural
network of optimal architecture, over the responses of
the multiscale Gaussian-matched filters, and the subse-
quent threshold of the response by the Otsu’s method pro-
vide the most accurate segmentation of the coronary
artery, with a correspondence of 0 9568, in a competitive
execution time of 1 73 seconds.
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