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A B S T R A C T

In this paper, we study a Caputo–Fabrizio fractional order epidemiological model for the transmission
dynamism of the severe acute respiratory syndrome coronavirus 2 pandemic and its relationship with
Alzheimer’s disease. Alzheimer’s disease is incorporated into the model by evaluating its relevance to the
quarantine strategy. We use functional techniques to demonstrate the proposed model stability under the
Ulam–Hyres condition. The Adams–Bashforth method is used to determine the numerical solution for our
proposed model. According to our numerical results, we notice that an increase in the quarantine parameter
has minimal effect on the Alzheimer’s disease compartment.
. Introduction

No doubt, the merciless outbreaks of infectious disease pandemics
ave impacted humanity’s history. Entire nations and civilizations have
one off the face of the earth throughout history. Beginning with
iblical pharaonic pandemics that suddenly hit Ancient Egypt around
715 BC, the mid - sixteenth century ‘‘cocoliztli’’ epidemics killed some
3 million people, completely destroying the Mesoamerican native
opulation, as well as the Black Death pandemic that erupted in Europe
n 1348 BC, killed over 25 million people in just five years [1].
he pandemic influenza virus of 1918–1919 spread across all part of
he world, killing an estimated 40 million people worldwide. AIDS,
easles, malaria, and tuberculosis have all been re-emerging epidemics

n recent decades, killing millions of infected individuals each year. Ac-
ording to a report on the global AIDS epidemic released by the World
ealth Organization (WHO) and the United Nations AIDS Programme

UNAIDS), an estimated 37.7 million individuals, including 1.7 million
hildren, were living with HIV at the end of 2020 [2]. SARS-COV-2
andemic has stabilized world progress and put the globe into silent
ode, in the twenty-first century, where rapid technological and the-

retical advancements have substantially strengthened our armament
n prevention and control of epidemics. The SARS-COV-2 virus causes
oronavirus (COVID-19), a recent infectious disease. The emergence
f minor to severe respiratory difficulties is one of the most well-
nown symptoms of this condition, with the patient recovering without
herapy in some circumstances. This virus causes symptoms such as
ever, cough, loss of taste. The infected individuals sometimes show
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E-mail addresses: papayawewit@gmail.com (E. Addai), tyutzll@126.com (L. Zhang), prekoama@yahoo.com (A.K. Preko), jkkasamoah@knust.edu.gh

J.K.K. Asamoah).

less common symptoms such as sore throat, headache, rash, among
others. COVID-19’s age-related transmissibility has become a public
health concern in this context. Adults over the age of 60 have had the
most serious health problems, with deadly effects for those over the age
of 80. This is attributable to the high prevalence of underlying health
issues in older people [3–5]. Coronavirus, like all viruses, evolves
throughout time. The majority of the changes have no effect on the
virus’s properties. Some of these changes, however, may have an effect
on the virus’s features, such as how easily it spreads, the severity and
scope of the sickness it causes, or the efficacy of vaccines, therapeutic
drugs, and diagnostic tests. The authors in [6] considered COVID-19
model where a brief details of infection were discussed. They showed
that the main source of infection was the seafood industry. In [7], they
also analyzed the impact of non-pharmaceutical interventions on the
dynamics COVID-19 involving optimal control strategy. The authors
in [8] modeled a new COVID-19 model incorporated quarantine and
isolation. They discussed relevant mathematical results.

Quarantine is one of the most effective strategies to limit the trans-
mission route of this disease, because the symptoms of the sickness may
not emerge on the infected individual at all times, allowing the virus
to spread more swiftly. According to mental health experts, the global
SARS-COV-2 virus pandemic quarantine implemented on millions of
people is neither simple nor overstated since it is a one-of-a-kind and
unprecedented action that restricts day-to-day movement of people.
Many people suffer from psychological and neurological problems as
a result of this predicament, especially those who do not deal with it
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positively. Recently, there has been a worldwide concerned of the rising
tide of the memory difficulties among all population. According to pre-
vious studies, depression in the old age has been connected to cognitive
impairment and the risk of Alzheimer’s disease [9–12]. Alzheimer’s
disease is a brain disorder that causes memory and cognitive function
to deteriorate over time. Alzheimer’s disease is a neuro degenerative
disorder having higher fatality in the elderly due to delayed treatment
caused by a lower detection rate. The lockdown has affected people’s
memories not only the elderly population but all ages. Although there
are presently no medical treatments for this disease, numerous med-
ications promise to delay or drastically diminish the symptoms and
harmful consequences it has on the patient.

Many medical research [13,14] have mentioned the impact of the
SARS-CoV-2 pandemic on Alzheimer’s disease and increased morbidity
and death in infected patients with recent Neuroinflammation. SARS-
CoV-2 has accelerated the progression of brain inflammatory neurode-
generation, and elderly people are more prone to poor consequences
following SARS-CoV-2 infection due to the immune response and exces-
sive inflammation. It has been observed that societies or communities
found themselves in an isolated routine during the SARS-CoV-2 pan-
demic are already experiencing memory difficulties. Furthermore, some
studies have found that communities that were isolated during the
SARS-CoV-2 pandemic are at an increased risk for Alzheimer’s Disease,
and that this severity may create an exceptionally high-risk profile for
certain demographics like Asian Americans, African Americans, and
Hispanic Americans [15].

When dealing with an epidemic, it is important to anticipate fu-
ture, and understand how to control the epidemic’s progress. Hence,
numerous academicians from several fields have contributed to the
analysis, creation of models, and study of significant COVID-19 pre-
vention strategies. In the past, mathematical models were employed
to simulate SARS-CoV-2 epidemics (see for example [16–19]). Even
while results from the use of equations of the integer-order have been
somewhat successful, results from the use of equations of the fractional-
order are still preferable in terms of how closely they relate to reality
when they depict real phenomena. Fractional calculus has grown in
popularity and importance as a result of its proved applications in sys-
tem biology and several sectors of science [20]. In fractional calculus,
all non-negative order derivatives and integrals are allowed. Fractional
derivatives have the advantage of not being a local attribute [21]. Not
surprisingly, fractional-order models are commonly used in epidemiol-
ogy to understand the complexity of infectious diseases. In the realm of
mathematical biology, the Caputo–Fabrizio (CF) fractional-order oper-
ator has been used over Atangana–Baleanu, beta derivatives, and a few
more to design numerous epidemiological models such as dengue fever,
smoking, tuberculosis, measles, Ebola, and other diseases, as shown
in [22–30]. For instance, in [31], the authors discussed a novel model
of human liver where CF fractional operator were used and concluded
that when the operator reduce from 1, the rate of infection reduces.
In [32], the authors also considered existence theory and numerical
solutions to smoking model under CF fractional operator. Rajagopal and
his co-authors proposed a fractional-order SEIRD model for the spread
of COVID-19 and compared it with the real data and integer-order
cases [33]. Ahmed and his co-authors proposed a five-term dynamical
system to understand the trade-off between the lockdown and the
spread of the virus [34].

The authors of [35] investigated Hepatitis E disease model un-
der CF derivative. They concluded that CF operator is a powerful
mathematical tool to study biological models more comprehensively
and also a fastest convergent tool. In [36] the authors investigated
epidemiological model for epidemic childhood diseases. In their pa-
per, they gave technical comparison of the Caputo and CF fractional
derivative results. The authors in [37] used fractional operators to
study dynamics of Chagas-HIV epidemic model. In [38], mathematical
model for pneumococcal pneumonia infection have been investigated
via CF fractional operator. In [39], the author studied fractional order
2

alcoholism model via CF operator. Recently, this SARS-CoV-2 pandemic
has received many mathematical models using CF fractional derivative.
Not long ago, the authors in [40] proposed mathematical model for
SARS-CoV-2 pandemic via Caputo, CF and ABC fractional derivatives
and studied the dynamics of the pandemic in the Pakistan with actual
data. In [41], using CF fractional operator, mathematical model of
SARS-CoV-2 pandemic in India was proposed. They discussed interest-
ing interventions for the spread of SARS-CoV-2 pandemic. The authors
in [42] applied variable CF fractional order to investigate COVID-19
model and discussed some interested result for the proposed model.
More articles have outlined the significant impact of CF fractional
differential and integral operator in studying the complex dynamics of
non-infectious and infectious disease (see for example [43–47]).

The aforementioned literature on the importance of CF fractional
derivative on dynamical systems, we formulate a novel model for
SARS-CoV-2 pandemic incorporating Alzheimer’s disease. The memory
and heredity features are aim of dealing with fractional-order systems
in our model, which gives us a more realistic method to biological
systems, that help in deal with complicated behavioral patterns of
biological systems. The memory function allows fractional order mod-
els to incorporate more knowledge from the past, allowing for more
accurate prediction and translation. The major goal of this research
is to determine the scope of the SARS-CoV-2 epidemic, to forecast
what might happen in the future and how to prevent the disease from
spreading, and to determine the influence of COVID-19 quarantine on
Alzheimer’s disease. Motivated greatly by these and considering the
aforementioned papers, there is no single mathematical formulation
for SARS-CoV-2 pandemic incorporating Alzheimer’s disease, and this
research reveal some critical qualitative information about the disease’s
course.

The structure for this paper is as follows: In Section 2, the definitions
and some significant properties of the CF fractional operator are given.
In Section 3, we described the model in classical and CF fractional
order perspective. In Section 4, we determined the classical analysis
of our proposed model, thus, positivity, boundedness and invariant
region. In Section 5, we discussed the existence and uniqueness results
using Banach and Krasnoselskii’s type fixed point theorem. In Section 6,
we examined the proposed model stability under HU stability type.
In Section 7, by employing Lagrange interpolation, we analyze the
numerical solutions of the proposed model. In Section 8, we used
the numerical results in Section 6 and run the numerical simulation.
Finally, Section 9 sum-up our results and suggestions are given for
future studies.

2. Preliminaries

In this section, we recall some critical concepts, lemmas, and defi-
nitions to study our proposed model.

Definition 2.1 ([32,40]). Let 𝛶 ∈ 𝐻1(𝑎, 𝑏), 𝑏 > 𝑎, and 𝜇∗ ∈ (0, 1). Then
he CF derivative can be defined as

𝐹𝐷𝜇∗
𝜎 𝛶 (𝜎) =

𝐺(𝜇∗)
1 − 𝜇∗ ∫

𝜎

𝑎
𝛶 ′(𝑥)𝑒𝑥𝑝

[

−𝜇∗
𝜎 − 𝑠
1 − 𝜇∗

]

𝑑𝑠.

Here, 𝐺(𝜇∗) is a normalization function, where 𝐺(0) = 𝐺(1) = 1. The
fractional integral of CF is defined by:

𝐼𝜇∗𝜎 𝛶 (𝜇∗) =
2(1 − 𝜇∗)

2(1 − 𝜇∗)𝐺(𝜇∗)
𝛶 (𝜎) +

2𝜇∗
(2 − 𝜇∗)𝐺(𝜇∗) ∫

𝜎

0
𝛶 (𝑠)𝑑𝑠, 𝜎 ≥ 0.

emma 2.2 ([41,42,48]). Suppose that 𝑦(𝜎) ∈ 𝐿𝑝[0, 𝜂], then the solution
f fractional differential equation
𝐶𝐹𝐷𝜇∗

𝜎 𝛶 (𝜎) = 𝑦(𝜎), 𝜎 ∈ [0, 𝜂],

𝛶 (0) = 𝛶0,

s given by

(𝜎) = 𝛶0 +
2(1 − 𝜇∗) 𝛶 (𝜎) +

2𝜇∗ 𝜎
𝛶 (𝑠)𝑑𝑠, 𝜎 ≥ 0.
2(1 − 𝜇∗)𝐺(𝜇∗) (2 − 𝜇∗)𝐺(𝜇∗) ∫0
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Table 1
Interpretation of parameters in the model.

Parameter Interpretation

𝛬 Human recruitment rate
𝛼 Rate of restriction 𝛬
𝜇1 Natural death rate
𝜇2 Covid-19 induce death rate
𝜇3 The death rate from Alzheimer’s disease
𝜂 Modification parameter for the increase of infectivity of 𝑆2
𝛾1 The rate of been quarantined.
𝛾2 The probability of developing Alzheimer’s disease of susceptible individuals
𝜙 The rate of movement from 𝑆1 to 𝑆2
𝛿1 The rate of effective screening for the individuals infected without symptoms of SARS-CoV-2
𝛿2 The rate of effective screening for the individuals infected with SARS-CoV-2
𝜓 Progression rate of the Covid-19
𝜀 Proportion of newly infected humans moving to 𝐼𝑆
𝜎1 The rate recovery from 𝐼𝐴
𝜎2 The rate recovery from 𝐼𝑆
𝜃1 The rate of quarantine 𝐼𝐴
𝜃2 The rate of quarantine 𝐼𝑆
𝜉1 The rate of infected with Alzheimer’s disease in 𝐼𝐴 class
𝜉2 The rate of infected with Alzheimer’s disease in 𝐼𝑆 class
𝜈 The rate of developing Alzheimer’s disease after recovery
𝑚 The probability of developing Alzheimer’s disease due to quarantine
𝜏 Relative infectiousness factor for asymptomatic humans
Lemma 2.3 ([48]). From Krasnoselskii’s fixed point theorem if we assume
hat 𝑩∗ ⊂ 𝑴∗, be a closed convex non-empty subset of 𝑩∗ and ∃ two
perator 𝛺∗

1 and 𝛺
∗
2 then we will have the following

(i) 𝛺∗
1𝛩 +𝛺∗

2𝛶 ∈ 𝑩∗, ∀𝛶 ∈ 𝑩∗;
(ii) 𝛺∗

1 is contraction and 𝛺∗
2 continuous and compact. Then there exist

t least one solution 𝛶 ∈ 𝑩∗ such that

𝛺∗
1𝛶 +𝛺∗

2𝛶 = 𝛶 .

. Model formulation

We consider the entire human population 𝑁 at time 𝑡 thus, 𝑁(𝑡),
here we subdivided into mutually exclusive compartments, which are

usceptible humans with moderate risk of Covid-19 and Alzheimer’s
isease infection 𝑆1(𝑡), thus young population (<60 years old), sus-

ceptible humans with high risk of Covid-19 and Alzheimer’s disease
infection 𝑆2(𝑡), thus aged population (≥60 years old), exposed popula-
tion 𝐸(𝑡), asymptomatically infected population 𝐼𝐴(𝑡), symptomatically
infected population 𝐼𝑆 (𝑡), individuals in isolation centers 𝑄(𝑡), recov-
ered population 𝑅(𝑡) and individuals who have had a Alzheimer’s
disease 𝐴𝐷(𝑡). Thus, 𝑁(𝑡), is given by 𝑁(𝑡) = 𝑆1(𝑡) + 𝑆2(𝑡) + 𝐸(𝑡) +
𝐼𝐷(𝑡) + 𝐼𝑆 (𝑡) + 𝑄(𝑡) + 𝑅(𝑡) + 𝐴𝐷(𝑡). Table 1 gives detail interpretation
of parameters in the model, while we assumed the state variables and
parameters to be all positive. Hence, our proposed model is described
by the following system of differential equations;

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑆1(𝑡)
𝑑𝑡 = 𝛼𝛬 −

(

𝜇1 + 𝛾1 + 𝛾2
)

𝑆1 − 𝜆𝑆1 − 𝜙𝑆1,
𝑑𝑆2(𝑡)
𝑑𝑡 = (1 − 𝛼)𝛬 + 𝜙𝑆1 − 𝜂𝜆𝑆2 −

(

𝜇1 + 𝛾1 + 𝛾2
)

𝑆2,
𝑑𝐸(𝑡)
𝑑𝑡 = 𝜆(𝑆1 + 𝜂𝑆2) − (𝜓 + 𝜇1 + 𝛿1 + 𝛿2)𝐸,

𝑑𝐼𝐴(𝑡)
𝑑𝑡 = 𝜀𝜓𝐸 + 𝛿1𝐸 − (𝜇1 + 𝜎1 + 𝜃1 + 𝜉1)𝐼𝐴,

𝑑𝐼𝑆 (𝑡)
𝑑𝑡 = (1 − 𝜀)𝜓𝐸 + 𝛿2𝐸 − (𝜇1 + 𝜇2 + 𝜎2 + 𝜃2 + 𝜉2)𝐼𝑆 ,

𝑑𝑄(𝑡)
𝑑𝑡 = 𝛾1(𝑆1 + 𝑆2) + 𝜃1𝐼𝐴 + 𝜃2𝐼𝑆 − (𝑚 + 𝜇1 + 𝜇2)𝑄,

𝑑𝑅(𝑡)
𝑑𝑡 = 𝜎1𝐼𝐴 + 𝜎2𝐼𝑆 − (𝜈 + 𝜇1)𝑅,

𝑑𝐴𝐷(𝑡)
𝑑𝑡 = 𝛾2(𝑆1 + 𝑆2) + 𝜈𝑅 + 𝜉1𝐼𝐴 + 𝜉2𝐼𝑆 + 𝑚𝑄 − (𝜇1 + 𝜇3)𝐴𝐷,

(1)

where 𝑡 > 0 with the initial conditions 𝑆1(0) = 𝑆1(0) ≥ 0, 𝑆2(0) =
𝑆2(0) ≥ 0, 𝐸(0) = 𝐸(0) ≥ 0, 𝐼𝐴(0) = 𝐼𝐴(0) ≥ 0, 𝐼𝑆 (0) = 𝐼𝑆(0) ≥
0, 𝑄(0) = 𝑄(0) ≥ 0, 𝑅(0) = 𝑅(0) ≥ 0, 𝐴𝐷(0) = 𝐴𝐷(0) ≥ 0. Where
he force of infection of the model (1) above is given by 𝜆 = 𝜏𝐼𝐴+𝐼𝑆

𝑁 .
The aforementioned differential operators cannot describe the nonlocal
dynamics, due to the involvement of singular kernel. To overcome these
3

complications a new class of fractional operator has been introduced
in [49]. Therefore, for better understanding of the SARS-CoV-2 model,
it is required to reformulate the SARS-CoV-2 model above to the
fractional-order model. According to the explanation of time-dependent
kernel defined by the power law correlation function, presented in [50],
our considered Caputo–Fabrizio fractional order derivative model for
SARS-CoV-2 incorporate Alzheimer’s disease is defined as follows;

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐶𝐹𝐷𝜇∗
𝑡 𝑆1(𝑡) = 𝛼𝛬 −

(

𝜇1 + 𝛾1 + 𝛾2
)

𝑆1 − 𝜆𝑆1 − 𝜙𝑆1,
𝐶𝐹𝐷𝜇∗

𝑡 𝑆2(𝑡) = (1 − 𝛼)𝛬 + 𝜙𝑆1 − 𝜂𝜆𝑆2 −
(

𝜇1 + 𝛾1 + 𝛾2
)

𝑆2,
𝐶𝐹𝐷𝜇∗

𝑡 𝐸(𝑡) = 𝜆(𝑆1 + 𝜂𝑆2) − (𝜓 + 𝜇1 + 𝛿1 + 𝛿2)𝐸,
𝐶𝐹𝐷𝜇∗

𝑡 𝐼𝐴(𝑡) = 𝜀𝜓𝐸 + 𝛿1𝐸 − (𝜇1 + 𝜎1 + 𝜃1 + 𝜉1)𝐼𝐴,
𝐶𝐹𝐷𝜇∗

𝑡 𝐼𝑆 (𝑡) = (1 − 𝜀)𝜓𝐸 + 𝛿2𝐸 − (𝜇1 + 𝜇2 + 𝜎2 + 𝜃2 + 𝜉2)𝐼𝑆 ,
𝐶𝐹𝐷𝜇∗

𝑡 𝑄(𝑡) = 𝛾1(𝑆1 + 𝑆2) + 𝜃1𝐼𝐴 + 𝜃2𝐼𝑆 − (𝑚 + 𝜇1 + 𝜇2)𝑄,
𝐶𝐹𝐷𝜇∗

𝑡 𝑅(𝑡) = 𝜎1𝐼𝐴 + 𝜎2𝐼𝑆 − (𝜈 + 𝜇1)𝑅,
𝐶𝐹𝐷𝜇∗

𝑡 𝐴𝐷(𝑡) = 𝛾2(𝑆1 + 𝑆2) + 𝜈𝑅 + 𝜉1𝐼𝐴 + 𝜉2𝐼𝑆 + 𝑚𝑄 − (𝜇1 + 𝜇3)𝐴𝐷,

(2)

where 𝑡 > 0 with the initial conditions 𝑆1(0) = 𝑆1(0), 𝑆2(0) =
𝑆2(0), 𝐸(0) = 𝐸(0), 𝐼𝐴(0) = 𝐼𝐴(0), 𝐼𝑆 (0) = 𝐼𝑆(0), 𝑄(0) = 𝑄(0), 𝑅(0) =
𝑅(0), 𝐴𝐷(0) = 𝐴𝐷(0) subject to min(𝑆1, 𝑆2, 𝐸, 𝐼𝐴, 𝐼𝑆 , 𝑄,𝑅,𝐴𝐷) ≥ 0, and
we assume that dimension of both model sides are the same.

4. Basic dynamics of the model

We examine the dynamics of the positivity, boundedness, and in-
variance of the proposed model’s solutions in this section. In an epi-
demics model, it is important to evaluate population survival and the
expansion that is naturally constrained by scarce resources. As a result,
we demonstrate the following theorems.

Theorem 1. Let 𝑆1(0) ≥ 0, 𝑆2(0) ≥ 0, 𝐸(0) ≥ 0, 𝐼𝐴(0) ≥ 0, 𝐼𝑆 (0) ≥
0, 𝑄(0) ≥ 0, 𝑅(0) ≥ 0, 𝐴𝐷(0) ≥ 0, such that the solution set

𝛹 = {𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡)} ∈ 𝑅8
+,

of the proposed model (1) are positive for all 𝑡 > 0. Furthermore

lim sup
𝑡→∞

𝑁(𝑡) ≤ 𝛬
𝜇
.
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Proof. Let 𝑡1 = sup{𝑆1(0) ≥ 0, 𝑆2(0) ≥ 0, 𝐸(0) ≥ 0, 𝐼𝐴(0) ≥ 0, 𝐼𝑆 (0) ≥
0, 𝑄(0) ≥ 0, 𝑅(0) ≥ 0, 𝐴𝐷(0) ≥ 0} ∈ [0, 𝑡]. Let us now consider the
model’s initial dynamical Eq. (2) where 𝑡1 > 0. Keep in mind that the
starting values are higher than zero, then,
𝑑𝑆1
𝑑𝑡

= 𝛼𝛬 −
(

𝜇1 + 𝛾1 + 𝛾2
)

𝑆1 − 𝜆𝑆1 − 𝜙𝑆1.

For simplicity, we let 𝑀∗
1 =

[

𝜇1 + 𝛾1 + 𝛾2 + 𝜆 + 𝜙
]

. Thus,

𝑑𝑃1
𝑑𝑡

+𝑀∗
1𝑆1(𝑡) = 𝛼𝛬.

his lead to
𝑑
𝑑𝑡

(

𝑆1(𝑡)𝑒𝑥𝑝
(

∫

𝑡1

0
𝑀∗

1 (𝑠)𝑑𝑠
))

=
(

𝛼𝛬
)

𝑒𝑥𝑝
(

∫

𝑡1

0
𝑀∗

1 (𝑠)𝑑𝑠
)

.

o, we get

1(𝑡) = 𝑆1(0)𝑒𝑥𝑝
(

−∫

𝑡1

0
𝑀∗

1 (𝑠)𝑑𝑠
)[

∫

𝑡1

0

(

𝛼𝛬
)

𝑒𝑥𝑝
(

∫

𝑡1

0
𝑀∗

1 (𝑠)𝑑𝑠
)]

+ 𝑒𝑥𝑝
(

−∫

𝑡1

0
𝑀∗

1 (𝑠)𝑑𝑠
)[

∫

𝑡1

0

(

𝛼𝛬
)

𝑒𝑥𝑝
(

∫

𝑠

0
𝑀∗

1 (𝑠)𝑑𝑠
)]

.

Therefore, we proved that 𝑆1(0) > 0 for all 𝑡 > 0. Similarly, we can
prove that 𝑆2(0) ≥ 0, 𝐸(0) ≥ 0, 𝐼𝐴(0) ≥ 0, 𝐼𝑆 (0) ≥ 0, 𝑄(0) ≥ 0, 𝑅(0) ≥
0, 𝐴𝐷(0) ≥ 0. for all 𝑡 > 0.

Now, we get the following expression for boundedness 𝑑𝑁
𝑑𝑡 = 𝛬−𝜇𝑁 ,

uch that 𝛬 − 𝜇𝑁 ≤ 𝑑𝑁
𝑑𝑡 ≤ 𝛬 − 𝜇𝑁 , and hence, lim inf 𝑡→∞𝑁(𝑡) ≤ 𝛬

𝜇 ≤
lim sup𝑡→∞𝑁(𝑡) ≤ 𝛬

𝜇 .
Considering invariant, we let 𝛷 = 𝛺 ⊂ 𝑅+ × 𝑅+ where

= {(𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡)) ∈ 𝑅8
+ ∶ 𝑁(𝑡)

≤ 𝛬
𝜇
}.

Now, for positively invariant of 𝑅8
+,

𝑑𝑁
𝑑𝑡

= 𝛬 − 𝜇𝑁,

solving this equality we get as follows

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇(𝑡) + 𝛬
𝜇
(

1 − 𝑒−𝜇(𝑡)
)

.

herefore,

im sup
𝑡→∞

𝑁(𝑡) ≤ 𝛬
𝜇
.

As a result, the SARS-CoV-2 transmission model that includes
Alzheimer’s disease is known to be mathematically well-posed and fall
within the realm of possibility 𝛷.

Theorem 2. The solution of (2) along with initial conditions is positively
invariant and bounded in 𝑅7

+.

Proof. Using the results in [51] and taking the account of the initial
values given, from model (2) we obtain

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐶𝐹𝐷𝜇∗
𝑡 𝑆1(𝑡)|𝑆1(0) = 𝑎𝛬 ≥ 0,

𝐶𝐹𝐷𝜇∗
𝑡 𝑆2(𝑡)|𝑆2(0) = (1 − 𝑎)𝛬 + 𝜙𝑆1 ≥ 0,

𝐶𝐹𝐷𝜇∗
𝑡 𝐸(𝑡)|𝐸(0) = 𝜆(𝑆1 + 𝜂𝑆2) ≥ 0,

𝐶𝐹𝐷𝜇∗
𝑡 𝐼𝐴(𝑡)|𝐼𝐴(0) = 𝜀𝜓𝐸 + 𝛿1𝐸 ≥ 0,

𝐶𝐹𝐷𝜇∗
𝑡 𝐼𝑆 (𝑡)|𝐼𝑆 (0) = (1 − 𝜀)𝜓𝐸 + 𝛿2𝐸 ≥ 0,

𝐶𝐹𝐷𝜇∗
𝑡 𝑄(𝑡)|𝑄(0) = 𝛾1(𝑆1 + 𝑆2) + 𝜃1𝐼𝐴 + 𝜃2𝐼𝑆 ≥ 0,

𝐶𝐹𝐷𝜇∗
𝑡 𝑅(𝑡)|𝑅(0) = 𝜎1𝐼𝐴 + 𝜎2𝐼𝑆 ≥ 0,

𝐶𝐹𝐷𝜇∗
𝑡 𝐼𝑆 (𝑡)|𝐼𝑆 (0) = 𝛾2(𝑆1 + 𝑆2) + 𝜈𝑅 + 𝜉1𝐼𝐴 + 𝜉2𝐼𝑆 + 𝑚𝑄 ≥ 0.

(3)

Suppose 𝑆1(0), 𝑆2(0), 𝐸(0), 𝐼𝐴(0), 𝐼𝑆(0), 𝑄(0), 𝑅0, 𝐴𝐷(0) ∈ 𝑅8
+, for all 𝑡 > 0,

then from (3) the solution of the model 2 cannot escape from the
hyperplanes 𝑆1 = 0, 𝑆2 = 0, 𝐸 = 0, 𝐼𝐴 = 0, 𝐼𝑆 = 0, 𝑄 = 0, 𝑅 =
0, 𝐴 = 0. This conclude that the ∈ 𝑅8 , is a positive invariant set.
𝐷 +

4

5. Existence and uniqueness results for the SARS-CoV-2 transmis-
sion model incorporate Alzheimer’s disease

It is important to ask weather the dynamical problem we proposed
exist or not. This is the basic question and will answered by the theory
of fixed points. Regarding to the aforesaid need as the integral is
differentiable, we can rewrite the right sides of model (2) as follows

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ℵ1(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡))

= 𝛼𝛬 −
(

𝜇1 + 𝛾1 + 𝛾2
)

𝑆1 − 𝜆𝑆1 − 𝜙𝑆1,

ℵ2(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡))

= (1 − 𝛼)𝛬 + 𝜙𝑆1 − 𝜂𝜆𝑆2 −
(

𝜇1 + 𝛾1 + 𝛾2
)

𝑆2,

ℵ3(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡))

= 𝜆(𝑆1 + 𝜂𝑆2) − (𝜓 + 𝜇1 + 𝛿1 + 𝛿2)𝐸

ℵ4(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡))

= 𝜀𝜓𝐸 + 𝛿1𝐸 − (𝜇1 + 𝜎1 + 𝜃1 + 𝜉1)𝐼𝐴,

ℵ5(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡))

= (1 − 𝜀)𝜓𝐸 + 𝛿2𝐸 − (𝜇1 + 𝜇2 + 𝜎2 + 𝜃2 + 𝜉2)𝐼𝑆 ,

ℵ6(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡))

= 𝛾1(𝑆1 + 𝑆2) + 𝜃1𝐼𝐴 + 𝜃2𝐼𝑆 − (𝑚 + 𝜇1 + 𝜇2)𝑄,

ℵ7(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡))

= 𝜎1𝐼𝐴 + 𝜎2𝐼𝑆 − (𝜈 + 𝜇1)𝑅,

ℵ8(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡))

= 𝛾2(𝑆1 + 𝑆2) + 𝜈𝑅 + 𝜉1𝐼𝐴 + 𝑚𝑄

+ 𝜉2𝐼𝑆 − (𝜇1 + 𝜇3)𝐴𝐷.

(4)

rom (4), the developed model (2) can be written in the form;

⎧

⎪

⎨

⎪

⎩

𝐶𝐹𝐷𝜇∗
𝑡 ℵ(𝑡) = 𝛷(𝑡, ℵ(𝑡)), 𝑡 ∈ [0, 𝜂], 0 < 𝜇∗ ≤ 1,

ℵ(0) = ℵ0,
(5)

(𝑡) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑆1(𝑡),

𝑆2(𝑡),

𝐸(𝑡),

𝐼𝐴(𝑡)(𝑡),

𝐼𝐷(𝑡),

𝑄(𝑡),

𝑅(𝑡),

𝐴𝐷(𝑡),

ℵ0 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑆1(0),

𝑆2(0),

𝐸(0),

𝐼𝐴(0)(𝑡),

𝐼𝐷(0),

𝑄(0),

𝑅(0),

𝐴𝐷(0),

(6)

herefore,

(𝑡, ℵ(𝑡)) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ℵ1(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡)),

ℵ2(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡)),

ℵ3(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡)),

ℵ4(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡)),

ℵ5(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡)),

ℵ6(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡)),

ℵ7(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡)),

ℵ8(𝑡, 𝑆1(𝑡), 𝑆2(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑄(𝑡), 𝑅(𝑡), 𝐴𝐷(𝑡)).

(7)

ith the help of Lemma 6.4, system (5) yields,

⎧

⎪

⎪

⎨

⎪

⎪

ℵ(𝑡) = ℵ0(𝑡) +
2(1 − 𝜇∗)

2(1 − 𝜇∗)𝐺(𝜇∗)
𝛷(𝑡, ℵ(𝑡)) +

2𝜇∗
(2 − 𝜇∗)𝐺(𝜇∗)

× ∫

𝑡
𝛷(𝑠, ℵ(𝑠))𝑑𝑠.

(8)
⎩

0
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Further, let say 𝑩∗ = 𝐶([0, 𝜂]) is the Banach space, supposing that
he following assumptions hold

(𝐻1) There exist a nonnegative constant 𝑄∗,𝑊∗, and 𝑘∗ ∈ [0, 1) such
that

𝛷(𝑡, ℵ(𝑡)) ≤ 𝑌∗|ℵ|
𝑘∗ +𝑍∗.

(𝐻2) There exist a nonnegative constant 𝐂𝜌 > 0 for all ℵ, ℵ̃ ∈ 𝑩∗
then

|𝛷(𝑡, ℵ(𝑡)) −𝛷(𝑡, ℵ̃(𝑡))| ≤ 𝐂𝜌[|ℵ − ℵ̃|].

Also, let us define operator 𝐓𝑝 ∶ 𝑩∗ → 𝑩∗ such that

𝐓𝑝ℵ(𝑡) =𝑀∗
1ℵ(𝑡) +𝑀

∗
2ℵ(𝑡),

basically, we can see that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑀∗
1ℵ(𝑡) = ℵ0(𝑡) + +

2(1 − 𝜇∗)
2(1 − 𝜇∗)𝐺(𝜇∗)

𝛷(𝑡, ℵ(𝑡)),

𝑀∗
2ℵ(𝑡) =

2𝜇∗
(2 − 𝜇∗)𝐺(𝜇∗) ∫

𝑡

0
𝛷(𝑠, ℵ(𝑠))𝑑𝑠.

(9)

From this knowledge (8) can be written as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐓𝑝ℵ(𝑡) = ℵ0(𝑡) +
2(1 − 𝜇∗)

2(1 − 𝜇∗)𝐺(𝜇∗)
𝛷(𝑡, ℵ(𝑡)) +

2𝜇∗
(2 − 𝜇∗)𝐺(𝜇∗)

× ∫

𝑡

0
𝛷(𝑠, ℵ(𝑠))𝑑𝑠.

(10)

Theorem 3. Suppose that (𝐻1) and (𝐻2) hold, such that,
2(1 − 𝜇∗)

2(1 − 𝜇∗)𝐺(𝜇∗)

𝜌 < 1, then the SARS-CoV-2 transmission model incorporate Alzheimer’s
isease has at least one solution.

roof. For simplicity, we divide the proof into two steps.
Step 1. We proof that operator 𝑀∗

1 is contraction. Then, let ℵ̃ ∈ 𝛱 ,
here 𝛱 = {ℵ ∈ 𝐖∗ ∶ ‖ℵ‖ ≤ 𝜙, 𝜙 > 0} is a close convex set, thus

𝑀∗
1ℵ(𝑡) −𝑀

∗
2ℵ(𝑡)| =

2(1 − 𝜇∗)
2(1 − 𝜇∗)𝐺(𝜇∗)

× max
𝜇∗∈[0,𝜂]

|𝛷(𝑡, ℵ(𝑡)) −𝛷(𝜎, ℵ̃(𝑡))|,

≤
2(1 − 𝜇∗)

2(1 − 𝜇∗)𝐺(𝜇∗)
𝐂𝜌‖ℵ − ℵ̃‖.

(11)

Thus,

‖𝑀∗
1ℵ(𝑡) −𝑀𝛺∗

2ℵ(𝑡)‖ ≤
2(1 − 𝜇∗)

2(1 − 𝜇∗)𝐺(𝜇∗)
𝐂𝜌‖ℵ − ℵ̃‖.

Hence 𝑀∗
1 is contraction since

2(1 − 𝜇∗)
2(1 − 𝜇∗)𝐺(𝜇∗)

𝐂𝜌 < 1.
Step 2. We proof that 𝑀∗

2 is compact and also continuous, for all
ℵ ∈ 𝛱 , then 𝑀∗

2 will be continuous as ℵ is continuous, thus

‖𝑀∗
2 (ℵ)‖ = max

𝑡∈[0,𝜂]
|

2𝜇∗
(2 − 𝜇∗)𝐺(𝜇∗) ∫

𝑡

0
𝛷(𝑠, ℵ(𝑠))𝑑𝑠|,

≤
2𝜇∗

(2 − 𝜇∗)𝐺(𝜇∗)
𝜂 ∫

𝑡

0
|𝛷(𝑠, ℵ(𝑠))|𝑑𝑠.

≤
2𝜇∗

(2 − 𝜇∗)𝐺(𝜇∗)
𝜂[𝑌∗|ℵ|

𝑘∗ +𝑍∗].

(12)

ence 𝑀∗
2 is boundedness. For equicontinuous, let 𝑡1, 𝑡2 ∈ [0, 𝜂], such

hat

(𝑀∗
2ℵ)(𝑡1) − (𝑀∗

2ℵ)(𝑡2)| =
2𝜇∗

(2 − 𝜇∗)𝐺(𝜇∗)
max
𝑡∈[0,𝜂]

|

|

|∫

𝑡1

0
𝛷(𝑠, ℵ(𝑠))𝑑𝑠

− ∫

𝑡2

0
𝛷(𝑠, ℵ(𝑠))𝑑𝑠||

|

≤
2𝜇∗ [𝑌∗|ℵ|

𝑘∗ +𝑍∗]|𝑡1 − 𝑡2|.

(13)
(2 − 𝜇∗)𝐺(𝜇∗)

5

As 𝑡1 → 𝑡2, then |(𝑀∗
2ℵ)(𝑡1) − (𝑀∗

2ℵ)(𝑡2)| → 0 which make operator 𝑀∗
2

an equicontinuous and compact by Arzela–Ascoli theorem. Therefore
by Lemma 2.3 the existence for the SARS-CoV-2 transmission model
incorporate Alzheimer’s disease has at least one solution. □

Theorem 4. Suppose that ∃ a nonnegative integer 𝛬𝜌 > 0 such that

𝛬𝜌 =
[

2(1 − 𝜇∗)
2(1 − 𝜇∗)𝐺(𝜇∗)

𝐋𝜌 +
2𝜇∗

(2 − 𝜇∗)𝐺(𝜇∗)
𝜂𝐋𝜌

]

< 1, (14)

hen operator 𝐓𝑝 has a unique fixed point.

roof. Let ℵ, ℵ̃ ∈ 𝑾 ∗, then we say

𝐓𝑝ℵ − 𝐓𝑝ℵ̃‖ ≤ ‖𝑀∗
1ℵ −𝑀∗

1 ℵ̃‖ + ‖𝑀∗
2ℵ −𝛺∗

2ℵ̃‖,

≤
2(1 − 𝜇∗)

2(1 − 𝜇∗)𝐺(𝜇∗)
max
𝑡∈[0,𝜂]

|

|

|

𝛷(𝑡, ℵ(𝑡)) −𝛷(𝑡, ℵ̃(𝑡))|

+
2𝜇∗

(2 − 𝜇∗)𝐺(𝜇∗)

× max
𝑡∈[0,𝜂]

|

|

|∫

𝑡

0
𝛷(𝑠, ℵ(𝑠))𝑑𝑠 − ∫

𝑡

0
𝛷(𝑠, ℵ̃(𝑠))𝑑𝑠||

|

≤
[ 2(1 − 𝜇∗)
2(1 − 𝜇∗)𝐺(𝜇∗)

𝐂𝜌 +
2𝜇∗

(2 − 𝜇∗)𝐺(𝜇∗)
𝜂𝐂𝜌

]

‖ℵ − ℵ̃‖,

= 𝛬𝜌‖ℵ − ℵ̃‖.

(15)

ence, by Banach contraction principle, 𝐓𝑝 has a unique fixed point.
onsequently, the SARS-CoV-2 transmission model incorporate
lzheimer’s disease has unique solution. □

. Hyers–Ulam (HU) stability results for the SARS-CoV-2 transmis-
ion model incorporate Alzheimer’s disease

Stability is one of crucial component of differential equation. There
as been many stability-type concepts that study dynamical systems,
he HU stability-type concept has recently used for many epidemiolog-
cal models, due to the approximation properties in the solutions which
educe the burden of getting exact solutions, for example (see [52]) and
eferences therein. To assess and analyze the SARS-CoV-2 transmission
odel incorporating Alzheimer’s disease, we apply the concept of HU

tability-type to get approximate solution for our proposed model.

efinition 6.1. The proposed model is HU stable if for 𝛿 > 0 and letting
∈ 𝑾 ∗ be any solution of below inequality

𝐹𝐷𝜇∗
𝑡 ℵ(𝑡) −𝛷(𝑡, ℵ(𝑡)) ≤ 𝛿, ∀𝑡 ∈ [0, 𝜂]; (16)

nd with a unique solution ℵ̃ of problem (16) with a positive constant
𝑞 > 0, such that,

ℵ − ℵ̃‖ ≤ 𝐶𝑞𝛿, ∀𝑡 ∈ [0, 𝜂]. (17)

efinition 6.2. Given a function 𝜙 ∈ 𝐶(𝑅,𝑅), such that 𝜙(0) = 0 for
ny solution ℵ of (16) and ℵ̃ be unique solution of (16), then

ℵ − ℵ̃‖ ≤ 𝜙(𝛿), (18)

hen the system (16) is generalized HU stable.

emark 6.3. Suppose 𝜒(𝑡) ∈ 𝐶([0, 𝜂], 𝑅), we say ℵ ∈ 𝑾 ∗ satisfies
nequality (18) suppose that,

(𝑖) |𝜒(𝑡)| ≤ 𝛿, for all 𝑡 ∈ [0, 𝜂],
(𝑖𝑖) 𝐶𝐹𝐷𝜇∗

𝑡 ℵ(𝑡) = 𝛷(𝑡, ℵ(𝑡)) + 𝜒(𝑡), ∀𝑡 ∈ [0, 𝜂].
Now, we consider the resulting perturbation equation of system (16)

s follows;
{𝐶𝐹𝐷𝜇∗

𝑡 ℵ(𝑡) = 𝛷(𝑡, ℵ(𝑡)) + 𝜒(𝑡),
ℵ(0) = ℵ0.

(19)

he below Lemma is necessary for our proves.
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Fig. 1. Numerical trajectory of the CF-fractional order derivative, 𝜇∗ of the model (2).
N

|

T
[

Table 2
Parameter values.

Parameter Value Parameter Value

𝛬 0.99 𝛼 0.98
𝜇1 0.000001 𝜇2 0.00019
𝜇3 0.0039 𝜂 0.82
𝛾1 0.008 𝛾2 0.010
𝛿1 0.0002 𝛿2 0.01
𝜃1 0.0056 𝜃2 0.0076
𝜉1 0.01 𝜉2 0.053
𝜈 0.00002 𝜏 0.0003
𝑚 0.009 𝜓 0.08
𝜀 0.2 𝜙 0.07
𝜎1 0.019 𝜎2 0.0231

Lemma 6.4. From Eq. (30), we say the following result hold. Thus,

|ℵ(𝑡) − 𝐓𝑝𝛷(𝑡, ℵ(𝑡))| ≤
[ 2(1 − 𝜇∗) +

2𝜇∗ 𝜂
]

𝛿.

2(1 − 𝜇∗)𝐺(𝜇∗) (2 − 𝜇∗)𝐺(𝜇∗)

6

Proof. Consider Lemma 6.4, relatively, solution for Eq. (19) is given
as;

ℵ(𝑡) = ℵ0 +𝐶𝐹 𝐼
𝜇∗
𝑡 𝛷(𝑡, ℵ(𝑡)) +𝐶𝐹 𝐼𝜇∗𝑡 𝜒(𝑡).

ow, with the help of (10), we deduce that

ℵ(𝜎) − 𝐓𝑝𝛷(𝑡, ℵ(𝑡))| ≤ [
2(1 − 𝜇∗)

2(1 − 𝜇∗)𝐺(𝜇∗)
|𝜒(𝜎)| +

2𝜇∗
(2 − 𝜇∗)𝐺(𝜇∗)

× 𝜂 ∫

𝑡

0
|𝜒(𝜎)|𝑑𝑠]

≤
[ 2(1 − 𝜇∗)
2(1 − 𝜇∗)𝐺(𝜇∗)

𝐂𝜌 +
2𝜇∗

(2 − 𝜇∗)𝐺(𝜇∗)
𝜂𝐂𝜌

]

𝛿. □

(20)

heorem 5. Suppose that the system (16) is HU stable, if there exist

2(1 − 𝜇∗) +
2𝜇∗ 𝜂

]

< 1.

2(1 − 𝜇∗)𝐺(𝜇∗) (2 − 𝜇∗)𝐺(𝜇∗)
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Fig. 2. Numerical trajectory of the CF-fractional order derivative, 𝜇∗ of the model (2).
O

ℵ

Proof. With the help from Lemma 6.4, let ℵ ∈ 𝑾 ∗ be any solution and
ℵ̃ ∈ 𝑾 ∗ be unique solution for considered problem (17), then

|ℵ(𝑡) − ℵ̃(𝑡)| = |ℵ(𝑡) − 𝐓𝑝ℵ̃(𝑡)|
≤ |ℵ(𝑡) − 𝐓𝑝ℵ(𝑡)| + |𝐓𝑝ℵ(𝑡) − 𝐓𝑝ℵ̃(𝑡)|

≤
[ 2(1 − 𝜇∗)
2(1 − 𝜇∗)𝐺(𝜇∗)

+
2𝜇∗

(2 − 𝜇∗)𝐺(𝜇∗)
𝜂
]

𝛿

+
[ 2(1 − 𝜇∗)
2(1 − 𝜇∗)𝐺(𝜇∗)

𝐂𝜌 +
2𝜇∗

(2 − 𝜇∗)𝐺(𝜇∗)
𝜂𝐂𝜌

]

‖ℵ − ℵ̃‖

≤
[

2(1 − 𝜇∗)
2(1 − 𝜇∗)𝐺(𝜇∗)

+
2𝜇∗

(2 − 𝜇∗)𝐺(𝜇∗)
𝜂]

[ 2(1 − 𝜇∗)
2(1 − 𝜇∗)𝐺(𝜇∗)

𝐂𝜌 +
2𝜇∗

(2 − 𝜇∗)𝐺(𝜇∗)
𝜂𝐂𝜌

]

𝛿.

(21)

Thus,

‖ℵ(𝑡) − ℵ̃(𝑡)‖ ≤
[

2(1 − 𝜇∗)
2(1 − 𝜇∗)𝐺(𝜇∗)

+
2𝜇∗

(2 − 𝜇∗)𝐺(𝜇∗)
𝜂]

[ 2(1 − 𝜇∗) 𝐂𝜌 +
2𝜇∗ 𝜂𝐂𝜌

]

𝛿.
2(1 − 𝜇∗)𝐺(𝜇∗) (2 − 𝜇∗)𝐺(𝜇∗) 0

7

Hence, we conclude that, the SARS-CoV-2 transmission model incorpo-
rate Alzheimer’s disease has at least one solution. Consequently, it is
generalized HU stable. □

7. Numerical scheme

In this section, we present the numerical results for SARS-CoV-2
transmission model incorporate Alzheimer’s disease base on the La-
grange interpolation. The Cauchy problem of the CF fractional deriva-
tive can be given as;

𝐶𝐹𝐷𝜇∗
𝑡 ℵ(𝑡) = 𝛷(𝑡, ℵ(𝑡)). (22)

n the other hand, we can be expressed (22) as

(𝑡) = ℵ0(𝑡) +
(1 − 𝜇∗)
𝐺(𝜇∗)

𝛷(𝑡, ℵ(𝑡)) +
𝜇∗

𝐺(𝜇∗)
× ∫

𝑡

0
𝛷(𝑠, ℵ(𝑠))𝑑𝑠. (23)

Taking (23) at the point 𝑡𝑧∗+1 = (𝑧∗ + 1)ℎ and 𝑡𝑧∗ = 𝑧∗ℎ, 𝑧∗ =
, 1, 2, 3,…, with ℎ being the time step, we have
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Fig. 3. Dynamics of individuals who have had a Alzheimer’s disease over time under different 𝛾1 (left) and 𝛾2 (right).
𝑆

𝐸

𝐼

𝑄

𝑅

(𝑡𝑧∗+1) = ℵ(0) +
(1 − 𝜇∗)
𝐺(𝜇∗)

𝛷(𝑡𝑧∗ , ℵ(𝑡𝑧∗ )) +
𝜇∗

𝐺(𝜇∗)
× ∫

𝑡𝑧∗+1

𝑡𝑧∗

𝛷(𝑠, ℵ(𝑠))𝑑𝑠,

(24)

ℵ(𝑡𝑧∗ ) = ℵ(0) +
(1 − 𝜇∗)
𝐺(𝜇∗)

𝛷(𝑡𝑧∗−1, ℵ(𝑡𝑧∗−1)) +
𝜇∗

𝐺(𝜇∗)
× ∫

𝑡𝑧∗+1

𝑡𝑧∗

𝛷(𝑠, ℵ(𝑠))𝑑𝑠.

(25)

Taking (24) and (25) results in

ℵ(𝑡𝑧∗+1) − ℵ(𝑡𝑧∗ ) =
(1 − 𝜇∗)
𝐺(𝜇∗)

(

𝛷(𝑡𝑧∗ , ℵ(𝑡𝑧∗ )) −𝛷(𝑡𝑧∗−1, ℵ(𝑡𝑧∗−1))
)

+
𝜇∗

𝐺(𝜇∗)

× ∫

𝑡𝑧∗+1

𝑡𝑧∗

𝛷(𝑠, ℵ(𝑠))𝑑𝑠.

(26)

Eq. (26) in two-step Lagrange polynomial gives

ℵ(𝑡𝑧∗+1) − ℵ(𝑡𝑧∗ ) =
(1 − 𝜇∗)
𝐺(𝜇∗)

(

𝛷(𝑡𝑧∗ , ℵ(𝑡𝑧∗ )) −𝛷(𝑡𝑧∗−1, ℵ(𝑡𝑧∗−1))
)

+
𝜇∗

𝐺(𝜇∗)
× ∫

𝑡𝑧∗+1

𝑡𝑧∗

[
𝛷(𝑡𝑧∗ , ℵ(𝑡𝑧∗ ))

ℎ
(𝑠 − 𝑡𝑧∗−1)

−
𝛷(𝑡𝑧∗−1, ℵ(𝑡𝑧∗−1))

ℎ
(𝑠 − 𝑡𝑧∗ )

]

𝑑𝑠.

(27)

he above Eq. (27) leads to

(𝑡𝑧∗+1) − ℵ(𝑡𝑧∗ ) =
(1 − 𝜇∗)
𝐺(𝜇∗)

(

𝛷(𝑡𝑧∗ , ℵ(𝑡𝑧∗ )) −𝛷(𝑡𝑧∗−1, ℵ(𝑡𝑧∗−1))
)

+
𝜇∗

𝐺(𝜇∗)
×
[
𝛷(𝑡𝑧∗ , ℵ(𝑡𝑧∗ ))

ℎ ∫

𝑡𝑧∗+1

𝑡𝑧∗

(𝑠 − 𝑡𝑧∗−1)𝑑𝑠

−
𝛷(𝑡𝑧∗−1, ℵ(𝑡𝑧∗−1))

ℎ ∫

𝑡𝑧∗+1

𝑡𝑧∗

(𝑠 − 𝑡𝑧∗ )𝑑𝑠
]

.

(28)

Solving the integrals in Eq. (28) yields

∫

𝑡𝑧∗+1

𝑡𝑧∗

(𝑠 − 𝑡𝑧∗−1)𝑑𝑠 =
3
2
ℎ2,

∫

𝑡𝑧∗+1
(𝑠 − 𝑡𝑧∗ )𝑑𝑠 =

1ℎ2.
(29)
𝑡𝑧∗
2

8

Substituting Eq. (29) into Eq. (28), then the generalize numerical
scheme of CF is as follows;

ℵ𝑧∗+1 = ℵ𝑧∗ +
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
3ℎ𝜇∗
2𝐺(𝜇∗)

]

𝛷(𝑡𝑧∗ , ℵ𝑧∗ )

−
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
ℎ𝜇∗

2𝐺(𝜇∗)
]

𝛷(𝑡𝑧∗−1, ℵ𝑧∗−1).
(30)

Thus, in terms of our CF-fractional Listeriosis model we get;

𝑆1𝑧∗+1
= 𝑆1𝑧∗

+
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
3ℎ𝜇∗
2𝐺(𝜇∗)

]

𝛷(𝑡𝑧∗ , 𝑆1𝑧∗
)

−
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
ℎ𝜇∗

2𝐺(𝜇∗)
]

𝛷(𝑡𝑧∗−1, 𝑆1𝑧∗−1
).

(31)

2𝑧∗+1
= 𝑆2𝑧∗

+
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
3ℎ𝜇∗
2𝐺(𝜇∗)

]

𝛷(𝑡𝑧∗ , 𝑆2𝑧∗
)

−
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
ℎ𝜇∗

2𝐺(𝜇∗)
]

𝛷(𝑡𝑧∗−1, 𝑆2𝑧∗−1
).

(32)

𝑧∗+1 = 𝐸𝑧∗ +
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
3ℎ𝜇∗
2𝐺(𝜇∗)

]

𝛷(𝑡𝑧∗ , 𝐸𝑧∗ )

−
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
ℎ𝜇∗

2𝐺(𝜇∗)
]

𝛷(𝑡𝑧∗−1, 𝐸𝑧∗−1).
(33)

𝐼𝐴𝑧∗+1 = 𝐼𝐴𝑧∗ +
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
3ℎ𝜇∗
2𝐺(𝜇∗)

]

𝛷(𝑡𝑧∗ , 𝐼𝐴𝑧∗ )

−
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
ℎ𝜇∗

2𝐺(𝜇∗)
]

𝛷(𝑡𝑧∗−1, 𝐼𝐴𝑧∗−1 ).
(34)

𝑆𝑧∗+1
= 𝐼𝑆𝑧∗ +

[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
3ℎ𝜇∗
2𝐺(𝜇∗)

]

𝛷(𝑡𝑧∗ , 𝐼𝑆𝑧∗ )

−
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
ℎ𝜇∗

2𝐺(𝜇∗)
]

𝛷(𝑡𝑧∗−1, 𝐼𝑆𝑧∗−1 ).
(35)

𝑧∗+1 = 𝑄𝑧∗ +
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
3ℎ𝜇∗
2𝐺(𝜇∗)

]

𝛷(𝑡𝑧∗ , 𝑄𝑧∗ )

−
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
ℎ𝜇∗

2𝐺(𝜇∗)
]

𝛷(𝑡𝑧∗−1, 𝑄𝑧∗−1).
(36)

𝑧∗+1 = 𝑅𝑧∗ +
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
3ℎ𝜇∗
2𝐺(𝜇∗)

]

𝛷(𝑡𝑧∗ , 𝑅𝑧∗ )

−
[ (1 − 𝜇∗) +

ℎ𝜇∗ ]

𝛷(𝑡𝑧 −1, 𝑅𝑧 −1).
(37)
𝐺(𝜇∗) 2𝐺(𝜇∗) ∗ ∗
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𝐴𝐷𝑧∗+1 = 𝐴𝐷𝑧∗ +
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
3ℎ𝜇∗
2𝐺(𝜇∗)

]

𝛷(𝑡𝑧∗ , 𝐴𝐷𝑧∗ )

−
[ (1 − 𝜇∗)
𝐺(𝜇∗)

+
ℎ𝜇∗

2𝐺(𝜇∗)
]

𝛷(𝑡𝑧∗−1, 𝐴𝐷𝑧∗−1 ).
(38)

8. Numerical simulation and discussion

In this section, we provide the numerical solutions to the CF frac-
tional order model for SARS-CoV-2 involving Alzheimer’s disease, using
the Adams–Bashforth method, taken account of the following initial
conditions; 𝑆1(0) = 18; 𝑆2(0) = 15; 𝐸(0) = 10; 𝐼𝐴(0) = 8; 𝐼𝑆 (0) =
10; 𝑄(0) = 15; 𝑅(0) = 7; 𝐴𝐷(0) = 9, with parameter values in
Table 2. Parameters have a crucial influence in disease propagation in
numerical solutions, and which fractional order 𝜇∗ indicates the best
memory effect. As a result, using the parameter values in Table 2, the
trajectory of each compartment through time has been simulated for
various values of 𝜇∗. Furthermore, graphics for significantly influence
parameters have also been obtained. For different values of 𝜇∗ with
parameter values Figs. 1–4 gives graphical presentation of our proposed
SARS-CoV-2 pandemic and Alzheimer’s disease. Figs. 1 and 2 subplots,
demonstrates the fall and up in different compartment population for
the different 𝜇∗ values, and it is worth noting that, the forecast is
dependent on the value of the fractional order 𝜇∗, implying that the
epidemic’s evolution and control are linked to memory. For increasing
values of 𝜇∗, in Fig. 1(a,b), and (a,c), we observed that susceptible
(young age) individuals, susceptible (old age) individuals, symptomatic
infected, and exposed individuals all have a declining attitude with no
convergency at the end of the simulation time. This behavior in a real-
world or biological view point is inevitable as a result of people having
no or less knowledge about SARS-CoV-2 associated with Alzheimer’s
disease and also the emergence and rapid transmission of the SARS-
CoV-2 with different variants coming up, especially Omicron variant.
In Fig. 2(b) and (d), we observed increasing behavior of the trajectories
as the fractional order 𝜇∗ reduce from 1. This implies that a high rate
of isolation has significant impact on Alzheimer’s disease, and hence
when there is too much quarantine, the rate of infected person end
up with Alzheimer’s disease. For different values of 𝛾1 and 𝛾2, the
time-dependent fluctuation of the Alzheimer’s disease class has been
explored in Fig. 3. We notice that an increase in 𝛾2 increases the number
of Alzheimer’s disease individuals, and an increase in 𝛾1 has minimal
effect on the Alzheimer’s disease compartment. We see in Fig. 4 an
increase in 𝑚 increases the number of Alzheimer’s disease individuals.
Similarly, we see in Fig. 5 an increase in 𝜉1 and 𝜉2 increases the number
of Alzheimer’s disease individuals.

9. Conclusion

To assess and analyze the SARS-CoV-2 transmission model incorpo-
rating Alzheimer’s disease, a mathematical model has been developed
and analyzed under CF fractional order derivative. Initial formulation
of the model uses a traditional integer order differential system, which
is later expanded to include a CF fractional order differential system.
We determined the classical analysis of our proposed model, thus,
(positivity, boundedness and invariant region). By using the fixed point
theorem of Banach and Krasnoselskii’s type, the proposed system has
been proved to have at least one unique solution. Due to complicated
nature of SARS-CoV-2 and its effect associated with Alzheimer’s disease,
we discussed the proposed model stability under HU stability type
to get approximate solution. Numerical analysis and simulations are
carried out to check the actual behavior of our proposed model using
the Adams–Bashforth technique and the CF fractional order derivative.
Base on our numerical findings, if the number of symptomatic and
asymptomatic infected individuals in quarantine can be reduced by
using techniques such as short-days-quarantine, enforcing nationwide
vaccination, rapid antigen testing, improving isolation centers, then it
will be possible to control the SARS-CoV-2 and its effect associated with
9

Fig. 4. Numerical trajectory of the Alzheimer’s disease over time under different values
of 𝑚.

Alzheimer’s disease. In this regard, this paper gives insight to future
research possibilities. In the future, because this work is not supported
by real data, alternative types of fractional operators can be considered
with real data and also optimal control section and sensitivity analysis
are encourage.
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