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Abstract
Current limitations in quantitatively predicting biological behavior hinder our efforts to engi-

neer biological systems to produce biofuels and other desired chemicals. Here, we present

a new method for calculating metabolic fluxes, key targets in metabolic engineering, that

incorporates data from 13C labeling experiments and genome-scale models. The data from
13C labeling experiments provide strong flux constraints that eliminate the need to assume

an evolutionary optimization principle such as the growth rate optimization assumption

used in Flux Balance Analysis (FBA). This effective constraining is achieved by making the

simple but biologically relevant assumption that flux flows from core to peripheral metabo-

lism and does not flow back. The new method is significantly more robust than FBA with

respect to errors in genome-scale model reconstruction. Furthermore, it can provide a com-

prehensive picture of metabolite balancing and predictions for unmeasured extracellular

fluxes as constrained by 13C labeling data. A comparison shows that the results of this new

method are similar to those found through 13C Metabolic Flux Analysis (13C MFA) for central

carbon metabolism but, additionally, it provides flux estimates for peripheral metabolism.

The extra validation gained by matching 48 relative labeling measurements is used to iden-

tify where and why several existing COnstraint Based Reconstruction and Analysis

(COBRA) flux prediction algorithms fail. We demonstrate how to use this knowledge to

refine these methods and improve their predictive capabilities. This method provides a reli-

able base upon which to improve the design of biological systems.

Author Summary

While metabolic fluxes constitute the most direct window into a cell’s metabolism, their
accurate measurement is non trivial. The gold standard for flux measurement involves
providing a labeled feed where some of the carbon atoms have been substituted by isotopes
with higher atomic mass (13C instead of 12C). The ensuing labeling found in intracellular
metabolites is then used to computationally infer the metabolic fluxes that produced the

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004363 September 17, 2015 1 / 34

OPEN ACCESS

Citation: García Martín H, Kumar VS, Weaver D,
Ghosh A, Chubukov V, Mukhopadhyay A, et al.
(2015) A Method to Constrain Genome-Scale Models
with 13C Labeling Data. PLoS Comput Biol 11(9):
e1004363. doi:10.1371/journal.pcbi.1004363

Editor: Costas D. Maranas, The Pennsylvania State
University, UNITED STATES

Received: February 17, 2015

Accepted: May 29, 2015

Published: September 17, 2015

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced, distributed,
transmitted, modified, built upon, or otherwise used
by anyone for any lawful purpose. The work is made
available under the Creative Commons CC0 public
domain dedication.

Data Availability Statement: All experimental data
were obtained from Toya et al.: "13C-metabolic flux
analysis for batch culture of Escherichia coli and its
pykand pgigene knockout mutants based on mass
isotopomer distribution of intracellular metabolites".
Biotechnology progress 26: 975{992.

Funding: This work conducted by the Joint
BioEnergy Institute was supported by the Office of
Science, Office of Biological and Environmental
Research, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. JDK has
financial interests in Amyris and Lygos. The funders
had no role in study design, data collection and

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004363&domain=pdf
https://creativecommons.org/publicdomain/zero/1.0/


observed pattern. However, this procedure is typically performed with small metabolic
models encompassing only central carbon metabolism. The genomic revolution has
afforded us easily available genomes and, with them, comprehensive genome-scale models
of cellular metabolism. It would be desirable to use the 13C labeling experimental data to
constrain genome-scale models: these data constrain fluxes very effectively and provide in
the labeling data fit an obvious proof that the underlying model correctly explains mea-
sured quantities. Here, we introduce a rigorous, self-consistent method that uses the full
amount of information contained in 13C labeling data to constrain fluxes for a genome-
scale model where underlying assumptions are explicitly stated.

Introduction
Systems biology aims to understand and predict how a cell’s behavior emerges from the interac-
tion of its molecular parts [1–3]. Determination of metabolic fluxes (i.e., the number of metabo-
lites traversing each biochemical reaction per unit time [4, 5]) is crucial to this effort because
they map how carbon and electrons flow through metabolism to enable cell function [2, 5].

Metabolic fluxes typically cannot be measured directly, but must be inferred from experi-
mental data through computational algorithms [4]. Among the most popular methods for
studying metabolic fluxes are Metabolic Flux Analysis (MFA, [6, 7]), Flux Balance Analysis
(FBA, [8]) and 13C Metabolic Flux Analysis (13C MFA, [4, 5, 9]). MFA calculates fluxes by
using a stoichiometric model for the major intracellular reactions and assuming no metabolite
accumulation [6]. The inputs are extracellular fluxes obtained through measurements of exter-
nal concentrations of metabolites such as glucose or lactate as a function of time. If more flux
measurements are available than degrees of freedom, the system is said to be overdetermined
and a unique solution can be obtained. In the opposite case, the system is underdetermined
and several flux profiles are compatible with the experimental data. MFA has been used to
study fluxes in (e.g.) chinese hamster ovary [10], S. cerevisiae [11] and hybridoma cells [12].

Present-day FBA enhances MFA by expanding the network to include all reactions in metab-
olism, or at least as many as can be inferred from the genome through a metabolic reconstruc-
tion that yields a genome-scale stoichiometric model [13]. Since the degrees of freedom for
such a model are usually over a hundred and measured fluxes are usually an order of magnitude
less, the system is grossly underdetermined. Hence, fluxes are determined through linear pro-
gramming (LP) by assuming that metabolism is tuned, due to evolutionary pressure, to maxi-
mize growth rate (typically; but see Schuetz et al. [14] for other suggested alternatives). The use
of this objective function to interpret stoichiometric models is a key feature of FBA, even when
stoichiometric models were not genome-scale. FBA forms the basis of a family of flux analysis
methods named COnstraint-Based Reconstruction and Analysis (COBRA) methods [15], some
of which can be used to produce flux predictions which are often used in bioengineering. These
predictions can be full (when fluxes are determined without data from the actual experiment
[16]) or partial (when some data from the experiment, like glucose consumption, is used for the
prediction [17]), qualitative (e.g., prediction of whether an organism will grow or not under
given conditions [18]) or quantitative (e.g., the value of the flux is predicted [19]). Full predic-
tions are particularly useful for bioengineering purposes since they enable quick testing of the
consequences of engineering approaches [20]. These methods have been used to facilitate the
large-scale industrial production of 1,4-butanediol, a commodity chemical used to manufacture
over 2.5 million tons annually of high-value polymers [21]. Recently, this rationally developed
strain was used for a 5 million pound commercial production [22], and BASF has licensed this
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strain for future production of renewable 1,4-butanediol [23]. FBA has applications beyond bio-
engineering, including the prediction of ratios of microbial species in a simple microbial com-
munity [24] and providing valuable insights into tumor cell metabolism [25, 26].

13C MFA improves on MFA by using data obtained from 13C substrate labeling experiments
together with a limited reaction stoichiometry and measured extracellular fluxes to measure
intracellular fluxes. In these experiments, the organism under study is grown on 13C labeled
substrate and the labeling pattern (i.e., the fraction of molecules with 0,1,2,. . . 13C atoms incor-
porated or Mass Distribution Vector, MDV [27]) is measured for a set of metabolites. Since the
labeling pattern is highly dependent on the flux profile, it is possible to back-calculate the fluxes
that best explain the measured labeling pattern if we know the fate of each carbon atom (car-
bon transitions, see [9]) for all reactions in the model. This involves a nonlinear fitting problem
where the fluxes are the parameters. The usual approach is to consider only a small subset of all
metabolism assumed to be comprehensive enough to explain the labeling of the measured
metabolites, typically central carbon metabolism [28, 29]. Hence the model exhibits relatively
few degrees of freedom that can be fully constrained by the labeling data. 13C MFA has found
applications in metabolic engineering [30], biotechnology [31] and biomedicine [32].

Each of these methods involves its own advantages and disadvantages. Unlike 13C MFA,
FBA uses the comprehensive description of metabolism contained in a genome-scale model
and explicitly takes into account the system-wide balances of metabolites that can be crucial for
host engineering [33]. Because of the exhaustive description of metabolism incorporated in
genome-scale models, they often point towards completely unexpected regions of metabolism
involved in the studied processes. For example, these models have been used to show that bio-
synthesis and degradation of heme compensates for the lack of a functional TCA cycles in can-
cer cells [26]. Furthermore, FBA can be used in combination with COBRA methods to make
full predictions. 13C MFA, on the other hand, is a descriptive method for determining the meta-
bolic fluxes compatible with the accrued experimental data but does not postulate general prin-
ciples that can be used to make predictions for experiments that have not been performed.
However, 13C MFA does not rely on maximum growth assumptions, the general applicability
of which has been questioned [14, 34, 35] and shown to be inaccurate for engineered strains
that are not under long-term evolutionary pressure [17]. Moreover, the comparison of mea-
sured and fit labeling patterns provides a degree of validation and falsifiability that FBA does
not possess: an inadequate fit to the experimental data indicates that the underlying model
assumptions are wrong. In contrast, FBA produces a solution for almost any input.

Several attempts to combine the complementary virtues of 13C MFA and FBA have been
reported. For example, they have often been combined to test new FBA-based methods, since
13C MFA is considered to be the most authoritative determination of fluxes. Both Segrè et al
[16] and Yizhak et al [19] used 13C MFA to validate MOMA and IOMA, respectively. More
recently, Schuetz et al [14], used 13C MFA-derived fluxes to compare predictions from anMFA
model containing* 100 reactions and using different objectives, and also to demonstrate the
applicability of pareto optimality to predict fluxes [35]. Choi et al [36] combined both methods
by using flux ratios obtained from 13C MFA to constrain FBA for genome-scale models through
the use of artificial metabolites. Although genome-scale models were not used, Suthers et al [27]
presented 13C MFA for a large scale model containing 350 reactions. The OPENflux open
source software by Quek et al [37], allows for certain reactions in 13C MFA to be used only for
stoichiometric modeling purposes. More recently, Chen et al [38] for the first time modeled the
same E. coli strain under the same conditions using FBA and 13C MFA, using some of the infor-
mation of the latter to constrain the former. In a similar vein, Kuepfer et al [39] constrained a S.
cerevisiae genome-scale model with fluxes obtained from 13C MFA and determined the flux dis-
tribution by using the minimization of the overall intracellular flux as the objective function.

Constraining Genome-Scale Models with 13C Labeling Data
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However, to date there has been no attempt to use the data from 13C labeling experiments to
constrain fluxes for a genome-scale model without assuming that metabolism is evolutionarily
tuned to optimize an objective function (such as the growth rate optimization typically used in
FBA). The traditional underlying assumption in the field of 13C MFA is that the degrees of free-
dom of the model must carefully match the amount of information obtained from the labeling
patterns. Indeed, if the mathematical formulation of 13C MFA were that of a linear program-
ming problem (as for FBA) it would be pointless to try to constrain over a hundred degrees of
freedom with the approximately 50 measurements of labeling used in this study, for example.
However, 13C MFA is a nonlinear fitting problem (with fluxes being the parameters) and these
problems behave very differently for the underdetermined case, a special case of what is known
as “sloppy”models in statistical mechanics [40–43]. These underdetermined nonlinear fits
exhibit some degrees of freedom which are highly constrained (the parameters cannot be
changed without noticeable measurable effects) and other degrees of freedom barely constrained
at all (parameters can be changed freely, see section 3.3 in Brown et al [40] for a concrete exam-
ple). Even if all degrees of freedom are not fully determined, the model can still be used to test
hypotheses effectively [44]. These characteristics have been shown to be of general nature and
apply to a variety of nonlinear problems appearing in systems biology [44], insect flight and var-
iational quantum wave functions [45], interatomic potentials [46] and a model of the next-gen-
eration international linear collider [42]. In this paper, we present a systematic and rigorous
framework to take full advantage of the nonlinear nature of the flux fitting problem and find all
fluxes compatible with the 13C labeling data for a genome-scale model. In order to constrain
fluxes effectively, we make the biologically relevant assumption that metabolic flux flows from
core metabolism (defined below) to peripheral metabolism and does not flow back.

The simultaneous use of 13C labeling data and genome-scale models produces a new
computational approach combining the advantages of both FBA and 13C MFA: two-scale 13C
Metabolic Flux Analysis (2S-13C MFA, see Fig 1). 2S-13C MFA determines fluxes for a full
genome-scale model, taking into account the system-wide balances of metabolites. However,
2S-13C MFA does not rely on maximum growth assumptions: instead it uses the data obtained
from 13C labeling experiments to constrain feasible fluxes. The use of this data is shown to con-
strain glycolytic and pentose phosphate pathway fluxes 8–50 fold more effectively than using
only measured extracellular fluxes. We use this new method to compare different predictive
methods and show where and why they fail. Based on that information, we develop a new pre-
dictive method that is able to produce a full quantitative prediction of 48 labeling measure-
ments, going beyond the usual qualitative (e.g. grow/no grow) predictions.

Results and Discussion

Constraining genome-scale models with 13C labeling data
In 13C MFA, most reactions in the cell’s enormous metabolic network have a very limited con-
tribution to the 13C labeling of the observed metabolites (regardless of whether these are free
metabolites [47] or proteogenic amino acids [4, 9]). Thus, since the complexity of the problem
of flux measurement from labeling information scales nonlinearly with the number of reac-
tions, the metabolic network in 13C MFA consists of a minimal set of reactions (core set) that
most influence labeling patterns (typically central carbon metabolism but may include other
extra reactions, such as those describing protein turnover [48]), stemming from the literature
or the researcher’s experience. This approach is able to convincingly explain labeling patterns
for amino acids and intracellular metabolites for model organisms (e.g. E. coli [49, 50] and S.
cerevisiae [51, 52]) under well-studied conditions (e.g. glucose feed). The good fits to experi-
mental data support, to a good approximation, the underlying assumptions that carbon
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precursors flow from a central core metabolism to peripheral metabolism and do not flow
back. However, it would be desirable to generate the minimal core network systematically
through a computational method, so the technique can be generally applied to non-standard
cases: e.g. non-model organisms, bioengineered strains, alternative non-standard carbon
sources, human cells or microbial communities. Most crucially, such a method would explicitly
test the assumption that reactions not included in the minimal network do not significantly
influence labeling. As an added benefit, it would take advantage of the significant community
efforts that have been put into developing and improving genome-scale metabolic models [53].

Another important benefit of integrating 13C MFA with genome-scale metabolic models is
to check for consistency of the inferred core fluxes with peripheral metabolism. The central
metabolic network needs to produce not only carbon precursors for peripheral metabolism,
but also ATP and reducing equivalents. Genome scale networks offer the possibility to track
every reaction consuming and producing energy or reducing equivalents, and therefore can be
used effectively to study the interplay between peripheral and core metabolism. On one hand,
since core metabolism involves the reactions with largest fluxes in metabolism, once these are
set by the 13C labeling data, peripheral metabolism is expected to be highly constrained. On the
other hand, changes in the usage of core intermediates in peripheral metabolism will also have
significant effects on core fluxes since they need to provide these carbon intermediates, on top
of ATP and reducing equivalents. While this has been already predicted in terms of small
changes in biomass composition having significant effects on central carbon fluxes [54], the
effect is an order of magnitude more important in bioengineered strains [55]. In such cells,
peripheral metabolism can be vastly altered, and it is crucial to have a method that can take the
diverse changes into account in a systematic manner.

Fig 1. Method overview. FBA uses genome-scale stoichiometry and measured extracellular fluxes to constrain fluxes, which are finally determined by
assuming growth rate maximization. 13C MFAmeasures fluxes by using the highly informative 13C labeling experimental data along with central carbon
stoichiometry and measured extracellular fluxes. 2S-13C MFA calculates fluxes by using the 13C labeling experimental data and the measured extracellular
fluxes to constrain fluxes for a genome-scale model.

doi:10.1371/journal.pcbi.1004363.g001
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2S-13C MFA addresses both of these issues and provides a complete rigorous framework for
estimating fluxes using 13C labeling data in the context of a genome scale metabolic network.
The algorithm is comprised of a set of optimization problems to be applied sequentially, as
shown in the outline in Fig 2. Our approach divides the metabolites and reactions in a genome-
scale model into two groups to be modeled at different scales of resolution (Fig 3A), in the spirit
of the multi-scale approach in engineering and physics [56]. For “core”metabolites and reactions
both stoichiometry and carbon labeling are tracked. For the remaining “non-core”metabolites
and reactions, only stoichiometry is tracked and their contribution to the core set labeling is
ignored. Crucially, the algorithm recursively adjusts the division into core and non-core reactions

Fig 2. Algorithm description. Algorithm flow diagram for 2S-13C MFA showing a recursive procedure to achieve self-consistent results. The full model
consists of a genome-scale model (iJR904 in this case) to which information on carbon transitions for the core sets of reactions is added (blue box on the left).
The genome-scale model carries the measured extracellular fluxes information as upper and lower bounds (ubj and lbj). Carbon transitions (example line
below the blue box) indicate the fate of each carbon atom in the reaction. The first step in the algorithm involves limiting the amount of flux that flows into the
core set of metabolites and reactions, so as to enforce the two-scale approximation (i.e. that non-core contributions to labeling are negligible). The second
step involves finding the set of fluxes that best fit the experimentally observed data, ignoring the non-core contributions. The final step tests that the error
incurred by ignoring non-core reactions is negligible through External Labeling Variability Analysis (ELVA). If the ELVA does not indicate that the non-core
contributions are negligible, the core set and the EMUmodel are expanded and the procedure repeated. When a self-consistent result is found, flux ranges
compatible with the experimental data are obtained through 13C Flux Variability Analysis.

doi:10.1371/journal.pcbi.1004363.g002
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according to the error in the labeling fitting. This procedure is illustrated with a small illustrative
network (see Fig 3B and 3C) throughout the following subsections. Notice that, because of this
core readjustment and the inclusion of other reactions needed to fully explain labeling [48], the
core set needs not be the same as is usually referred to as central carbon metabolism.

Limiting flux to core reactions. 2S-13C MFA starts with an initial guess for the core set
and then limits the flux into core metabolism, so as to be consistent with the initial assumption
that non-core metabolism does not directly contribute to core 13C labeling. We will refer to

Fig 3. The two-scale approximation. A) 2S-13C MFAmodels microbial metabolism at two different scales of resolution, hence minimizing the computational
effort to explain the experimental data. While stoichiometric balances are taken into account for the full genome-scale model (iJR904 in this case), metabolite
labeling originating from the 13C feed in the labeling experiments is only tracked for the core set of reactions responsible for the main fraction of metabolite
labeling (green box). The two-scale approximation assumes that non-core metabolites do not directly affect core metabolite labeling. The core set is
expandable through the recursive procedure shown in Fig 2. B) Exemplary network of 20 reactions that illustrates the two-scale approximation and the
approach. Measured data involves the MDV for metabolites A, C and E and extracellular fluxes for reactions producing metabolites T, U, Y and Z. The initial
core set involves reactions and metabolites in the green box. The fit involves finding fluxes which best match the measured labeling and the values of the
measured extracellular fluxes, where only the contribution of reactions inside the green box is taken into account to fit the labeling of metabolites A, C and E.
However, the metabolite balance is global. In this way the fluxes are not overconstrained by e.g. NADPH balance: any excess NADPH can be balanced by
the non-core fluxes that consume NADPH. C)Right lower panel illustrates External Labeling Variability Analysis (ELVA) for the exemplary network. ELVA
gauges the effect of non-core reactions by considering only the core network and simulating the impact of non-core metabolite labeling through inflow
metabolites (inflowD, inflowE, inflowF). The ELVA optimization problem (Eqs 9–15) finds the maximum impact that the unknown inflow metabolite labeling
can have on the measured labeling pattern.

doi:10.1371/journal.pcbi.1004363.g003
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this assumption as the two-scale approximation or assumption. In the context of a genome-
scale model (iJR904 [57] in this particular case, see Materials and Methods), this assumption
amounts to limiting the upper bound of all reactions with products in core metabolism to zero,
or the lowest value consistent with the observed growth rate (see Materials and Methods for
the technical details).

Constraints introduced in this step replicate the same conditions as for 13C MFA: by limit-
ing the flux into core reactions, the degrees of freedom for the system of core reactions are sim-
ilar to the case of standard 13C MFA. This fact is reflected in very similar solutions for the core,
as explained in the “Comparison with 13C MFA” section. Hence, this is not a radically new
assumption, but rather the same underlying assumption used in 13C MFA. 2S-13C MFA simply
explores its consequences in the context of genome-scale models. The degrees of freedom for
the core system only differ from 13C MFA because of the availability of more reactions to flow
out of the core (since these are not set to zero). Rather than having the outgoing fluxes being
prescribed by the modeler, 2S-13C MFA allows the system to channel this outgoing flux as it
best fits the available data. This can lead to unforeseen results, as in the glycolate case shown in
the “Comparison with 13C MFA” section. Furthermore, these constraints automatically elimi-
nate some of the biologically unrealistic solutions that have been shown to appear in fully
unconstrained large-scale 13C MFA studies [27].

In the illustrative network (Fig 3B), the core set of reactions is initially chosen as the reac-
tions in the green box, which are expected to appropriately explain the labeling of the measured
metabolites (A, C and E, in orange circles). The first step (“Limit flux to core”) involves setting
to zero the flux of the reaction flowing from metabolite F to D. However, this reaction produces
a metabolite M that is needed for cell growth, so it cannot be fully set to zero. A minimal level
of flux is allowed (e.g. 5% of the glucose uptake rate), as shown in the “Limiting flux to core”
section in materials and methods.

Fitting experimental labeling data. The second step fits the experimentally determined
labeling data through the Elementary Metabolite Unit (EMU) method [28, 58]. While in this
study we use labeling of central metabolic intermediates, the framework could be equally well
applied to free amino acids or amino acids from hydrolyzed protein. The constraints include
the experimentally determined growth, uptake, and secretion rates. The data fit is set as a Non-
Linear Programming (NLP) optimization problem that minimizes the difference between
computational and experimental labeling values and uses a combination of constraints from
FBA and 13C MFA, as shown in Eqs 1–7 (see S1 Text). Results can be seen in S1–S3 and S4–
S12 Figs. Unlike FBA, there is no growth (or other flux) maximization involved: the growth
rate is constrained to its measured value. Unlike 13C MFA, the full genome-scale model reac-
tion fluxes are used in the fit although, as explained below and observed in other nonlinear fits
[27, 41, 42], not all fluxes are fully determined.

For the illustrative model, this step involves finding the fluxes that best fit the measured label-
ing of metabolites A, C and E where the labeling is calculated from only the contributions of the
reactions in the green box (core) but metabolite balances are imposed for all reactions. In this
way, instead of NADPH overconstraining the core fluxes by forcing the production inside the
core (reaction A to F) to equal the consumption (reaction E to I), these fluxes are free to fit the
experimental data while excess NADPH can be compensated by the reactions outside the core.

Self-consistency test through External Labeling Variability Analysis (ELVA). The key
next step of 2S-13C MFA then determines if the fluxes obtained from the fit are consistent with
the two-scale approximation. This extra procurement sets the method apart from 13C MFA,
which does not check the effect of ignored reactions, even for large-scale models [27] or by
marking some reactions to be excluded from the isotopomer balance [37]. The impact of non-
core reactions is calculated through External Labeling Variability Analysis (ELVA, see Eqs 9–
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15). ELVA considers only core metabolism with the impact of non-core metabolism being rep-
resented through inflow metabolites, dummy metabolites with unfixed labeling since their
labeling is, by definition, unknown (see Fig 3C for an example). Essentially, using the previ-
ously obtained genome-scale flux solution as a constraint, we allow the labeling for the inflow
metabolites to vary and, for each metabolite with measured labeling, use each element of the
mass distribution vector (MDV) as the objective function to be maximized or minimized. By
this method we obtain a confidence interval that represents the maximum possible difference
in labeling that could be attributed to non-core reactions for the current solution. The reactions
that contribute an unacceptable amount of uncertainty are then added to the core set and the
procedure can be repeated as necessary, until a core set of reactions is found which fully justi-
fies the two-scale approximation.

In the case of the illustrative model, the use of the ELVA would gauge the impact of non-
core reactions as described in Fig 3C. The ELVA would point out that the reaction transform-
ing metabolite F to D and M needs to be included in the core: this reaction strongly influences
the labeling of metabolite D, which in turn influences the labeling of metabolite C, which is
being measured. This effect would be shown in large computational error bars for metabolite C
through the influence of inflow metabolite D. After the reaction taking metabolite F to D and
M is added to the core, a new fit would be in order (as shown in Fig 2), and the subsequent
ELVA would show zero computational error, since none of the remaining reactions flow back
into the core and can impact the labeling of the measured metabolites A, C and E.

To further illustrate this procedure with experimental data, we fit the labeling data from
Toya et al [47] for wild-type E. coli during mid-exponential phase growth on glucose. Using an
initial set of 94 central metabolic reactions (see S3 Text), we calculated the flux profiles and
ELVA confidence intervals as described above. As seen in Fig 4 (left panel), several points had
unacceptably wide confidence intervals (vertical error bars), in many cases over an order of
magnitude greater than the experimental uncertainty (horizontal error bars), illustrating that
reactions not included in the core could significantly influence the measured labeling. All of
the most pronounced effects corresponded to the MDV of the TCA cycle intermediate malate
(green dots on Fig 4). These effects were found (by inspection) to be due to reactions involved
in glutamate, arginine, histidine metabolism and nucleotide biosynthesis, many of which use
aspartate as a nitrogen donor, releasing fumarate. Since fumarate is converted to malate in the
TCA cycle, this aspartate! fumarate flux, often ignored in traditional 13C MFA approaches
[59–62], has a potentially important impact on the labeling of malate and must be considered
as part of the core set, as some other studies have done [63]. Inclusion of these pathways in the
core set dramatically narrowed the confidence intervals of the ELVA analysis (right panel of
Fig 4), of the same order of magnitude now as the experimental error. This implies that the
revised core (with a total of 126 reactions) satisfies the two-scale approximation, meaning that
peripheral reactions not included in the core set cannot significantly influence observed label-
ing patterns. Hence, this method is self consistent and, furthermore, points out which reactions
need to be added to the core set to make the approximation valid.

Confidence intervals provide all fluxes compatible with experimental data. 13C labeling
information is generally insufficient to completely constrain all fluxes in the network, meaning
that a space of distinct flux solutions is consistent with the observed labeling. As such, the goal
of a good flux estimation algorithm should be to provide the range of flux values that are con-
sistent with the observed data, rather than a single “best” solution. This is particularly impor-
tant in the case when flux estimation is expanded to the entire genome-scale model, with the
corresponding dramatic increase in the degrees of freedom. 2S-13C MFA addresses this directly
through 13C Flux Variability Analysis (13C FVA): as shown in Eqs 16–23, each flux in the
genome-scale model is maximized and minimized to find the range of fluxes producing
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labeling patterns within the experimental error of the measured values (and in the context of
the two-scale approximation).

The capability of the 13C labeling data to constrain fluxes is very significant, as can be seen
in Fig 5: the ranges of fluxes compatible with the 13C labeling data and the measured extracellu-
lar flux data is much smaller than those compatible with only the measured extracellular flux
data. In fact, the average flux confidence interval for 2S-13C MFA relative to the same interval
for fluxes constrained only by extracelllular fluxes is* 2% for the pentose phosphate pathway
and* 12% for glycolysis. Hence, 2S-13C MFA constrains fluxes 8–50 fold more effectively for
these cases. Furthermore, we can see that the “limit flux to core” step does not introduce very
strong constraints on the allowable fluxes.

Not all fluxes in the genome-scale model are effectively constrained by the 13C labeling
experiment data. This phenomenon is a general characteristic of nonlinear fits of underdeter-
mined (“sloppy”) systems, and is expected. We see that, for example, flux values for most reac-
tions in the core set are effectively constrained (i.e., the confidence intervals are narrow, as for
GAPD in lower left panel of Fig 6). These core constraints are propagated to the rest of the
fluxes through stoichiometry, and some non-core fluxes are also well determined (e.g., C160SN
in upper left panel in Fig 6) while others are not (e.g., THD2 in upper left panel of Fig 6). As is
often the case in fitting problems, we expect the degree to which this method can constrain
fluxes to depend heavily on the available data: labeling distribution for more intracellular

Fig 4. Method self-consistency. External Labeling Variability Analysis (ELVA, see methods) shows how the impact of ignored reactions diminishes by
expanding the core set of reactions. Each point corresponds to anm value of the Mass Distribution Vector (MDV) for each of the metabolites considered. The
inset provides the same information for malate in a more intuitive form (red for experimental data, blue for computational fits), see S1–S3 Figs. Horizontal
error bars indicate experimental CE-TOFMS error obtained from the instrument. Vertical error bars indicate computational errors obtained from the ELVA.
These computational error bars indicate the maximum effect that non-core reactions (whose contribution to the carbon labeling is being ignored) could
possibly have. The initial core set (left) shows a large computational error for malate (mal-L, green dots). By expanding the core set, the computational errors
collapse to levels comparable with the experimental error as can be seen in the right panel. Hence, the method is self-consistent by ensuring that the final
result meets the approximation used to calculate it.

doi:10.1371/journal.pcbi.1004363.g004
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metabolites or measurements for more extracellular fluxes will increase the flux resolution (i.e.,
decrease the confidence intervals).

For the exemplary model, confidence intervals would be obtained through the optimization
problem described in Eqs 16–23. If metabolite labeling data for new metabolites (e.g. D)
became available, that information would decrease the confidence interval of the fluxes (and
the core would have to be redefined).

Robustness with respect to data input
2S-13C MFA is supported by two independent data sets: 13C labeling experimental data and
genome-scale stoichiometry. We will now show that the method is robust to errors in the 13C
labeling experimental data and more robust than FBA to stoichiometric errors.

Fluxes calculated through 2S-13C MFA are robust with respect to the experimental accuracy
of the 13C labeling data. We show this by generating new sets of 13C data where the new label-
ing is randomly chosen within the experimental error. The calculated profiles do not change
for this new labeling significantly from the initial profiles, as can be observed in Fig 7.

Cofactor ambiguities in the reconstruction of genome-scale models introduce errors in
determining fluxes which are much smaller than for FBA. Reconstruction errors are still possi-
ble in genome-scale models, in spite of the care used to develop them and the continous
improvement in the reconstruction for each new release [13]. We studied the resulting flux
profiles after a reconstruction error was simulated (by changing NADPH to NADH

Fig 5. Relative effect of constraints. Confidence intervals for pentose phosphate pathway (left panel) and glycolysis (right panel) fluxes calculated using
FBA constrained by measured extracellular fluxes (through Flux Variability Analysis, FVA [64], in red), for FBA with constraints derived from the two-scale
approximation through the “Limit flux to core” step in Fig 3 (FVA, in grey), and for 2S-13C MFA derived through Eqs 16–23 are shown (blue). Constraints
induced by the two-scale approximation are not strong, hence justifying the use of this approximation. However, constraints induced by the 13C labeling data
are dominant. A similar pattern can be observed in S13 Fig.

doi:10.1371/journal.pcbi.1004363.g005
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dependence for a high flux reaction, G6PDH2r) and found that the change in fluxes was much
less severe than for FBA (Fig 8). We found similar results for other reactions (S16 Fig). We
attribute this difference to FBA relying heavily on stoichiometric information whereas 2S-13C
MFA can additionally count on 13C labeling data to constrain fluxes. Furthermore, changes in
the biomass composition reaction do not affect calculated fluxes significantly (S17 Fig).

Cofactor balances
2S-13C MFA can produce cofactor balance information which cannot be produced using either
FBA (does not provide confidence intervals bounded by 13C data) or 13C MFA (does not

Fig 6. Cofactor balances.Cofactor balances show how NADPH and NADH production and consumption change after pgi is knocked out. Arrows pointing
inwards on the left indicate fluxes that produce the indicated metabolite and fluxes pointing outwards on the right indicate fluxes that consume it (in units of
mMol/gdw/hr). Reaction names are per iJR904 model. Upper panels show NADPH balances for wild type (left) and pgi KO (right) at 5 and 21hr (equivalent
growth points due to a lower growth rate in the pgi KO). Lower panels show NADH balances for wild type (left) and pgi KO (right) at the same time points.
Note that, unlike FBA, 2S-13C MFA can provide confidence intervals bounded by the data from 13C labeling experiments. These are shown below the
reaction name. For some cases (e.g. GND) the experimental data can very effectively constrain the flux value, even if the reaction is not in the core set over
which labeling is being tracked (e.g. C181SN). For some others (e.g. THD2), the data can only constrain the flux value in a very limited fashion. Knocking out
pgi radically changes NADPH and NADH supply and consumption patterns.

doi:10.1371/journal.pcbi.1004363.g006
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consider all possible cofactor-producing reactions in the cell metabolism). Discerning cofactor
production and consumption can be crucial to understand cell behavior. Not only does cofac-
tor balancing have an essential bearing on tumor cell death [65], but it can also have a signifi-
cant impact on final production for bioengineered cells [33, 55, 66, 67]. Core metabolism and
biosynthetic pathways are linked through cofactor balancing, so an expansion of 13C MFA to
include genome-scale stoichiometry such as that provided by 2S-13C MFA is of great interest
for bioengineering. While some previous 13C MFA efforts [27, 28, 37] did take cofactor bal-
ances into account, this has not been done for all metabolites in a genome-scale network.

This capability is illustrated (Fig 6) with the main electron carriers in metabolism, NADPH
and NADH, responsible for redox balances and, ultimately, for respiration. A majority of

Fig 7. Robustness with respect to measurement error in labeling profile. 30 different new labeling data sets were generated by randomly choosing new
labeling values within the experimental error (see equation 13 in S2 Text). Fluxes were calculated through 2S-13C MFA for these new data sets and the
standard deviation is shown for the PPP. Hence, the method is robust with respect to experiment accuracy in 13C labeling.

doi:10.1371/journal.pcbi.1004363.g007
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NADPH production (47–55%, obtained by normalizing data from Fig 6) in wild type E. coli is
produced by the pentose phosphate pathway (reactions G6PDH2r and GND: 25–27%) and the
TCA cycle (reaction ICDHyr: 22–29%). Notice that, unlike FBA, 2S-13C MFA produces confi-
dence intervals bounded by 13C data: for example, if the flux through reaction GND were to be
more than 3.2 mMol/gdw/hr (30% of total NADPH creation according to upper left part of Fig
6), the computationally derived labeling for (e.g.)m = 0,4 for malate (mal-L), form = 1 for
phosphoenolpyruvate (pep) and form = 1,2 for ribose 5-phosphate (r5p) would differ from the
measured value by more than the CEMS measuring error (see Eq 23 and S1–S3 Figs). The
transhydrogenase reaction THD2, transferring electrons from NADH to NADP, also contrib-
utes significantly (* 44%) but, unfortunately, the flux through this reaction is only very loosely
constrained by the current data set. The main NADPH sink involves glutamate production
(reaction GLUDy: 29–65%), with fatty acid biosynthesis (C181SN) in a distant second place
(7%) and a collection of other reactions at equally low levels (< 12%).

NADPH consumption and production are radically altered when the gene encoding the ini-
tial enzyme in glycolysis (PGI) is knocked out (Fig 6, right upper panel). This genetic manipu-
lation forces the rerouting of all glycolytic flux into the PPP and a lower growth rate (0.17–0.23
vs 0.83–0.9 h-1). 2S-13C MFA allows us to study the impact of this flux rerouting on the rest of
the cell metabolism. For example, the overall NADPH demand falls three fold (vs a* four
fold decrease in growth rate). Furthermore, the demand is not equally met by the pentose

Fig 8. Robustness with respect to genome reconstruction errors. A reconstruction error was simulated by changing the NADPH dependence to NADH
dependence for the glucose-6-phosphate dehydrogenase (with a large flux value of 2.9 mMol/gdw/hr in the initial 2S-13C MFA calculation). We calculated
fluxes again through 2S-13C MFA and FBA (constrained by extracellular flux measurements), and the new fluxes are plotted for the TCA cycle. As can be
observed, the change is much larger for FBA than 2S-13C MFA, showing that it is less robust to reconstruction errors (note that squares and circles are
almost on top of each other for the 2S-13C MFA case). The transparency in the original flux profile for 2S-13C MFA indicates the confidence intervals. For the
2S-13C MFA case, the NADPH production shift is compensated entirely by the THD2 transhydrogenase. Since the flux value for SUCD1i is negative, the
absolute value has been plotted. Similar figures for the glutamate dehydrogenase (GLUDy) and isocitrate dehydrogenase (ICDHyr) reactions are available
as S16 Fig.

doi:10.1371/journal.pcbi.1004363.g008
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phosphate pathway and the TCA cycle anymore: in the Δpgi, the PPP enzymes G6PDH2r and
GND produce most of the NADPH (81%) with a much less important role played by the TCA
cycle (13–19%). Interestingly, the absolute flux through the PPP for the pgi KO and the wild
type is very similar. NADH is generated mostly by the glyceraldehyde-3-phosphate (36–37%,
GAPD), malate (10–27%, MDH), pyruvate (15–25%, PDH) and 2-Oxoglutarate dehydroge-
nases (7–11%, AKGDH), which provide 79–98% of all NADH. Consumption is dominated by
the ubiquinone-8 NADH dehydrogenase (NADH6, 43–83%). After pgi is knocked out, NADH
demand decreased* 4 fold, with relative production by MDH undergoing the biggest drop
(from 10–27% to 5–7%).

These results are consistent with previous 13C MFA calculations for NADPH production
[68], which validates this approach. Furthermore, they also provide information on secondary
metabolism and NADH balances in a systematic manner. A similar analysis can be done for
acetyl-CoA, a key metabolite and common bottleneck in metabolic engineering [69, 70] or any
other relevant metabolite such as ATP, AMP, Coenzyme A or FADH, which would provide
detailed information on the organism’s underlying physiology.

Extracellular metabolite prediction
The 2S-13C MFA results pinpoint which (non measured) metabolites are expected to be
detected in the extracellular medium based on the values of exchange fluxes as constrained by
the 13C labeling experiments (S13 Fig). Knowledge and quantification of the full range of
excreted metabolites (also known as exometabolome or metabolic footprint [71]) is desirable
for a full understanding of the biochemical impact of the cell on its environment. For metabolic
engineering purposes, this knowledge provides important clues as to how to close the carbon
balance and whether toxic compounds are being produced in the fermentation. For human
metabolism, better prediction of extracellular fluxes can yield improved metabolic predictions
when integrated with physiologically-based pharmokinetic models [72].

The exchange fluxes predictions typically have large confidence intervals, but these intervals
are much smaller than for FBA (see S13 Fig). Metabolites expected to be detected in the
medium are those whose exchange fluxes have net positive maximum and minimum values for
a period of time sufficiently long so as to reach detection limits. For the E. coli strains consid-
ered here, urea, glycolate (glyc, S14 Fig), fumarate (fum, S15 Fig) and acetaldehyde (acald) are
the non-typical metabolites expected to be present in the medium (acetate is already mea-
sured). This prediction of atypical metabolites is of particular interest in light of the recent dis-
covery of extended overflow metabolism [73]. A full prioritized list can be obtained from the
exchange flux information and used to direct mass spectrometry, NMR or vibrational spectros-
copy efforts to find the missing metabolites until carbon balance is met. For future improve-
ment of intracellular metabolic flux predictions, constraints introduced by extracellular
metabolite measurements are very effective and usually easy to measure, but it is necessary to
know which metabolites to look for and 2S-13C MFA provides precisely that type of insights.

Comparison with 13C MFA
2S-13C MFA produces nearly the same results as 13C MFA for central carbon metabolism (see
e.g. S4 Fig and S18 Fig). This similarity is not surprising since 2S-13C MFA is designed to
mimic 13C MFA for this part of metabolism (see “Limiting flux to core reactions” section). The
only difference for the current data set can be found in the TCA cycle flux, as described below.
These differences arise because genome-scale models account for fluxes to biomass in a more
detailed and realistic manner and because they do not rule out unexpected metabolic routes
compatible with the available data.

Constraining Genome-Scale Models with 13C Labeling Data

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004363 September 17, 2015 15 / 34



Flux through the TCA cycle is lower in the 13C MFA solution (S4 Fig vs S18 Fig) because of
an inaccurate account of fluxes to biomass in the 13C MFA model. Specifically, the large fluxes
draining acetyl-CoA into biomass and to the exterior of the cell as acetate (each a third of the
pyruvate dehydrogenase flux, PDH) imposed in the original publication [47] have been overes-
timated in this particular case. While the typical biomass function used in 13C MFA involves a
specific stoichiometry of central carbon intermediates converted directly to biomass, this is
only an approximation since some of the metabolites required for biomass growth are not rep-
resented in the minimal network model and need to be substituted by their requirements in
terms of intermediates present in the minimal network (acetyl-CoA, in this case). These effects
require significant effort to be accurately incorporated into a small-scale model, but they are
elegantly handled by the genome-scale model. In this case a large flux of acetyl-CoA to biomass
is assumed in the 13C MFA solution, while the 2S-13C MFA solution determines the require-
ments on core metabolism by setting the biomass flux to the measured growth rate, and auto-
matically determining the fluxes needed to provide the metabolites present in the biomass
equation through the comprehensive stoichiometry network reflected in Eq 2. Hence, genome-
scale models provide an automatic and detailed accounting of biomass requirements.

The difference in TCA cycle flux extends to the glyoxylate shunt in some cases in which the
isocitrate lyase (ICL) is active for the 2S-13C MFA (S5 and S6 Figs) solution, but not in the 13C
MFA solution due to a limited 13C MFA model. In the 2S-13C MFA solution, the objective
function (Eq 1) becomes slightly lower by diverting flux into the ICL and then shuttling it out
of the core set from glyoxylate (glx) into glycolate. This route is not included in the 13C MFA
model and activating the ICL for this model would produce a large amount of flux through the
malate synthase (MLS). This MLS flux would significantly deteriorate the fit to malate labeling,
so the glyoxylate shunt remains inactive for 13C MFA case. The shuttling of glyoxylate into gly-
colate is unexpected and, in fact, could be the result of a numerical artifact since the only label-
ing data available in the full TCA cycle is that of malate (mal-L) and small errors in the labeling
measurements (or their confidence intervals) for this metabolite can lead to erroneous solu-
tions. The glyoxylate shunt is known to be inactive under the given conditions and one could
use this information and constrain its flux to zero. However, we aim to produce a general
method; of use under conditions where this information may not be available (e.g. exotic feeds
or bioengineered cells). Hence, we decided not to constrain the glyoxylate flux in order to show
how the genome-scale model constrained by measured data can produce testable and falsifiable
consequences to detect this type of errors. In this case, the shuttling of glyoxylate through gly-
colate results in glycolate being exported out to the medium (S14 and S15 Figs) and detectable
through (e.g.) MS methods. If no glycolate is found, that extracellular flux can be set to zero
and the glyoxylate shunt flux will decrease to zero, so as not to deteriorate the fit of the malate
labeling pattern. Alternatively, the availability of labeling patterns for additional metabolites
(fumarate, fum and glyoxylate, glx) would confirm or deny the ICL activity. In this way, 2S-13C
MFA can fruitfully use available data to suggest and test unexpected metabolic activity; such as
the surprising heme degradation in cancer cells with a non-functional TCA cycle [26].

Using 2S-13C MFA to test flux prediction algorithms
Our goal in developing 2S-13C MFA is to make a clear distinction between highly reliable con-
straints such as those induced by 13C labeling data, measured extracellular fluxes, carbon tran-
sition information and reaction stoichiometry, and reasonable hypotheses (such as growth rate
optimization) that may not be universally applicable. 2S-13C MFA has been developed to pro-
vide a self-consistent and unbiased determination of the range of metabolic fluxes compatible
with available experimental data. Unlike other COBRA methods, the fluxes obtained by 2S-13C
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MFA are backed up by the extra validation provided by the correct fit of 48 relative labeling
measurements (see S1–S3 Figs). Hence, we use it here as a reference to compare various
COBRA predictive methods based on different hypotheses. This procedure permits us to deter-
mine which method predicts fluxes most accurately. We compared flux profile predictions for
pyk and pgi gene knock outs calculated at three different time points (5, 6 and 7 hrs for wild
type and pyk KO, and 16, 21 and 23 hrs for pgi KO) using six different methods: FBA maximiz-
ing either growth and ATP production [74], Minimization of Metabolic Adjustment (MOMA
[16]), Regulatory On/Off Minimization (ROOM [75]) and two new methods developed in this
paper (Fig 9 and S19 and S20 Figs). These new methods are 13C MOMA and 13C ROOM,
which leverage 2S-13C MFA flux profiles obtained for the wild type strain to improve flux pre-
dictions (see S3 Text), similar in spirit to the approach by Kuepfer et al [39].

Growth maximizing FBA provides predictions that are not quantitatively accurate, but seem
approximately right for most cases (S19 and S20 Figs). This fact probably explains its success in
metabolic engineering applications. Since FBA is typically used to make partial flux predictions
by using some measured flux information for the predicted experiment, we tested this variation
as well. Once fluxes for growth rate and excreted metabolites were constrained to the measured
values, pgi predictions became extremely accurate (S20 Fig). However, when a full prediction
(i.e., not using any data from the predicted experiment) was sought, FBA noticeably failed for
this KO due to its inability to predict the drop in growth rate. ATP maximizing FBA fails most
noticeably for the pyk KO, probably because the PYK reaction is involved in ATP production
and its elimination significantly changes the ATP balance when ATP is to be maximized.

MOMA, ROOM, 13C MOMA and 13C ROOM flux predictions fail most blatantly for the
pgi knockout strain because growth rates change radically and the method tries to maintain the
previous flux levels (S19 Fig). Hence, we can expect these methods to offer good results only
when changes expected in glucose intake and growth rates are relatively small. An improve-
ment of these methods could be obtained if only the relative flux profiles are used for the pre-
diction in the algorithm and the growth rate is separately obtained.

Since 13C MOMA and 13C ROOM use 2S-13C MFA flux profiles from the wild type strain,
we expected that they would more accurately predict fluxes than would MOMA and ROOM.
We find that is the case for fluxes in glycolysis and PPP, but the TCA cycle flux values are less
accurate (see S19 Fig). This phenomena is most likely due to our initial flux profile not being
very accurate for the TCA cycle (large confidence intervals, see S4–S6 Figs) since many fewer
labeling measurements are available for TCA metabolites (only malate vs eight metabolites
available for glycolysis and PPP). Labeling data for more metabolites next to branch points
(e.g. fumarate, glyoxylate, isocitrate, alphaketoglutarate) would help reduce the flux confidence
intervals for this area of metabolism.

These comparisons illustrate how 2S-13C MFA can be used to test COBRA methods, see
where they fail and why, and use this information to improve them.

Quantitative prediction of direct metabolite labeling measurements
The combination of 13C labeling data and genome-scale models with COBRA prediction meth-
ods allows us to make some predictions we cannot do using either 13C MFA or FBA. The ability
to make accurate predictions of metabolism is of fundamental importance to make metabolic
engineering a more predictive discipline.

The 13C MOMA predictions of glycolysis and PPP fluxes for the pyk KO at the 5-hr time
point surpass those of all other methods (Fig 9 and S19 Fig). In fact, the flux predictions are
precise enough that we can even predict with reasonable accuracy the metabolite labeling to be
expected from that strain at that time point (Fig 10). This is a prediction of directly measured
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data instead of a derived measurement such as flux. No information from the pyk strain at 5
hrs was used. We used the 2S-13C MFA flux calculations from the wild type strain at 5 hrs to
obtain fluxes compatible with those measurements and then, through 13C MOMA, obtain the
predicted fluxes if pyk were to be knocked out. The corresponding labeling patterns were then
derived. Notice that this is very different from the partial predictions of labeling that 13C MFA
routinely produces, where the labeling for the present experiment is predicted. Hence, this con-
stitutes a full quantitative prediction of metabolite labeling from a 13C labeling experiment,
which has not been reported before, to our knowledge.

The prediction of metabolite labeling is particularly relevant as validation because they refer
to a directly measured quantity (i.e. the MDV obtained from the CE-TOFMS). Fluxes are
derived quantities relying on a variety of implicit assumptions (i.e. the two-scale approxima-
tion, metabolic pseudo-steady state, no accumulation of intermediate metabolites, genome-
scale model completeness and accuracy, cell homogeneity. . .). The real test that these assump-
tions are not severely violated and that the method provides reliable flux profiles is to use them
to predict directly measured quantities for other experiments (in this case, labeling patterns).
Moreover, this example shows that coupling 13C labeling data with COBRA methods opens the
possibility to go beyond qualitative predictions (e.g. grow/no grow).

Conclusion
In this manuscript, we have shown how to maximize the information obtained from 13C data
to constrain genome-scale models, and that once core metabolism is set by 13C labeling data
information, the rest of metabolism is generally highly constricted. As is a usual behavior in
“sloppy” nonlinear fitting problems [40], some fluxes are very effectively constrained and some

Fig 9. Flux comparison with COBRA predictions for pykKO at 5 hours. The comparison of flux predictions through COBRAmethods with fluxes
measured through 2S-13C MFA shows how and why predictive methods fail. Left panel: Predicted fluxes for reactions in the pentose phosphate pathway
(PPP) through FBA using maximum growth, FBA using maximum ATP production and 13C MOMA are compared with measurements through 2S-13C MFA
(shading indicates confidence intervals). Fluxes predicted through maximum growth FBA offer a good qualitative description of fluxes but are quantitatively
erroneous. 13C MOMA is a variation of MOMA that leverages 2S-13C MFA flux profiles and predicts fluxes more accurately. Center and right panels: Flux
maps for two special cases (FBA and 2S-13C MFA). Maximum growth FBA overestimates flux into the PPP. Flux values are depicted in red: the upper value
is the flux for the best fit and the lower values are the range of values compatible with data from 13C labeling experiments.

doi:10.1371/journal.pcbi.1004363.g009
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others only loosely. Confidence intervals obtained through 2S-13C MFA immediately identify
these two types of fluxes and show that the use of 13C labeling experimental data produce
much narrower confidence intervals than those produced by FBA. The method is generally
applicable to any genome-scale model or feed, and can be used to expand the use of 13C-based
flux analysis beyond the customary cases to tackle non-standard feeds, exotic organisms and
systems described by large stochiometric matrices such as the human metabolic network [76],
those derived from adding macromolecular synthesis [77] or microbial communities [24].

2S-13C MFA produces similar results as 13C MFA for the region where the latter is valid:
central carbon metabolism. 2S-13C MFA, however, extrapolates the constraints induced by the
13C labeling data to a genome-scale model, providing fluxes not only central carbon metabo-
lism but also for peripheral metabolism. This was illustrated firstly by a detailed description of
NADPH and NADH production and consumption and, secondly, by predicting unmeasured
metabolites expected in the extracellular medium.

2S-13C MFA does not use an evolutionary optimization principle (such as growth rate optimi-
zation) but, rather characterizes all flux profiles compatible with the experimental data. The extra
validation gained by matching the measured labeling values is used to test the validity of the max-
imization hypothesis by comparing these results with predictions obtained through FBA and
other COBRAmethods. The comparison of flux profiles predicted with COBRAmethods and
those obtained through 2S-13C MFA provided not only a ranking of accuracy for predictions but

Fig 10. Metabolite Labeling prediction. The combination of 13C labeling data and genome-scale models with COBRA prediction methods produces
predictions that cannot be obtained through either 13C MFA or FBA. The 13C MOMA predictions of fluxes shown in Fig 9 and S19 Fig are accurate enough
that they can be used to predict the metabolite labeling (MDV, see Fig 4) for the pyk strain at 5 hours without using any data from the experiment on the pyk
strain. A genome-scale model is needed to use 13C MOMA, and the accuracy provided by the 13C data is necessary to produce an accurate initial flux profile
for 13C MOMA (see S2 Text). OF denotes the objective function: the average deviation of predicted labeling from the experimental value, measured in units of
the experimental error. The prediction though standard MOMA, based on a FBA flux profile, is much less accurate (OF = 11.9) than the one obtained through
13C MOMA (OF = 2.2).

doi:10.1371/journal.pcbi.1004363.g010
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also insight as to how to improve predictive methods. An improved version of MOMA using
2S-13C MFA profiles as a starting point is able to predict the outcome of 48 direct measurements
of metabolite labeling for a pyk KO experiment using only data from a different experiment
involving the wild type. This capability shows that using 13C labeling experimental data enables
accurate predictions beyond qualitative cases (e.g. grow/no grow). This method represents
another step in the effort to make bioengineering a more predictable endeavour.

The new method hinges on a simple assumption: flux flows from the core set to peripheral
metabolism and does not flow back. This assumption is supported by the good fits obtained
in general by 13C MFA methods thus far. There might be situations where this two-scale
assumption is not applicable and these will be pinpointed by unacceptable fits to the labeling
data. The core set of reactions, however, is flexible and can be enlarged as needed to provide
acceptable fits to the labeling data. Hence, phenomena such as protein turnover [48, 78] or
cell scavenging in stationary phase can be included by adding the appropiate reactions to the
core. The availability of carbon transitions for genome-scale models [79] facilitates a system-
atic core enlargement.

In spite of its simplicity, FBA-based modelling has already exhibited significant success:
only three elements are used in this modelling scheme (genome-scale stochiometry, mea-
sured extracellular fluxes and an optimization principle) but they have been successfully used
to rationally engineer strains used for large-scale industrial production [21–23]. However,
certainly not every single flux in a flux profile obtained through FBA can be trusted. 2S-13C
MFA unites the informative constraints of 13C labeling experiments with genome-scale stoi-
chiometry to improve the determination of internal metabolic fluxes and set confidence
intervals based on experimental data. 2S-13C MFA completes and improves 13C MFA by
enforcing a global balance of metabolites instead of balancing only a few chosen metabolites.
We believe it will be a tool of extreme utility in bioengineering, at a time when a variety of dif-
ferent frameworks for flux prediction for genome-scale models are becoming available [80,
81]. Furthermore, we think that its widespread use to determine metabolic fluxes will affect
our understanding of fundamental biological problems [82] beyond bioengineering.

Materials and Methods
Mathematical details for the optimization problems in each of the different phases depicted in
Fig 2 can be found below. The full procedure was scripted in python and uses the CONOPT
solver version 3.15D to solve the nonlinear problems and CPLEX version 12.4.0 for the linear
programming problems within the GAMS modeling environment.

All experimental data were obtained from Toya et al [47]. This study includes intracellular
metabolite labeling, incoming and outgoing extracellular fluxes for glucose, acetate and growth
rate for three strains of E. coli (wild type BW25113 and pgi and pyk knockouts) at three differ-
ent time points each (5, 6 and 7 hrs for wild type and pyk KO, and 16, 21 and 23 hrs for pgi
KO). Measured metabolites are 3-phospho-D-glycerate (3pg), dihydroxyacetone phosphate
(dhap), D-fructose 1,6-bisphosphate (fdp), L-malate (mal-L), phosphoenolpyruvate (pep),
pyruvate (pyr), alpha-D-Ribose 5-phosphate (r5p), ribulose 5-phosphate (ru5p) and Sedohep-
tulose 7-phosphate (s7p). Throughout the text, metabolites and reactions are named according
to the iJR904 model notation [57, 83](bigg.ucsd.edu). The comparison with 13C MFA was done
through the use of equations 4–9 in S1 Text. Equations for ROOM and MOMA can be found
in S2 Text. While the iJR904 model was used in this manuscript, the method is equally applica-
ble to iAF1260 or iJO1366. iJR904 was used because the compartimentalization in iAF1260
and iJO1366 (e.g. transport to periplasm) complicate the recursive procedure to generate a core
set, without obviously improving the fit to the data for this case.
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Protein turnover reactions were not included in the core set of reactions since it has been
shown that protein degradation effects on intracellular metabolites are negligible once the label-
ing has reached steady state [84], which is the case for the current data set (see Fig 1 in [47]).

Limiting flux to core
The two-scale approximation assumes that non-core reactions do not contribute directly to the
labeling of core metabolites, since carbon precursors flow from core metabolism into periph-
eral metabolism and do not flow back. This is represented in terms of a genome-scale model by
limiting to zero the flux of reactions flowing into core metabolism (see Algorithm 1). The first
step in 2S-13C MFA (Fig 2) hence consists in taking each reaction that has a product in core
metabolism and setting the upper bound to zero. However, it may be the case that this extra
constraint makes it impossible to meet the measured growth rate (we check this by solving the
corresponding FBA problem). In that case, setting the upper bound to a fraction of the glucose
uptake rate is tested (first 0.05 and then 0.2 for this case). Since the labeling of core metabolism
can be impacted by reversible reactions with reactants included in the core set as well, we cover
this case by limiting the lower bound of the reaction to zero or the lowest value that permits
growth. The impact of the reactions that could not be set to zero will be checked later through
External Labeling Variability Analysis (ELVA, Figs 2 and 4). The input for the first step (Fig 2)
is the genome-scale model with the carbon transitions for the core set integrated in it. The out-
put consists of the genome-scale model with lower and upper bounds modified by this “Limit-
ing flux to core” procedure. A detailed description of this first step in the diagram shown in Fig
2 can be found in the pseudo code in Algorithm 1.

Algorithm 1. “Limiting flux to core” pseudo code
for each reaction j flowing into core:

limits = [0,0.05,0.2]�glucose_uptake
limit = limits.next()
goOn = True
while goOn:
if reaction j has forward flux:

ub[j] = min(ub[j],limit)
else if reaction j has backward flux:

lb[j] = sign(lb[j])�min(abs(lb[j]),limit)
solve FBA problem
goOn = (FBA problem has no solution) and (limit is not the last value in

limits)
limit = limits.next()

Where limits.next() obtains next value in list limits (the first one if uninitiated), and
glucose_uptake is the value of the glucose uptake rate. Solve FBA problem refers to
finding the solution to the problem given by equations 1–3 in S1 Text. has forward flux
refers to the reaction having a possible positive flux (i.e. positive upper bound, ub) flowing into
the core set and has backward flux refers to the reaction having a possible negative flux
(i.e. negative lower bound, lb) flowing into the core set for reversible reactions. sign(lb
[j]) is the sign of the lower bound lb[j]. ub[j] and lb[j] denote upper and lower
bounds for reaction j, respectively.

2S-13C MFA data fit
The second step in 2S-13C MFA (Fig 2) involves fitting the measured metabolite labeling by
solving the optimization problem in Eqs 1–7, where the upper (ubj) and lower bounds (lbj)
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have been limited by the previous step (“Limiting flux to core”). 2S-13C MFA is a hybrid of
FBA and 13C MFA (see Fig 1 and S1 Text) where the stoichiometry constraint is applied to the
full genome-scale network, as in the case of FBA, and the labeling constraints [58] are applied
only to the core set of reactions and metabolites, as is the case for 13C MFA.

Unlike previous efforts [36, 39], these constraints are enforced simultaneously, instead of
sequentially using the results of 13C MFA to constrain the FBA problem. This simultaneous
approach is more rigorous than using slack coefficients (δ in Kuepfer et al [39]), does not need
to invoke an optimization principle to calculate fluxes and allows for the global metabolite bal-
ance to affect core metabolism fluxes. Furthermore, it is also self-consistent whereas in the
sequential approach one might find that fluxes that flow into core metabolism are active, even
though they were not taken into account to do the initial 13C MFA fit.

In the notation of Suthers et al [58] (GAMS files available in S1 Code):

Minimize OF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
e 2 Emeas

m 2 Me

f expem � fem
Dem

� �2

=jMej

0
BBBBBBB@

1
CCCCCCCA
=jEmeasj

vuuuuuuuuuut
ð1Þ

Subject to:

X
j

Sijvj ¼ 0 8i 2 IN ; j 2 J ð2Þ

lbj � vj � ubj 8j 2 J ð3Þ

X
m2Me

fem ¼ 1 8e 2 Eco ð4Þ

X
e02Eco

ððSljEMMl
e0�>e

>0EMMl
e0�>eVlÞfe0mÞ þ ðSljS�

il
<0S

�
ilVlÞfem ¼ 0

8m 2 Me; e 2 Ei; i 2 INco
ð5Þ

fem ¼ P
w2Wem

YjEe j
n¼1

fenmn
8m 2 Me; e 2 Ec

co ð6Þ

vj ¼
X
l2JBco

mapjl Vl 8j 2 J ð7Þ
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where:

Sets

I � fig : Set of all metabolites:

Ico � I : Set of core metabolites:

INco � Ico : Set of non� exchange core metabolites:

J : Set of fluxes:

Jco � J : Set of core fluxes:

JB : Set of fluxes with backward and forward fluxes differentiated; e:g: PGI f ; PGI b; PGL . . . etc:

JBco � JB : Set of core fluxes for JB :

E ¼ feg : Elementary Metabolite Units ðEMUsÞ:
Ec � E : Combined EMUs:

Ei � E : EMUs from metabolite i 2 I:

Ec
co � Ec : Core combined EMUs:

Ee � E : EMUs that produce combined EMU e:

Eco � E : EMUs corresponding to core metabolites:

Emeas � E : EMUs corresponding to measured EMUs:

Wem : Set of every possible mass isotopomer multiplet of Ee that produce the mass isotopomer m of e:

Me : m values for MDV of emu e : 0; 1; � � � ; #of carbons ine:
Parameters

EMMl
e0�>e ¼ 1

k
if e0produces e through reaction l 2 JBco; 0otherwise:See Sutherset al½58�:

Sij : Stoichiometry matrix:

S�il : Stoichiometry matrix with backward and forward fluxes differentiated:

ubj; lbj : Upper and lower bounds for reaction j:

f expem 2 ½0; 1� : Experimentally measured MDV for emu e from metabolite m:

Dem : Measurement error for f expem :

mapjl ¼ 1 � glucupt if l corresponds to forward flux of j:

¼ �1 � glucupt if l corresponds to backward flux of j:

Variables

vj : Flux value of reaction j 2 J; in mmol=gdw=h:

Vl : Flux value of reaction l 2 JBco; normalized to glucose input rate:

fem 2 ½0; 1� : Mass isotopomer fraction ðMDVÞ for emu e from metabolite m:

Notice that S�ij is not the same as Sij, since J and J
B are slightly different sets of fluxes. In fact:

S�il ¼ Sij if l is the forward version of j:

S�il ¼ �Sij if lis the backward version of j:
ð8Þ

Notice that Eqs 2 and 3 are the traditional FBA contraints and that Eqs 4–6 are the 13C
labeling constraints, but they have been limited to core metabolites and reactions. The mapping

Constraining Genome-Scale Models with 13C Labeling Data

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004363 September 17, 2015 23 / 34



(Eq 7) converts the fluxes from the 13C MFA description (higher resolution) where fluxes are
normalized to the glucose uptake rate (glucupt) into the FBA description (lower resolution).
We describe the 13C MFA description as of higher resolution because the 13C labeling data can
pick up differences in forward and backward fluxes (JB set), whereas the purely stochiometric
approach of FBA can only constrain net fluxes (J set).

For all 2S-13C MFA calculations all input flux was supposed to be routed through GLCpts
(glucose transport via PEP:pyr pts [57]). Optimization problems were run N = 30 times and
the one with lowest objective function picked. The value of N was chosen so as to avoid relative
minima of OF. A plot of how the OF saturated as N increased can be found in S21 Fig in the
supplementary material.

In addition to the OF, the more typical sum-of-squares residuals (SSR) for the fits have been
included in the legends of S1–S3 Figs. However, standard good-of-fitness metrics, such as those
proposed by Antoniewicz et al [85], are not applicable to 2S-13C MFA. By using genome-scale
models, the number of estimated free fluxes (p) is higher than the number of independent mea-
surements (n = 48 − 9 = 39 in this case) and the χ2(n − p) distribution of a negative number of
degrees of freedom is then not properly defined. This apparent paradox arises because of the
implicit assumptions in the χ2 statistics approach to these types of fits. The null model assumes
that each of the terms in the SSR are independent random variables, hence the degrees of free-
dom are the number of terms in the SSR [86]. Nonetheless, we know that, for 13C MFA, the
terms in the SSR are typically not independent: the labeling pattern (MDV) of related com-
pounds (i.e. amino acids arising from the same precursors) are very similar. Hence, Antoniewicz
et al [85], decided to use as degrees of freedom the number of individual measurements minus
the number of estimated free fluxes. This proposal seems reasonable for standard 13C MFA, but
breaks down for genome-scale models with a much larger number of degrees of freedom.

One could choose a different null model for the χ2 statistics (and previous approaches have
shown that the standard χ2 goodness-of-fit approach is probably too conservative, see Fig 3A
in [27]) but the crux of the matter is that we believe that using p-values< 0.05 as an absolute
arbitrary threshold for significant vs insignificant results is too simplistic, as do other biological
researchers [87] or R.A. Fisher himself [88]. Hence, what we report here (in S1–S3 Figs) is what
we believe is a better (and more intuitive) way to estimate how good a fit is: the average objec-
tive function normalized to the measurement error (Eq 1). This is the answer to the question:
how different are my fits from the experimentally measured values, measured in units of the
experimental error? This is in accordance in spirit with the suggestion of presenting measures
of significance without arbitrary thresholds [87]. Notice that none of the objective functions
(OF) in S1–S3 Figs is smaller than one, indicating that the difference between experiment and
theory cannot be explained through experimental error. This may be because the experimental
error for the labeling pattern was underestimated or because the model fails to explain the full
labeling pattern. These results are in line with the general trend that fits to intracellular metabo-
lites tend to be worse [89] than fits to proteogenic amino acids [49].

The discarding of the 0.05 p-value criterium does not imply that the considerable effort
employed in obtaining excellent fits to data [49, 51] goes unrewarded. Under the 2S-13C MFA
method, a bad fit to the experimental data results in a larger value for δe m in Eq 23 and wider
confidence intervals. Hence, worse fits beget less flux resolution.

Finally, we think that the best validation of the of a flux fit is using the flux distribution to
predict the results of another experiment, as we did in Figs 9 and 10.
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External Labeling Variability Analysis (ELVA)
Once a core set is chosen, ELVA establishes the maximum impact of non-core metabolism in
the labeling of the measured metabolites. In order to do so, only core metabolism is considered
and the impact of non-core metabolism is represented through “inflow”metabolites and reac-
tions (see Fig 3C for an example). Inflow reactions agglomerate all non-core reactions flowing
into (or out of) a particular core metabolite (see S22 Fig in supplementary material) and are
assigned trivial carbon transitions (e.g. abc --> abc for a three carbon metabolite). Inflow
metabolites are dummy metabolites with the same number of carbons as the involved core
metabolite. ELVA constrains fluxes to the solution obtained in the “Fit data” step (Eq 10) and
maximizes and minimizes the computational MDV for eachm in each of the labeled metabo-
lites. Since fluxes are fixed for all reactions and labeling is fixed for all metabolites except inflow
metabolites, the optimization problem in Eqs 9–15 quantifies the maximum and minimum
effect that this unknown labeling (since it comes from non-core metabolism) could have on the
labeling pattern for the measured metabolites (fem8m,e 2 Emeas):

Min=max fem 8m 2 Me; e 2 Emeas ð9Þ

Subject to:

Vj ¼ Vj j 2 JBcoext ð10Þ

X
j

S�ijVj ¼ 0 8i 2 INcoext; j 2 JBcoext ð11Þ

lbj � Vj � ubj 8j 2 JBcoext ð12Þ
X
m2Me

fem ¼ 1 8e 2 E ð13Þ

X
e02E

X
jjEMMj

e0�>e
>0
EMMj

e0�>eVj

� �
fe0m

� �
þ

X
jjS�

ij
<0
S�ijVj

� �
fem ¼ 0

8m 2 Me; e 2 Ei; i 2 IN
ð14Þ

fem ¼
X
w2Wem

YjEej
n¼1

fenmn
8m 2 Me; e 2 Ec

coext ð15Þ

where symbols are as explained before, with the addition of:

Sets

IBcoext : Set of extended metabolites:

JBcoext : Set of extended fluxes with backward and forward fluxes differentiated:

Parameters

Vl : solutions to the problem given by equations 1� 7

JBcoext and Icoext are the set of reactions and metabolites obtained after expanding the core set to
meet stoichiometry requirements (Eq 11) as is explained in supplementary S22 Fig. The input
for this step is the flux profile obtained from the data fit and the output is an ELVA plot (Fig 4)
used to decide whether the solution is self-consistent or not.
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13C flux variability analysis
Once a self-consistent core set has been determined through the recursive procedure in Fig 2,
flux ranges compatible with the experimental data are obtained through the following optimi-
zation problem:

Min=max Vj 8j 2 J ð16Þ

Subject to: X
j

Sijvj ¼ 0 8i 2 IN ; j 2 J ð17Þ

lbj � vj � ubj 8j 2 J ð18Þ

X
m2Me

fem ¼ 1 8e 2 Eco ð19Þ

Se02EcoððSljEMMl
e0�>e

>0EMMl
e0�>eVlÞfe0mÞ þ ðSljS�

il
<0S

�
ilVlÞfem ¼ 0

8m 2 Me; e 2 Ei; i 2 INco
ð20Þ

fem ¼
X
w2Wem

YjEe j
n¼1

fenmn
8m 2 Me; e 2 Ec ð21Þ

vj ¼
X
l2JBco

mapjlVl 8j 2 J ð22Þ

ðfem � f expem Þ2 � d2em 8e 2 Emeas;m 2 Me ð23Þ

where symbols are as explained before, with the addition of:

Parameters

dem : Maximum error allowed for fem:

dem ¼ Dem if Dem > �em and dem ¼ 1:1 � �em if Dem <¼ �em

where�em ¼ f fitem � f expem from the solution to equations1� 7:

The fluxes vj and Vj are initialized to the values obtained from solving Eqs 1–7. The results
of the minimization and maximization give the flux upper and lower bound compatible with
the experimental data from the 13C labeling experiments. This procedure is similar to the
FluxRange procedure in Suthers et al [27], with the exception that we use set constraints for
each measured data point (Eq 23) instead of only for the objective function. This approach
guarantees that fluxes produce labeling patterns within the experimental error in a much
more efficient way than a monte carlo approach. For example, consider these reactions which
conform a futile cycle:

NDPK1 : gdpc þ atpc <¼> gtpc þ adpc

ADK1 : ampc þ atpc <¼> 2:0 adpc

ADK2 : gtpc þ ampc <¼> gdpc þ adpc

Constraining Genome-Scale Models with 13C Labeling Data

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004363 September 17, 2015 26 / 34



and for which the 13C labeling data cannot constrain the flux values in any fashion. This is shown
correctly in the confidence intervals obtained with the method expressed through Eqs 16–23:

NDPK1 : ½�497:4 � 500 �
ADK1 : ½�497:4 � 500 �
ADK2 : ½�498:0 � 499:3�

whereas if we perform aMonte Carlo, where labeling data is randomly chosen within the experi-
mental error (100 instances), we do not obtain the proper range:

NDPK1 : ½�490:8 � �489:7�
ADK1 : ½ 500:0 � 500:0�
ADK2 : ½�498:0 � �498:0�

The input for this step is the flux profile obtained in the “Fit data” step and the outputs are
the flux profile with corresponding confidence intervals, as shown in S4–S12 Figs.

Supporting Information
S1 Text. FBA and 13C MFA equations.
(PDF)

S2 Text. 13C MOMA and 13C ROOM.
(PDF)

S3 Text. Reactions and carbon transitions.
(PDF)

S1 Code. GAMS files. GAMS files, input files and expected outputs for the nine strains consid-
ered (wild type at 5, 6 and 7 hrs, pyk KO at 5, 6 and 7 hrs and pgi KO at 16, 21 and 23 hrs) for
the data fits.
(GZ)

S1 Fig. Labeling data fit for wild type strain. Red denotes the MDV for experimentally mea-
sured data, blue columns are the fit. The MDV is the fraction of molecules withm = 1,2,3,4. . .
13C incorporated atoms. Sum of square residuals (SSR, [85]) are 216.5, 282.2 and 467.7 for each
strain from top to bottom.
(TIF)

S2 Fig. Labeling data fit for pyk KO. Red denotes the MDV for experimentally measured data,
blue columns are the fit. SSRs are 773.2, 1195.9 and 817.36 for each strain from top to bottom.
(TIF)

S3 Fig. Labeling data fit for pgi KO. Red denotes the MDV for experimentally measured data,
blue columns are the fit. SSRs are 7244.8, 6377.4 and 581.3 for each strain from top to bottom.
(TIF)

S4 Fig. 2S-13C MFA flux map for wild type at 5 hours. Best fit for flux is given on top red
number for each reaction and confidence interval at the bottom. Cofactors and common
metabolites are indicated by small arrows. Reversible reactions are indicated by double arrows.
(TIF)

S5 Fig. 2S-13C MFA flux map for wild type at 6 hours.
(TIF)

Constraining Genome-Scale Models with 13C Labeling Data

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004363 September 17, 2015 27 / 34

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004363.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004363.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004363.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004363.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004363.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004363.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004363.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004363.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004363.s009


S6 Fig. 2S-13C MFA flux map for wild type at 7 hours.
(TIF)

S7 Fig. 2S-13C MFA flux map for pyk KO at 5 hours.
(TIF)

S8 Fig. 2S-13C MFA flux map for pyk KO at 6 hours.
(TIF)

S9 Fig. 2S-13C MFA flux map for pyk KO at 7 hours.
(TIF)

S10 Fig. 2S-13C MFA flux map for pgi KO at 16 hours.
(TIF)

S11 Fig. 2S-13C MFA flux map for pgi KO at 21 hours.
(TIF)

S12 Fig. 2S-13C MFA flux map for pgi KO at 23 hours.
(TIF)

S13 Fig. Extracellular metabolite prediction.Maximum (dark bar) and minimum (light bar)
values of the exchange fluxes obtained by 2S-13C MFA show how 13C experimental data can
effectively constrain exchange fluxes that have not been measured (in blue). For comparison,
maximum and minimum values for the model constrained by extracellular flux measurements
(through FVA, in red) are included as well, as are maximum and minimum values obtained
through FVA for a model constrained by extracellular flux measurements along with con-
straints induced by the two-scale approximation (black, see “Limiting flux to core” section).
Fluxes are for the wild type at 5 hrs, and exchanged metabolites are indicated in the x axis
(iJR904 notation), [57, 83]). A positive exchange flux (excreted metabolite) that remains posi-
tive for long enough should produce a detectable pool of the corresponding metabolite. Acetate
and glucose are used as constraints for the flux determination, hence the confidence intervals
are very narrow. For this particular case, glycolate and urea are expected in the media.
(TIF)

S14 Fig. Extracellular flux prediction for pyk KO at 6 hours. Expected metabolites in the
medium include alpha-Ketoglutarate (akg) and glycolate (glyclt).
(TIF)

S15 Fig. Extracellular flux prediction for pgi KO at 21 hours. Expected metabolites in the
medium include fumarate (fum) and acetaldehyde (acald).
(TIF)

S16 Fig. Version of Fig 8 for glutatamate dehydrogenase (GLUDy) and isocitrate dehydro-
genase (ICDHyr) reactions. Since the flux value for SUCD1i is negative, the absolute value has
been plotted.
(TIF)

S17 Fig. Comparison between original flux profiles for the pgi KO and flux profile after
changing biomass composition according to previously reported results [90, 91]Changes in
flux profiles in central carbon metabolism are minimal. The 13C labeling data constrains
fluxes strongly to a particular solution whereas changes in biomass requirements can be easily
accommodated by the increased degrees of freedom found in genome-scale models.
(TIF)
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S18 Fig. 13C MFA flux map for wild type at 5 hours.
(TIF)

S19 Fig. Flux profile comparison of full predictions with 2S-13C MFA. Full prediction
means that no data from the target experiment was used to constrain fluxes: all predictions
were derived from data from a different experiment. 2S-13C MFA profiles are found by solv-
ing Eqs 1–7. Maximum growth and ATP profiles are found by solving equations 1–3 in S1
Text. MOMA, 13C MOMA, ROOM and 13C ROOM flux profiles are obtained as explained in
S3 Text. Fluxes are sorted according to the following order; (PPP): G6PDH2r, GND, PGL,
RPE, TK1, TA2, EDA, EDD, TK2, TA1, TK3, RPI; (GG): GAPD, ENO, PDH, TPI, PGI, FBA,
PFK, F6PA, GLCS1, GLGC, FBP, G1PP, GLCP, HEX1, PPS, PYK, PGM, PGK; (CAC): FUM,
MDH, ACONT, CS, ICDHyr, SUCD1i, AKGDH, CITL, FRD2, FRD3, MDH2, MDH3,
SUCOAS; (OUT): EX_ac(e), BiomassEcoli, EX_glc(e). All reaction names according to
iJR906 [57].
(TIF)

S20 Fig. Flux profile comparison of partial predictions with 2S-13C MFA. Partial predic-
tion means data from the target experiment was used to constrain fluxes, in this case the val-
ues for the growth rate, glucose intake and acetate excretion rate. 2S-13C MFA profiles are
found by solving Eqs 1–7 in the main paper. Maximum growth and ATP profiles are found
by solving equations 1–3 in S1 Text. Transparencies indicate confidence intervals for the
2S-13C MFA.
(TIF)

S21 Fig. Average objective Function (OF) scaling with number of processes run (N) for
wild type at 5 hours.OF plateaus at N	 15. We chose N = 30 for our simulations.
(TIF)

S22 Fig. Obtaining the network for External Labeling Variablity Analysis (ELVA). The
purpose of ELVA is to determine if the reactions left out of the core metabolism significantly
affect core metabolite labeling. In order to do so, only the core metabolism network is used
and non-core metabolism is represented through inflow reactions and metabolites. Inflow
reactions and metabolites are dummy reactions and metabolites that aggregate the non-core
effects. In the figure, black denotes core metabolites and reactions and blue denotes noncore
metabolites and reactions. Inflow reactions and metabolites are added to the core set to meet
stoichiometric requirements (since core fluxes are fixed to the values obtained in the previ-
ous “Fit data” step). For example, the upper figures show how reactions ARGSL and ADSL1r
are combined into ROfum leading into the dummy metabolite OUTfum, while keeping the
same net flux out of fumarate. In the case of the lower figures ARGSL and ADSL1r have a
net flux into the core set and are substituted by a inward flowing dummy reaction RIfum
and a dummy metabolite OUTfum. The point of the ELVA is to elucidate the impact of the
metabolites in the noncore set (see materials and methods). Outflowing reactions have no
effect (upper panels) but inflowing reactions do (lower panels). The labeling of incoming
dummy metabolites is left unconstrained since its value is not being tracked and our goal
is to determine what is the maximum effect they may have on the measured metabolite
labeling.
(TIF)
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