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Abstract: Measurements of the above-water spectrum and concerned water color parameters (WCPs)
are crucial for research and applications in water environment remote sensing. Due to the lack of
system integration and automatization, conventional methods are labor-intensive, time-consuming,
and prone to subjective influences. To obtain a highly accurate and long-term consistent spectrum and
concurrent WCPs (Chl-a (chlorophyll-a), turbidity, and CDOM (Colored Dissolved Organic Matter))
data with a relatively low cost, an Automatic Stationary Water Color Parameters Observation System
(AFWCPOS) was developed. Controlled by an automatic platform, the spectral and WCPs data were
collected by TriOS RAMSES hyperspectral spectroradiometers and WETLabs ECO (Environmental
Characterization Optics) fluorometers following the measurement protocol. Experiment and initial
validations of AFWCPOS were carried out in Poyang Lake, the largest freshwater lake in China, from
20 to 28 July 2013. Results proved that the spectral data from AFWCPOS were highly consistent with
the commonly used portable SVC (Spectra Vista Corporation) HR-1024 field spectroradiometer, with
the coefficient of determination (R2) of 0.96, unbiased percent difference (UPD) of 0.14, and mean
relative difference (MRD) of 0.078. With advantages of continuous and high degrees of automation
monitoring, the AFWCPOS has great potential in capture diurnal and inter-diurnal variations in
the test site of Poyang Lake, as well as another high-dynamic shallow coastal and inland waters,
which will benefit routine water quality monitoring with high quality and high-frequency time-series
observations. In addition, a successful case based on Landsat 8 OLI (Operational Land Imager)
image and in-situ data collected by AFWCPOS showed it’s potential in remote sensing applications.
The spatial distribution of Chl-a, turbidity, and CDOM were mapped, which were explainable and
similar to previous researches. These results showed our system was able to obtain reliable and
valuable data for water environment monitoring.

Keywords: Water-leaving reflectance; above-water method; automatic sun-tracking platform; water
color parameters; wireless transmission

1. Introduction

Dramatic changes have occurred in lakes driven by climate change and human activities in
the past several decades [1–4]. As habitats of aquatic organisms, lake ecosystems are facing serious
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pollution problems [5,6]. To monitor, protect, and repair the ecosystem, many water quality parameters
(e.g., turbidity and chlorophyll-a) were measured as indicators to assess the level of lake ecosystem
health. Satellite ocean color remote sensing is an important technology of obtaining crucial water
variables [7,8]. The remote sensing reflectance Rrs determined from the top-of-atmosphere radiance is
fundamental for higher-level products, such as chlorophyll-a (Chl-a), total suspended sediments (TSS),
and Colored Dissolved Organic Matter (CDOM) concentration. Therefore, accurate in-situ reflectance
measurements are important for modeling and validations of the satellite remote sensing products [9].
In addition, due to cloud coverage, weak light, and other reasons, optical remote sensing is incapable
of observing highly dynamic water most of the time; in-situ measuring can overcome these problems
as a method of water monitoring.

In general, spectrum and water color parameters (WCPs) are acquired from in-situ measurements.
Above-water and in-water spectral measurement methods have been commonly used for in-situ
water-leaving reflectance collection. The in-water method relies on continuous or discrete measurements
along the water profiles. Accurate determination of the Rrs from a profile requires deep water to
minimize the effects of waves during the depth extrapolation, and are frequently affected by bottom
properties and vertical gradients of optically significant constituents just below the surface [10].
Therefore, the in-water method is relatively difficult and seldom adopted in shallow inland waters.
The above-water method is suitable for in-situ spectra collection for inland shallow waters, and the
Rrs is determined by subtracting the sky radiance Lsky from the total radiance Lu. Measurements of
the Lsky are carried out in the same azimuthally plane as the Lu, but at a different viewing angle (i.e.,
equivalent to a zenith angle) [9]. However, accurate above-water Rrs acquisition is challenging because
all measurements (Lu, Lsky, Ed) should be simultaneously made using the recommended viewing
geometry to avoid influences of instruments and platform shadow and to minimize sky and sun glint,
as well as the reflection from the ocean surface [11–13]. In addition, all measurements are made based
on the assumption that the downwelling irradiance (Ed) is stable during the data collection and can be
measured from a standard plaque.

Automatic measurements without manual intervention can help to ensure the data quality of the
optical measurements. In recent years, some multi-channel spectral systems have been developed with
fixed view geometry, including WISP-3 (Water Insight Spectrometer), TriOS, and HySAS, etc. WISP-3
is a hand-held radiometer which automatically performs measurements with three radiometers (Lsky,
Lu, and Ed) and does not need to be connected with cables during measurements [14]. The TriOS
radiometric measurement system consists of three TriOS-RAMSES hyperspectral radiometers (350
to 950 nm). The radiometers can be deployed above or below the water surface. The Satlantic
HyperSAS remote sensing system is designed for above-water measurements of ocean color using
the Satlantics OCR-3000 (MiniSpec) series of digital optical sensors, which work similarly as the
other two systems [15]. To enhance the level of automatization further, some systems tracking the
sun and correct viewing geometry have been developed for minimizing the uncertainty of manual
operation. The RFlex system can be used for autonomous reflectance measurements with GPS signal
parsing, controlling the viewing angle of the sensor platform (https://sourceforge.net/projects/rflex/).
The SeaBird Scientific developed a similar system called SAS (Surface Acquisition System) Solar
Tracker (http://www.seabird.com/solartracker). Ships with the RFlex system or SAS Solar Tracker both
have been operating on the different projects [16]. Due to the lack of integrated data logging and
transmission hardware unit or power unit, this system cannot be used as an unattended stationary
system in long-term filed measurements.

In terms of WCPs, sampling, filtration, drying, weighing, or measurement using spectrometers
are key steps for laboratory analysis. The lab-measuring method demands huge finance, personnel
investments, and cannot be used for continuous observations. It is effective and accurate to measure
WCPs by optical sensors of in situ measurements. Some equipment, including microFlu fluorometer,
WETLabs Environmental Characterization Optics (ECO) series fluorometers, YSI 660 sonde, and Sequoia
Scientific LISST sensor, can be deployed to capture continuous and concurrent WCPs measurements.

https://sourceforge.net/projects/rflex/
http://www.seabird.com/solartracker
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Although spectrum and WCPs could be measured by the above-mentioned instruments,
there is still a lack of an integrated system to automatically collect and broadcast data, which
is important for fixed observation station. The goal of this study was to develop an unmanned
observation system to obtain time series, highly frequent, and highly accurate spectrum and WCPs
continuously for water environment monitoring. Therefore, an Automatic Stationary Water Color
Parameters Observation System (AFWCPOS) based on spectral collection unit, WCPs measurement
unit, and wireless transmission unit was proposed. Testing and applications of the system were carried
out in Poyang Lake, the largest freshwater lake in China. Cross-comparison and validation of the
spectrum were achieved using synchronous data determined from the SVC (Spectra Vista Corporation)
HR-1024 field-portable spectroradiometer, and dynamic features were analyzed using Chl-a, turbidity,
and CDOM concentration data collected by WETLabs ECO fluorometers. Then, we built WCPs retrieval
algorithms based on these test data and mapped spatial distributions of Chl-a, turbidity, and CDOM
from Landsat 8 OLI (Operational Land Imager) image.

2. Theory and Approach

2.1. Spectrum Measurement and Automatic Sun-Tracking

The remote sensing reflectance at wavelength λ just above the water, Rrs(λ) (sr−1), is defined as
the ratio of the water-leaving radiance Lw(λ) (mW·cm−2

·µm−1
·sr−1) originating from the nadir to the

downward irradiance Ed(0+,λ) (mW·cm−2
·µm−1) above the surface. To determine Lw(λ), the total

above-water radiance Lu(λ) must be corrected for the skylight reflection (sky and sun glint), Lsky(λ),
which is directly reflected by the air-water interface [6–8]:

Rrs =
LW(λ)

Ed(0+,λ)
=

(
Lu(λ) − ρ f Lsky(λ)

)
Ed(0+,λ)

(1)

where ρf is the reflectance factor of rough water surface. The WISP-3, TriOS, and HySAS systems
measure the sky radiance, Lsky(λ), and the total upwelling radiance underwater, Lu(λ). A separate
sensor is used to measure the downwelling irradiance, Ed(0+,λ). If Ed(0+,λ) cannot be measured
directly using an irradiance sensor, a single radiance sensor is used, and Rrs(λ) is calculated using the
following equation:

Rrs =
LW(λ)

Ed(0+,λ)
=
ρplaque

(
Lu(λ) − ρ f Lsky(λ)

)
πLplaque(λ)

(2)

where Lplaque(λ) is the reflective radiance of a standard reference plaque, and ρplaque is the reflective
ratio of standard reference plaque, which is an inherent property and calibrated by lab-measuring.
Single-channel spectroradiometer, such as Optics HR2000, ASD Field Spec4, SVC HR 1024, and SE PSR
3500 work in this way.

In order to reduce the influence of direct solar reflection and ship shadow on the Light Field, the
recommended viewing geometry must be implemented (Figure 1). The combination of ϕv = 135◦ from
sun and θv = 50◦ from nadir can minimize uncertainty, which is impractical for routine monitoring,
and it is an error-prone task associated with manual operation (Figure 2).
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method [13].
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Figure 2. The uncertainties in viewing geometry with manual operation.

Accurate determination of Rrs(λ) mainly depends on the ability to minimize the glint following a
standard viewing geometry [13] and applying statistical filtering schemes to Lu(λ) [9,12]. Some research
is applied physically based on the correction methods that rely on prior knowledge of the optical
properties of water in the near-infrared spectral region [17] or by using polarization to directly reduce
the sky- and sun-glint [11]. Instead of manual measurements made from ships or boats, the automatic
remote-controlled measuring system, the AFWCPOS, is deployed in a fixed platform. With an
automatic sun-tracking platform (ASTP) proposed in this research, all measurements and viewing
geometries could be performed without any intervention. Using the sun-tracking platform, the solar
azimuth angle, which defines the solar direction, is calculated through a set of successive steps based
on the site location and measurement time [18].

2.2. WCPs Measurement

The lab-measuring cannot be used for the unattended measurement system, and, therefore,
one optical WCPs measurement unit is necessary. In this study, three WETLabs ECO fluorometers were
installed to AFWCPOS as an underwater unit, and they could work all weather and time for obtaining
CDOM, Chl-a, and turbidity data. The WETLabs ECO fluorometers are capable of monitoring water
constituents’ concentrations online by directly measuring the amount of fluorescence emission from a
given sample volume. The ECO-FLNTU sensor is sensitive in optical scattering measurement at 700 nm
for determining turbidity and is not affected by CDOM concentration. For the ECO-FL sensor, the Chl-a
is excited by an external light source at 470 nm and re-emits a small portion of the absorbed energy
as fluorescence at a longer wavelength at 695 nm. While CDOM is excited at 370 nm and re-emits at
680 nm for ECO-FLCD. The instrument-specific calibrations were performed using WETLabs supplied
scale factor, dark counts, etc.
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3. Design and Implementation of the AFWCPOS

Figure 3 shows a diagram of the main AFWCPOS components. The AFWCPOS consists of two
platforms, a fixed one to ensure that the water spectral data is measured under stable conditions, and the
moored one for the wireless system, data-acquisition modules, and power supply. The deployment
scheme is displayed in Figure 4. The core components of the AFWCPOS are an original design,
including the platform for the unattended spectral collection, the automatic sun-tracking platform,
the remote control and data processing system, etc.Sensors 2019, 9, x FOR PEER REVIEW                                                                     5 of 16 
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Figure 3. The diagram of the system design of the AFWCPOS (Automatic Stationary Water Color
Parameters Observation System). The stationary platform is for spectra measurements, and the moored
one is for the data logger and power supply. In addition, the automatic sun-tracking platform (ASTP)
is an automatic sun-tracking platform. (GPS: Global Positioning System; GPRS: General Packet Radio
Service; CDMA: Code Division Multiple Access; KAMTLabs: Labs of Kaner Application Marine
Technology; TREE is a device of extended serial port)
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Figure 4. The deployment scheme for the AFWCPOS.

3.1. Spectral Measurement System on the Stationary Platform

In this study, six laboratory-calibrated TriOS RAMSES hyperspectral spectroradiometers, two for
irradiance at a view zenith angle of 0◦ and four for radiance at the view zenith angle of 135◦ or 45◦,
were mounted on the ASTP to ensure that the measurements were comparable (Figure 5). Six TriOS
RAMSES sensors, which have been calibrated by producer, were installed on two sides of the automatic
sun-tracking platform (ASTP). Three sensors on one side consist of two RAMSES-ARC radiometers
(A and B), which are used for measuring the upwelling radiance (Lu) at a nadir angle of 40◦ and the
sky radiance (Lsky) at a zenith angle of 40◦, and one RAMSES-ACC (E), which is used for measuring
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the downwelling irradiance (Ed). The spectral range is from 350 nm to 950 nm, which contains the
complete visible spectrum and parts of the ultraviolet and near-infrared. The optical system of the
TriOS RAMSES-ARC sensor is composed of an optical fiber and a fused silica lens. The sensor has a
spectral resolution of 10 nm with a 7◦ field of view. Trios RAMSES-ACC irradiance sensors use white
cosine collectors made from fused silica, which are placed at the front of the instrument to diffuse the
light into the optical fiber behind it. The output of the irradiance sensors is given as a power incident
on a surface per wavelength. The sampling time interval is set by a remote controller, and eight
measurements were recorded for each sample. In addition, the ASTP calculates the solar azimuth of
the test site and adjusts the viewing geometry automatically according to the sun’s position.
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platform (ASTP) of the AFWCPOS, including four RAMSES-ARC sensors for radiance measurement
(A, B, C, and D) and two RAMSES-ACC sensors for irradiance observation (E and F).

3.2. Data Collection System on the Moored Platform

The autonomous system relies on wireless communication to transmit data and receive instructions
to ensure that the whole system works properly. In our experiment, the optical instruments and the
ASTP on the fixed platform were connected to a moored buoy by cables. The primary equipment
on the moored platform consists of a data logger, two wireless devices, a GPS device, two interface
extension modules, and the system power supply. In addition, three WET Labs ECO fluorometers are
mounted on the moored platform to collect the Chl-a, NTU, and CDOM data. This was the first time
that WETLabs ECO fluorimeters had been used for a field experiment after factory calibration, and the
data are reliable. According to technical documentation of WETLabs, Chl-a concentration, Turbidity,
and CDOM can be derived using the equation:

Chl-a (µg/L), Turbidity (NTU), and CDOM (ppb) = Scale Factor * (Output − Dark Counts)

where Dark Count Signal is the output of the meter in clean water with black tape over the detector,
and Output is signal recorded by fluorimeter. Scale Factor is determined using the following equation:
SF = x ÷ (output − dark counts), where x is the concentration of the solution used during instrument
characterization for Chl-a and CDOM, and the value of a Formazin concentration for turbidity. These
parameters are shown in Table 1. In addition, the maximum output and resolution (standard deviation
of 1 min of collected data) are also been shown in Table 1.
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Table 1. The calibration coefficients and characterization of ECO (Environmental Characterization
Optics) fluorometers.

Item Scale Factor Dark Counts Maximum Output Resolution

Chl-a 1 (µg/L) 80 µg/L/V 0.024 V 5 V 0.5 mV
Turbidity (NTU) 201 NTU/V 0.019 V 4.99 V 0.2 mV
CDOM 2 (ppb) 100 ppb/V 0.019 V 4.97 v 0.5 mV

1 Chlorophyll-a. 2 Colored dissolved organic matter.

The data logger plays a key role in controlling the system, and it is primarily responsible for
system configuration, supervision, data collection, storage, transmission, and responding to user’s
commands, among other functions. The data logger can receive and store a variety of signals that
TriOS, GPS, and other wireless devices spread. As shown in Figure 6, the data logger connects to
the pre-configured instruments, including the wireless device, GPS device, and interface extension
module. The battery compartment is responsible for providing power to the data logger and all
instruments. The wireless device is used for data transmission. The GPS device provides location and
time information in all weather conditions. Measurement sequences are performed with user-definable
intervals and frequencies, and the integration time of the TriOS RAMSES sensors varies automatically
between 4 ms and 8192 ms, depending on the brightness of the target.
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4. Applications of the AFWCPOS in Shallow Waters

4.1. The Experiment in the Poyang Lake

Poyang Lake, the largest freshwater lake in China, is located in the mid-lower region of the
Yangtze River in southeastern China (28◦22′~ 29◦45′ N and 115◦47′~ 116◦45′ E) (Figure 7). Influenced
by subtropical monsoons, the inundation area of Poyang Lake varies from approximately 3000 km2

during the wet season to approximately 1000 km2 during the dry season [19]. Existing studies primarily
focus on water quality monitoring from MODIS [1], Landsat TM/ETM+ [20], HJ-1 CCD [21], or GF-1
WFV [22] at various spatial and temporal scales. Although the long-term (inter-annual and seasonal)
dynamics of the lake, including the increased SPM (suspended particulate matter) concentration and
declining water quality, have been well-documented [1,23–25], stationary high-frequency spectral and
water constituents concentration observations, especially Chl-a, NTU, and CDOM measurements, are
rare and urgently needed.

The AFWCPOS was deployed in the Poyang Lake (29◦26.75′ N, 116◦3.1′ E) from 20 to 28 July
2013 (see Figure 7). The deployment site is near Xingzi County, Jiujiang City, Jiangxi Province, China.
The water depth is approximately 3 m. The spectral data were collected from 9:00 to 18:00, when the
weather was fine and cloudless, average wind speed less than 3 m/s. Due to the lack of an automatic
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cleaning unit for moored optical sensors, we manually cleaned them every day against the fouling
problem. Besides, the SVC HR-1024 field-portable spectroradiometer was employed to collect Rrs
simultaneously on a ship, which had a viewing direction of 50◦ from the nadir and 135◦ from the
sun to minimize the effects of sun glint and to avoid instrument shading problems, according to the
recommended protocols for optical measurements [13].
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4.2. Validation and Cross Comparison of Spectral Data from the AFWCPOS and Conventional Approach

To assess the performance of the AFWCPOS proposed in this paper, the remote sensing reflectance
dataset RrsAFWCPOS were collected by the AFWCPOS. Meanwhile, the simultaneous dataset RrsSVC

was collected by an SVC HR-1024 field-portable spectroradiometer on a ship.
The qualitative comparison of RrsAFWCPOS and RrsSVC is shown in Figure 8. The spectral profile of

two data sets was highly similar and was consistent with a previous study [22]. More specifically, three
reflectance peaks at approximately 580 nm, 650 nm, and 700 nm were also found, as shown in Figure 8.
The reflectance peak at approximately 580 nm was due to the decreased absorbance of phytoplankton
below 580 nm, together with the dramatically increased absorbance of pure water above 580 nm.
The evident absorbance peaks of phycocyanin at approximately 620 nm and phytoplankton or mineral
particles at approximately 675 nm caused the reflectance peak at approximately 650 nm. The reflectance
peak at approximately 700 nm was due to the obvious absorbance peak of phytoplankton or mineral
particles at approximately 675 nm and the dramatically increased absorbance of pure water above
700 nm. These results were similar to the results of a previous study in Poyang Lake [21].
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Figure 8. The remote sensing reflectance (Rrs(sr-1)) in Poyang Lake (29◦26.75′ N, 116◦3.1′ E) from
measurements made by (a) the SVC (Spectra Vista Corporation) HR1024 and (b) the Automatic
Stationary Water Color Parameters Observation System (AFWCOS).
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For the quantitative validation of spectrum collection from AFWCPOS, the unbiased percent
difference (UPD, Equation (3)), coefficient of determination (R2), and the mean relative difference
(MRD, Equation (4)), were derived from RrsAFWCPOS and RrsSVC.

UPD =
1
N

N∑
i=1

∣∣∣(xi − yi)
∣∣∣

0.5 ∗ (xi + yi)
(3)

MRD =
1
N

N∑
i=1

(xi − yi)

xi
(4)

where xi is the RrsSVC value at the data matchup i, and yi is the corresponding RrsAFWCPOS. UPD is
used to provide an absolute difference between two data sets, and MRD is used to provide a relative
difference [26]. From Figure 9a, the total UPD and total MRD between RrsSVC and RrsAFWCPOS were 0.14
and 0.078. The UPD and MRD were lower than 20% and 10%, respectively, for the entire wavelength.
The range of MRD is from –0.4 to 0.2, and the MRD and the UPD are stable, especially from 450 nm to
700 nm. The combination of weak reflectance signal and stable noise may cause relatively large error
below 450 nm and above 700 nm; thus, it was demonstrated that the random error is not critical for the
accuracy of RrsAFWCPOS. A correlation analysis between the automatic spectral data (RrsAFWCPOS(λ))
and the manual spectral data (RrsSVC(λ)) was performed, and results proved significant consistency
between these two datasets, with the regression slope near 1 and coefficient of determination, R2, of
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Figure 9. (a) The UPD (unbiased percent difference) and MRD (mean relative difference) as a function
of wavelength for RrsSVC and RrsAFWCPOS. (b) Comparison of Rrs dataset from the AFWCPOS
(RrsAFWCPOS(λ)) and simultaneous manual measurements (RrsSVC(λ)) provided by an SVC HR-1024
field-portable spectroradiometer at Poyang Lake.

However, there are still some disagreements between the RrsAFWCPOS and the RrsSVC measurements
based on the above analysis. Possible causes of such inconsistency may include: first, discrepancies of
instrument parameters among varied sensors (FOVs: field of view; SNRs: ratio of signal and noise)
and measurement conditions (such as measuring time); and most importantly, the optical sensors of
the SVC are manually operated to take all measurements without following the rigorous viewing
geometry, so there is uncertainty factor that Fresnel reflectance to corrupt Rrs is collected with two
spectrometer systems. Besides, the differences in the instruments’ calibrations also affect the results of
the data processing.
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4.3. Applications and Potential of the AFWCPOS in Routine Water Quality Monitoring

4.3.1. Validation of the AFWCPOS-Measured Chl-a Concentration

Chl-a concentration from ECO measurement was compared with data collected using a lab-based
fluorometric analysis method. After obtaining water samples, the chlorophyll samples were filtered
through 0.45 µm Whatman cellulose acetate membranes. Then, the filters were soaked with ethanol
(90%) at 0 ◦C for 24 h for extracting Chl-a pigments. The concentration of chlorophyll (Chl)
(µg/L) was determined by measuring the extracted pigment samples using an RF-5301 Fluorescent
Spectrophotometer (Shimadzu, Kyoto, Japan), which has been calibrated by the Chl-a standards
manufactured by Sigma Chemical Co. (St. Louis, MO, USA). In the experiment, the exciting and
fluorescent wavelengths were 432 and 667 nm, respectively. Finally, the in-situ ECO Chl-a was validated
using the regression analysis method (Figure 10).
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Comparing between lab fluorometric and in-situ ECO Chl-a, a linear relationship showed a
high level of consistency, with a slope of 1.05, the mean relative squared error of 0.28 µg/L, and the
determining coefficient of 0.72.

4.3.2. Short-Term Features of Chl-a, Turbidity, and CDOM at Poyang Lake

Chl-a, turbidity, and CDOM data collected by three ECO fluorometers in Poyang Lake from 20
to 28 July 2013 are presented in Figure 11. The cause of data missing was instrument maintenance.
It demonstrated significant diurnal and inter-diurnal variations in Poyang Lake, but the three
constituents were always in the state of dynamic balance with distinct different periodic variations.
In terms of Chl-a, obvious regularity could be observed with concentration reaching bottom about
five or six in the morning and hitting peak every afternoon; this phenomenon might be related to the
biological activity of aquatic plants and Phytoplankton, being affected by temperature and sunshine.
By contrast, although the regularity was not relatively obvious, the trend of turbidity and CDOM
concentration was still being observed.
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Figure 11. The concentration of Chl-a, Turbidity, and CDOM (Colored Dissolved Organic Matter) in
the deployment site (Figure 7) from 20 July 2013, to 28 July 2013.

Several statistics of Chl-a, turbidity, and CDOM concentration are shown in Figure 12. The average,
standard deviation, maximum, and minimum were represented by square symbols, dot symbols,
plus sign, and multiplication sign, respectively, and the blue bar indicates data volume collected every
day. Significant diurnal and inter-diurnal variations could be observed. By comparing the statistics on
20 July, 21 July, 22 July, and 28 July with other days, the discrepancies were obvious, which might be
caused by interrupted data collection. Therefore, an uninterrupted observation by using automated
instruments could help to accurately understand water information in the high-dynamic lake, such as
Poyang Lake.Sensors 2019, 9, x FOR PEER REVIEW                                                                     11 of 16 
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4.4. Remote Sensing Application of AFWCPOS

To validate the effectiveness of AFWCPOS in satellite remote sensing monitoring, collected data
were used to establish empirical relationships between water quality parameters (Chl-a, turbidity, and
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CDOM) and remote sensing reflectance, respectively. We chose Landsat 8 OLI image as remote sensing
data in this experiment because of its high quality and high spatial resolution in abroad applications.

Before establishing a model, simulated Landsat 8 OLI specific band remote sensing reflectance
(Rrs(band)) was concluded from integrating AFWCPOS spectrum data (Rrs(λ)) and relative spectral
response (RSR(λ)) according to Equation (6).

Rrs(band) =

∫
Rrs(λ)RSR(λ)dλ∫

RSR(λ)dλ
(5)

Thus, the retrieving algorithms of three water quality parameters were built from bands ratio
of remote sensing reflectance (Figure 13), from which the retrieving models of Chl-a, turbidity, and
CDOM were:

Chl-a : y = 0.1 ∗ e2∗Rrs(560)
Rrs(483) (6)

Turbidity : y = 1.24 ∗ e3.85∗Rrs(655)
Rrs(560) (7)

CDOM : y = 7.7 ∗
Rrs(440)
Rrs(560)

+ 12.2 (8)
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Figure 13. Regression model of water quality parameters with the ratio of simulated Landsat 8 OLI
(Operational Land Imager) remote sensing reflectance. (a): Chl-a, (b) turbidity, (c) CDOM.

Significant relationships between Chl-a and turbidity and specific band ratios were observed
with the determining coefficients of 0.59 and 0.74, and the root mean squared errors of 0.44 µg/L and
4.52 NTU, respectively. For CDOM retrieval algorithm, the relative feature of distribution could be
mapped based on the above model (Equation (9)), even though lower R2 caused by the discrete degree
of in-situ CDOM was obtained from AFWCPOS (see Figure 11) as its significant periodic characters,
shown in Figure 10. Therefore, these models should be considered acceptable and valid.

Three retrieving models were applied in a specific case for mapping spatial distribution of Chl-a,
turbidity, and CDOM in Poyang lake derived from OLI/Landsat 8 on 5 October 2013 (Figure 14).

The result revealed a large spatial variation between the northern and southern lake areas.
The northern area was dominated by the high turbidity, which was induced by intense sand dredging
activities and hydrodynamic force affected by the Yangtze River in the narrow water channel of the
northern lake [1]. In the southern area, a high concentration of Chl-a was observed, which was induced
by rich nutrition from southeastern rivers (see Figure 7a) and better light conditions under the water
because of relatively lower turbidity. In addition, limited water exchange was another reason causing
a high concentration of Chl-a in southeastern sub-lakes [27]. A similar spatial distribution between
CDOM and turbidity illustrates the sediment carrying main CDOM in Poyang lake. However, Chl-a
degradation in lower turbidity area would increase CDOM level, which led to relatively lower spatial
heterogeneity than turbidity and Chl-a (comparison between CVs, coefficients of variation, of water
quality parameters in Figure 15).
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In Figure 15, the other statistic indexes of retrieval results of Chl-a, turbidity, and CDOM recorded
more detailed information. Despite larger ranges of values, 90% of areas ranged from 2.5 to 7 µg/L
for Chl-a, from 11.6 to 94 NTU for turbidity, from 10.2 to 13 ppb for CDOM, respectively. Because of
extremely high spatial-heterogeneity, the histogram of turbidity showed a more skewed distribution.
CDOM, by contrast, had a normal distribution, relatively. These statistic features reflected the water
quality level in Poyang lake.

The results of this case were similar to previous researches [1,27], pointing out that the spectrum and
water quality parameters obtained from AFWCPOS could be used in water color remote sensing study.

5. Conclusions

The Automatic Stationary Water Color Parameters Observation System (AFWCPOS) proposed
in this paper is an operational system for routine water quality monitoring, with the advantages
of automatic data acquisition, storage, and wireless transmission, and would thus greatly reduce
uncertainties of artificial operation from conventional methods. Applications in Poyang Lake showed
the capacity of AFWCPOS to obtain time series, high-frequency, and high accuracy data of water
spectral and water color parameters. Meanwhile, AFWCPOS could also obtain reliable data for water
color remote sensing. Chl-a, turbidity, and CDOM were mapped from Landsat 8 OLI image and
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in-situ data obtained by AFWCPOS. The spatial distributions were similar to previous researches.
Compared with the conventional method, the AFWCPOS improved the temporal scale significantly
at a low cost. In addition, it could provide an integrated solution for those optical sensor owners.
Further research on the system would focus on reducing the cost of the system by using spectral
sensors (self-developed or commercial sensors) based on high-speed multiplexers, and methods to
eliminate errors of different optical sensors. Some effective measures should be taken to ensure that
the optical sensors are not contaminated by atmospheric ash and that the electrical modules are kept
away from the water. Therefore, onboard calibration instruments and methods will be added in the
future. In addition, we believe that more field sensors would allow more data to be collected without
interference for dynamic water quality monitoring because of the development of the data logger.
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