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Background. The availability of large collections of microarray datasets (compendia), or knowledge about grouping of genes
into pathways (gene sets), is typically not exploited when training predictors of disease outcome. These can be useful since
a compendium increases the number of samples, while gene sets reduce the size of the feature space. This should be favorable
from a machine learning perspective and result in more robust predictors. Methodology. We extracted modules of regulated
genes from gene sets, and compendia. Through supervised analysis, we constructed predictors which employ modules
predictive of breast cancer outcome. To validate these predictors we applied them to independent data, from the same
institution (intra-dataset), and other institutions (inter-dataset). Conclusions. We show that modules derived from single
breast cancer datasets achieve better performance on the validation data compared to gene-based predictors. We also show
that there is a trend in compendium specificity and predictive performance: modules derived from a single breast cancer
dataset, and a breast cancer specific compendium perform better compared to those derived from a human cancer
compendium. Additionally, the module-based predictor provides a much richer insight into the underlying biology. Frequently
selected gene sets are associated with processes such as cell cycle, E2F regulation, DNA damage response, proteasome and
glycolysis. We analyzed two modules related to cell cycle, and the OCT1 transcription factor, respectively. On an individual
basis, these modules provide a significant separation in survival subgroups on the training and independent validation data.
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INTRODUCTION
Unraveling the structure of complex biological processes from

genomic data sources has been a focal point in bioinformatics

research. Thus far, supervised analysis of microarray data has been

performed in a data-driven fashion [1–4]. These studies have

reported and tested prognostic markers, sets of genes, which are

predictive of treatment response and outcome.

One of the main issues in data-driven approaches is the small ratio

of samples relative to the number of genes for a particular study,

causing small sample size related problems. This problem can be

addressed by reducing the number of features (input variables) or

increasing the number of samples. The latter approach was pursued

by combining two or even more datasets and then deriving

prognostic markers from the resulting dataset [5–8]. Employing

more samples results in, for instance, better estimates of gene

variances and improves estimates of the t-statistic [9]. This approach

was also followed by Segal et al. [10] and Tanay et al. [11] who

constructed microarray gene expression compendia (collections of

microarray data sets spanning a diversity of phenotypes).

The supervised analyses performed on compendia are data-

driven and currently still employing single genes as input features.

As an alternative, knowledge of functional groupings of genes into,

for example pathways, can be employed to define meta-features,

called modules. Such meta-features have two important advan-

tages. Firstly, a relevant module can be directly linked to the

biological processes that underly the observed outcome. Secondly,

moving from a gene-based to a module-based representation

reduces the number of input variables, which alleviates the small

sample size problem.

Segal et al. [10] proposed a framework for the unsupervised

knowledge-driven analysis of expression data. Within this

framework, modules are extracted based on relevant gene sets

from a compendium of microarray data. We follow that approach,

and extend the framework to include a supervised classification

analysis based on the extracted modules and the available clinical

data. In addition, we introduce cancer-specific compendia, as an

intermediate step between a single dataset and a complete human

cancer compendium. Employing the supervised framework, we

evaluate the predictive performance of classifiers derived from

cancer-specific datasets, a cancer specific compendium, and

a human cancer compendium. In addition, we wanted to

investigate the capacity of these classifiers to generalize beyond

the dataset on which they were trained. Therefore, we set up an

experiment in which we validated our classifier on independent

data from the same institution (intra-dataset validation), a combi-

nation of institutions (cross-dataset validation), and by validating

on data from different institutions (inter-dataset validation).

Finally, since we adopted the module extraction of Segal et al.

[10], the optimized set of modules that is selected by the supervised
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analysis allows for a more transparent analysis of the obtained

results. That is, the modules can be related to the original gene

sets, and thus, to cellular processes, giving more insight into the

mechanisms causing the outcome differences.

METHODS
Our method extends the unsupervised knowledge-driven frame-

work proposed by Segal et al. [10] to the supervised classification

domain. This extension allows the identification of module-based

prognostic markers, rather than gene-based markers. The entire

outline of our methodology is presented in Figure 1.

Input: Compendium
The usual approach is to analyse a single microarray dataset in

isolation. To find cancer related modules, Segal et al. [10] proposed

to take multiple datasets into account that are all related to human

cancer types (Figure 1, Step 1). With this global human cancer

compendium (HCC), they formed modules of genes that regulate

cancer in a general way. We focus on breast cancer, for which

various datasets are available. We propose to construct cancer

specific compendia, in our case breast cancer compendia (BCC), as

an intermediate step between a single breast cancer dataset (BC) and

a complete human cancer compendium (HCC), see Figure 2 and

Table 1. These cancer specific compendia will reduce the small

sample size problem, but at the same time should ensure coherence

in underlying phenotype compared to the more global human

cancer compendium. Figure 2 shows an example of how datasets

from different institutions have been grouped into compendia.

In our analyses we have also used the HCC that was published

by Segal et al. [10]. This compendium contains data from various

cancer types and has a total of 1973 arrays, for which 14143 genes

are present. The compendium already contained data from three

previous breast cancer studies, in total 152 arrays: 26 arrays from

the first study by Perou et al. [12], 41 arrays from the second study

by Perou et al. [13], and 85 arrays from Sorlie et al. [14].

The additional breast cancer microarray datasets that we have

used, originate from previously published research [2–4]. The

Vijver dataset consists of 295 breast cancer patients, the Wang
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Figure 1. Workflow of the approach. We extended the analysis of compendia [10] to the supervised classification domain. Several microarray
datasets were collected to construct compendia at various levels of underlying phenotype diversity (1). Additionally, we gathered a collection of
biologically meaningful gene sets from available databases (2). Using the module extraction framework proposed by [10], we derived sets of modules
(3) from these compendia and gene sets. Using these modules we construct a module activity matrix (4), allowing modules rather than single genes
to be used as features. The predictive power of the different sets of modules is inspected within a classification context. Using a train/test protocol (5),
we estimated the generalization error of all sets of modules [17]. Succeedingly, we trained a final classifier (6), which was then validated on
independent data (7), and its performance assessed (8). Furthermore, the approach allows the final set of modules that were selected in the classifier
to be compared to the original gene sets (9), allowing the identification of biological processes underlying the development and progression of
cancer.
doi:10.1371/journal.pone.0001047.g001
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Figure 2. Compendia of microarray data. Microarray datasets can be
grouped into compendia at various levels of underlying phenotypic
diversity. The pie-chart indicates datasets from various origins, sizes,
and cancer types, and the compendia are indicated by the outer rings.
The ’Inter1’ training-validation configuration is depicted in this figure
([4] as training, and [3] as validation). This is one of the six
configurations employed (See Table 1 for details).
doi:10.1371/journal.pone.0001047.g002
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dataset consists of 285 records, and the Sorlie data consists of 167

records. To be able to use these datasets in conjunction with the

HCC, we mapped all the available probes to the same set of

Entrez ids in the HCC. Furthermore, after mean-normalisation,

we discretized each dataset separately into three levels: induced (1),

basal (0), and repressed (21), taking into account the skewing and

variance in each of the datasets (Discretization was applied,

because the module extraction procedure that Segal et al. [10]

proposed, requires a discrete input.).

Outcome data (time to metastasis) was available for all patients

in the Vijver and Wang datasets. For classification, the poor

outcome group was defined as all patients with time to metastasis

less than five years, and the good outcome group as those with

time to metastasis greater than or equal to five years. Censored

patients in the poor group were not taken into account when

training and assessing a classifier. On the other hand, censored

patients in the good group were included in both the training and

validation [15].

Input: Gene Set Collection
We collected 2682 gene sets from several biological databases and

resources (Figure 1, Step 2), including some additional databases

that were not included in the collection of gene sets used by Segal

et al. [10], see Figure 3. In the original analysis presented by Segal

et al. [10], approximately half of the gene sets were obtained by

performing hierarchical clustering on the expression data. We

chose to omit any hierarchical clusters in the collection of gene

sets, as the inclusion of hierarchical clusters would introduce an

additional data-driven bias. As a result, our analysis is more

knowledge-driven when compared to the original study.

Unsupervised Analysis
To extract modules from compendia of microarrays, we largely

followed the knowledge-driven approach proposed by Segal et al.

[10] (Figure 1, Step 3). In short, this unsupervised method finds

modules in (compendia of) discretized microarray data. A module is

defined as a subset of genes with correlated expression across a set of

arrays, and is constructed by combining (parts of) gene sets based on

discretized gene expression data. The module extraction process can

be seeded by biologically relevant gene sets (extracted from e.g. GO

and KEGG), thus incorporating a knowledge-driven component in

the analysis. An in depth description of the procedure is given in the

supplementary Text S1, and supplementary Figure S1.

Following the extraction of the modules, a module activity

matrix is constructed for the training data as well as the validation

data (Figure 1, Step 4). The module activity matrix represents the

behavior of the group of genes in a module by a discrete variable.

The conversion from gene expression to module activity is done

per array, per module. For the induced and repressed genes

separately, we test whether the overlap of induced or repressed

genes on the array with the module is significant, compared to

Table 1. Experimental setup.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Features n nopt Training Validation Validation

Intra/Cross-lab Validation Intra1 Cross1

Genes 10962 48 V1 V2 V2+W2

BC (V1) 747 44 V1 V2 V2+W2

BCC (V1+W1+So) 911 66 V1 V2 V2+W2

HCC (Se) 1163 111 V1 V2 V2+W2

S456 (Se) 456 80 V1 V2 V2+W2

Inter-lab Validation Inter1

Genes 10962 21 V W

BC (V) 896 55 V W

BCC (V+So) 934 137 V W

HCC (Se) 1163 104 V W

S456 (Se) 456 42 V W

Intra/Cross-lab Validation Intra2 Cross2

Genes 10962 101 W1 W2 V2+W2

BC (W1) 576 59 W1 W2 V2+W2

BCC (V1+W1+So) 911 103 W1 W2 V2+W2

HCC (Se) 1163 71 W1 W2 V2+W2

S456 (Se) 456 67 W1 W2 V2+W2

Inter-lab Validation Inter2

Genes 10962 58 W V

BC (W) 704 17 W V

BCC (W+So) 762 33 W V

HCC (Se) 1163 78 W V

S456 (Se) 456 10 W V

Our experimental setup allows a validation of the classifiers on data from the
same institution (Intra1 and Intra2), data from the same and another institution
(Cross1 and Cross2), and data from another institution (Inter1 and Inter2). In all
cases the training and validation sets are non-overlapping, and thus
independent. Moreover, the validation data was not used in the first step where
the unsupervised approach is used to extract modules. In each of the validation
schemes we included a gene-based classifier (Genes), and several module-
based classifiers (BC, BCC, HCC, and S456). For each of the module-based
classifiers we indicate the datasets from which the modules were extracted
(Features column), along with the number of features (n), and the optimal
number of modules/genes output from the train/test protocol (nopt). The
Training column indicates the dataset on which the train/test protocol was
used, and the Validation column indicates the datasets used for validation of
the classifiers. All datasets are abbreviated as: V: [4], W: [3], So: [2], and Se: [10].
When we split a dataset in two equal independent parts we indicate the
training (1) and validation (2) parts by subscripts.
doi:10.1371/journal.pone.0001047.t001..
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Figure 3. Pie chart indicating the origin of the gene sets. A total of
2682 gene sets were collected. The GO, KEGG, GenMapp, and Tissue
specific gene sets were taken from the study by Segal et al. [10]. The
Reactome pathways were downloaded from the Reactome website [23],
and the MSDB gene sets were taken from the molecular signature
database [24].
doi:10.1371/journal.pone.0001047.g003
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a random draw. To this end, we use the hypergeometric

distribution to calculate a p-value for the significance of the

overlap. Following FDR correction [16] (significance thresh-

old = 0.05) one of the following four situations occur:

N Neither p-value is significant: the module activity is basal (i.e. 0)

N Only the induction p-value is significant: the module is induced

(i.e. 1)

N Only the repression p-value is significant: the module is

repressed (i.e. 21)

N Both p-values are significant: the module activity is basal (i.e. 0)

Figure 4 presents an example of a set of microarrays and

modules that are converted to a module activity matrix.

For each of the validation schemes (Table 1) we constructed

several module-based classifiers (BC, BCC, HCC, S456) based on

modules extracted from the datasets indicated in the Features

column of Table 1.

Supervised Analysis
Supervised classification provides a means to identify modules with

activities that are significantly associated with some relevant

outcome variable, such as, metastasis-free survival in breast cancer

(Figure 1, Step 5). To obtain an unbiased estimate of the

generalization error of the different sets of modules, we used

a double-loop cross validation procedure [17].

In our experiment, we focused on differences between the sets of

modules and we omitted an extensive evaluation of a range of

different classifier types. Since all features are discrete, we used

forward filtering as module selector, the mutual information as

criterion to evaluate the individual modules (using maximally 200

modules), and a simple Bayes classifier [18]. For the discretized

gene-expression data we used the same setup as for the module-

based approach.

Following the Train/Test procedure, we trained a final classifier

(Figure 1, Step 6). This classifier was trained using the top ranked

features, that were estimated in the train/test protocol. The final

classifier was validated on an independent dataset (Figure 1, Step

7), which had not been employed in any of the training steps

(Figure 1, Steps 2–6).

To assess the performance of the classifiers on the independent

validation dataset, we constructed an ROC curve (Figure 1, Step 8).

To compare the performance of various feature types we adopted

the area under the curve (AUC) as a performance measure.

Finally, a feedback step relates the modules selected in the

classifier to the original gene sets (Figure 1, Step 9). This allows

direct insight into the underlying mechanisms, compared to the

annotation lookup of single genes in terms of functional groups in

data-driven approaches.

Experimental Setup
We wanted to investigate the capacity of our classifiers to

generalize beyond the dataset that they were trained on.

Therefore, we designed our experiments such that three different

validation schemes were possible. In all cases the training and

validation sets are non-overlapping (independent), i.e. no samples

that were used during module extraction/training are employed in

the validation. The following three scenarios were considered:

training and validation on data from 1) the same institution

(denoted as intra-lab validation); 2) a combination of the same and

other institutions (cross-lab validation); and 3) separate institutions

(inter-lab validation). Since we had equivalent outcome data for

the Vijver and Wang datasets, we mirrored the role of both so that

we ended up with a total of six experiments, as shown in Table 1.

RESULTS AND DISCUSSION

Extracting modules from the compendia
For each of the compendia we derived a set of modules using the

discretized gene expression data as well as the 2682 gene sets as

input. The number of modules that were found are listed in

Table 1. The number of modules found ranged from 576 to 1163,

which is a significant reduction in the number of features from the
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statistical significance of the overlap of induced/repressed genes with the modules using the hypergeometric distribution. This leads to two p-values
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doi:10.1371/journal.pone.0001047.g004
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original 14143 genes. Additionally, we included the previously

published 456 modules [10] in the current investigation (S456).

These differ from the HCC modules, as they are constructed based

on gene sets derived by hierarchical clustering.

Classification performances
The classification performances of the experiments listed in

Table 1, are compared based on the AUCs obtained on the

validation data. For each of the six experiments (Intra1, Cross1,

Inter1, Intra2, Cross2, Inter2) the results obtained with each

feature type (BC, BCC, HCC, S456, Genes) were ranked based on

the AUC. Figure 5 shows a boxplot of the ranks obtained for each

of the feature types. A table containing all individual AUC values

and ranks is presented in the supplementary information (Table

S1). The median rank of the BC features is the lowest of all the

feature sets, the BCC median rank is slightly worse, but still better

than the HCC, S456, and Genes features which perform the

worst.

To assess the statistical significance of the observed differences

between the median ranks, we applied a one-sided Wilcoxon rank

sum test to all pair-wise combinations of feature types. The

obtained p-values are depicted in the left panel in Figure 6. We

also employed the Wilcoxon rank sum test to perform pair-wise

comparisons between the feature types derived from breast cancer

compendia (BC+BCC), features types derived from human cancer

compendia (HCC+S456) and Genes. The results are depicted in

the right panel of Figure 6.

From the left panel in Figure 6 we can conclude that, although the

BCC modules have a lower median rank compared to the HCC

modules, S456 modules, and Genes, there is not enough statistical

evidence (at the 0.05 level) to support the claim that the BCC

modules outperform the HCC modules, S456 modules, or the

Genes. Since the BCC modules are derived from a larger collection

of data than the BC modules, we would have expected a performance

that is at least equal and possibly even better than the BC modules.

Since breast cancer is known to be a heterogeneous disease, we

hypothesize that differences in the subtype composition of the

datasets cause the poorer performance of the BCC modules.

From the right panel in Figure 6, we can, however, conclude

that the BC and BCC modules jointly perform better than the

HCC, and S456 modules (p = 0.006). This indicates that a human

cancer compendium lacks specificity with respect to a breast

cancer compendium. We can therefore conclude that for breast

cancer specific prediction, a cancer specific compendium is more

suitable compared to a more global human cancer compendium.

As shown by Segal et al.[10] the HCC and S456 modules may still

be relevant for identifying differences between cancer types.

The pairwise comparisons (left panel in Figure 6) indicate that the

median rank of the BC modules is better than each of the other

feature types (all p,0.05). Moreover, gene-based classifiers show

a very large variability in comparison to BC module-based classifiers

(see Figure 5). One possible explanation for this observation is that

the conversion of gene expression data to module activity data may,

in fact, function as a form of regularization which removes noise.
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Typically, the amount of regularization needs to be optimized for

a given classifier. We hypothesize that the fact that genes in a module

are roughly associated with the same biological process, ensures an

optimal degree of regularization.

For a given classifier to serve as a prognostic index in clinical

practice, a suitable operating point on its associated ROC curve

needs to be selected. For outcome prediction in breast cancer, the

True Positive Rate (TPR) is typically set at a desired threshold,

and based on the ROC curve, the corresponding False Positive

Rate (FPR) possible is determined. Therefore, we have re-

evaluated the AUC scores by integrating over the TPR interval

ranging from 0.5 to 1. This interval was chosen since it reflects

a clinically more relevant range than the complete TPR range

([0,1]). All results are reported in the supplementary information

(Table S2, Figure S2 and Figure S3). Consistent with earlier

results, the BC modules perform significantly better compared to

all other feature types. In addition, the BCC modules now have

a significantly lower median rank compared to the HCC and S456

modules (p = 0.05, and p = 0.01). This strengthens our conclusion

that the BC modules perform better than the other feature types,

and that a breast cancer specific compendium performs better

compared to a human cancer compendium, especially when

considering a clinically relevant setting.

Interpretability of Gene and Module-based

signatures
All classifiers output a signature of relevant features, that is

predictive for survival. To better understand the biological

processes associated with disease outcome in breast cancer, the

signatures are further investigated. For gene-based features, the

overlap with known pathways is employed to attach biological

meaning to an obtained signature. Module-based classifiers, on the

other hand, return a set of predictive modules rather than single

genes. Each of these individual modules may provide links to

relevant biological processes. Moreover, since modules are

extracted from the data by combining (parts of) gene sets, these

may link additional genes to known pathways, which are relevant

to disease progression in breast cancer.

To explore the association of the signatures to biological

processes, we analyzed a gene-based and BC module-based

signature. We chose to compare the gene-based signature and BC

module-based signature from Inter1 (Table 1), since they were

derived from the same dataset. These signatures consist of 21

genes, and 55 modules (Dataset S1), respectively.

For every module in the module-based signature, as well as the

21 single-gene signature, we computed the enrichment for each of

the 2682 gene sets employing the hypergeometric distribution. For

the gene-based signature no gene sets were significantly enriched

(p,0.05 after Bonferroni correction), whereas 319 gene sets were

significantly enriched in at least 1 of the 55 modules in the module-

based signature (p,0.05 after Bonferroni correction). The

complete matrices of raw p-values are depicted in supplementary

information (Text S1, and Figure S4).

Many of the 319 gene sets are associated with similar biological

processes within the context of the 55 module signature (i.e. they

have similar enrichment profiles across the 55 modules).

Therefore, we clustered the gene sets based on enrichment scores

into seven distinct clusters employing complete linkage, hierarchi-

cal clustering with Euclidean distance as dissimilarity measure.

The common biological themes associated with the gene sets in

each of the resulting seven clusters are listed on the left in Figure 7.

Based on the complete table of enrichment p-values (Supple-

mentary Figure S4), it is evident that there are clusters of modules

that also show a similar enrichment pattern across the gene sets.

Therefore, we clustered the modules into seven distinct groups, as

depicted by the dendrogram at the top in supplementary Figure

S4. These clusters were labeled Module groups 1 to 7, as indicated

at the bottom in Figure 7.

The main table in Figure 7 shows the aggregated enrichment p-

values. More specifically, cell (i, j) depicts the median enrichment

p-value for all modules in module group j with respect to all gene

sets in gene set group i. The column vector on the right shows the

median enrichment scores for the groups of gene sets with respect

to the single gene signature.

Figure 7 shows several strong links of the module-based

signature to biological processes. Five out of the seven groups of

modules can be linked to biological processes that are known to be

involved in cancer progression (Cell Cycle, DNA Damage, E2F

transcription factors, and Proteasome). Most of these have been

previously related to breast cancer [19]. It is interesting to note

that glycolysis has only recently been identified as a key factor in

tumor progression [20].

A detailed analysis of two modules
Based on the module activity representation, the arrays in a dataset

can be separated into 3 groups: arrays where the module is

activated, repressed or showing basal activity. Using this

separation, we present the Kaplan-Meier curves for two modules

from the module-based signature, on the training data [4], as well

as on the independent validation data [3], see Figures 8 and 9.

Figure 8 shows a module (from Module group 2) that has

a highly significant overlap with Cell Cycle related gene sets

(enrichment of the top gene set: p,10251), see Figure 7. This

module is significantly associated with disease progression on both

the datasets from Vijver et al. [4] (p,0.0001) and Wang et al. [3]

(p = 0.0127). Deregulation of the cell cycle has been identified as

one of the hallmarks of cancer [19]. More importantly, an

increased activity of the cell cycle has been linked to more

aggressive tumors. This is in accordance with our observation for

this module, which shows that an induced module activity is linked

to the subgroup with the worst outcome. Conversely, a repressed

module activity shows the best outcome.

Figure 9 shows a module (from Module group 4) that has

a significant enrichment for OCT1 transcription factor related

gene sets (enrichment of the top gene set: p,10212). The Kaplan-

Meier curves show a significant separation between the induced,

basal, and repressed module activities on both the Vijver et al. [4]

data (p,0.0001), and the Wang et al. [3] data (p = 0.0098). In

breast cancer, the OCT1 transcription factor is known to be often

overexpressed [21] relative to normal breast tissue, but its exact

role in the tumorigenic process has remained unclear. Addition-

ally, OCT1 has been identified as a transcriptional repressor [22].

We show that the concerted repression of downstream targets of

the OCT1 transcription factor relates to a poor outcome group.

On the other hand, an induced module activity relates to

a subgroup with significantly better outcome. Thus, this module

can be identified as a potential tumor suppressor module.

Conclusion
By extending an existing unsupervised knowledge-driven frame-

work to the supervised classification domain, we were able to

investigate the effects of including knowledge from previous gene

expression studies (through compendia) as well as known cellular

processes (through gene sets) on the accuracy of outcome

prediction in breast cancer. Our analysis included a validation of

the classifiers on independent data, which allowed for an objective

Modules in Outcome Prediction
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evaluation of the actual generalization behavior of the gene-based

and module-based classifiers in a clinically relevant setting.

Classifiers based on genes had a very large variance, compared to

the BC module-based classifier. We hypothesize that the conversion

of gene expression data to module activity functions as a regulariza-

tion step, where the extent of the regularization is controlled by the

specificity of the modules, resulting in more stable classifiers.

Overall, a trend emerges in the performance versus compen-

dium specificity. Modules from the most specific single dataset

showed the best performance-significantly outperforming all other

classifiers. These were closely followed by modules extracted from

a breast cancer specific compendium, which performed signifi-

cantly better than modules from the human cancer compendium

when evaluated across a clinically relevant TPR range. Finally,

modules from the human cancer compendium showed the weakest

performance. This indicates that it is preferable to employ

a compendium specific to the cancer type under study. Moreover,

the heterogeneity between different institutions tends to be more

detrimental than the gain in sample size when a breast cancer

specific compendium is constructed.

A module-based approach to classification provides a signature

of predictive modules, as opposed to a gene-based signature.

Interpretation of a gene-based signature is usually limited to

a mapping of the genes in the signature to functional categories.

However, for the approach outlined here, it holds that the modules

were constructed from biologically meaningful gene sets, and

therefore these can be linked directly to the underlying biological

processes. We illustrated this advantage by providing a meta-

representation of the modules in one of the module-based

classifiers, which reveals molecular processes, such as cell cycle,

DNA damage, glycolysis, and proteasome, known to be involved

in breast cancer. The gene-based signature provided no significant

links at all. This gain in biological insight greatly favors the use of

a module-based classifier.

Our research includes an in-depth analysis of two modules that

were part of the module-based signature, which were related to
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Figure 7. Comparison of a module-based signature (A) and a gene-based signature (B). The module-based signature from the Inter1 experiment
contains 55 modules, and the gene-based signature contains 21 genes (Table 1). For both signatures an enrichment score for their overlap with the
collection of 2682 gene sets was calculated based on the hypergeometric distribution. This resulted in a total of 319 gene sets that were enriched in
at least one module or in the gene-based signature (p,0.05 after Bonferroni correction), see supplemental figure S4. Several modules turned out to
have a similar pattern of enrichment across the gene sets. Additionally, gene sets that relate to a common theme turned out to have a similar
enrichment pattern across the modules. Therefore, we clustered the matrix of p-values in both dimensions (2-dimensional, hierarchical clustering,
complete linkage, Euclidean distance). The dendrograms at the top, and to the left indicate the clustering, where we chose to group either dimension
into seven distinct groups. The labels on the left indicate the most common biological theme, and the label on the bottom indicates the groups of
modules formed along with the number of modules in each group in brackets. The main table shows the median p-value for the enrichment of each
of the seven clusters of modules, across these seven groups of gene sets. Similarly, the table on the right shows the median p-values for the gene
signature. Shading of the cells reflects the p-values.
doi:10.1371/journal.pone.0001047.g007
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cell cycle, and the OCT1 transciption factor. By themselves, these

modules provide a significant separation in subgroups on the

training and independent validation data. The cell cycle related

module indicated that an induced module activity is linked to the

worst outcome. This confirms the well known relationship between

the cell cycle process and cancer in general. On the other hand,

the OCT1 related module revealed a novel relationship to breast

cancer outcome. Based on its module activity, this module could

be designated as a tumor repressor module. Neither of these

factors could be revealed from the gene-based signature.

Therefore, we conclude that module-based signatures provide

a much richer insight to the underlying biology compared to gene-

based signatures.

Research on outcome prediction not only contributes to the

development of reliable diagnostic tests, but also by improving our

understanding of the processes involved in carcinogenesis, and

specifically how these influence disease progression and therapy

response. From a practical perspective, diagnostic tests based on

small gene sets are preferred, and are also designed with this

objective in mind. However, such sets often fail to provide

significant biological insight into the disease. Our module-based

classifiers were not designed to employ a minimal number of

genes, and the large number of genes employed could be

a limitation to the direct application of these classifiers in a clinical

setting. However, in our study, the module-based classifier had

a significantly lower variance in performance than the gene based

classifier, a property which is clearly preferable in the clinical

setting. We clearly demonstrate that the module-based gene sets

provide a much richer feedback by revealing functional categories

associated with disease outcome. These insights could speed up the

development of anti-cancer drugs, since the identified processes

will help focus the search for viable drug targets. In conclusion,

while module-based classifiers are perhaps less practical for clinical

use due to the large gene sets being employed, their robustness and

the biological insights they provide will most likely result in both

short and long term clinical benefit.

SUPPORTING INFORMATION

Text S1 Module-based outcome prediction using breast cancer

compendia.

Found at: doi:10.1371/journal.pone.0001047.s001 (0.11 MB

DOC)

Figure S1 Methodology overview. Overview of the unsupervised

module extraction procedure, followed by a supervised investiga-

tion of the relation between module expression and conditions. In
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Figure 8. A cell cycle related module. A) Module activity data of a Cell Cycle related module (Module group 2 in Figure 7) that was extracted from
the Vijver [21] data (Inter1, Table 1). The top heatmap shows the binary condition label, and the discrete module activity data (rows), for all the Vijver
arrays (columns) [4]. Arrays are ordered according to the metastasis free survival time. The heatmap in the middle shows the discrete gene expression
data for the 55 genes (rows) in the module. On the left, a binary heatmap shows the 55 genes, along with the gene sets that show the most
significant overlap with this module. The gene sets are ranked based on their p-value for the overlap with the module (hypergeometric distribution),
we show the top 10 gene sets (p-values ranging from 10251 to 10225, all significant at p,0.05 after Bonferroni correction). On the right, two Kaplan-
Meier curves indicate the predictive power of this module when arrays with the same module activity are grouped. B) The Kaplan-Meier curves for the
three groups defined by the activity of this module on the Vijver [21] data (Inter1 training, Table 1). C) The Kaplan-Meier curves for the three groups
defined by the activity of this module on the independent [3] data (Inter1 test data, Table 1). The legend indicates the three groups and lists the
number of events and total number within the groups. P-values correspond to the logrank test.
doi:10.1371/journal.pone.0001047.g008
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this example no FDR correction was done, so as to retain a fair

amount of significantly expressed gene sets/modules.

Found at: doi:10.1371/journal.pone.0001047.s002 (1.16 MB EPS)

Figure S2 Boxplot showing ranked AAC results. In each of the

six experiments the features were ranked based on the AAC (TPR

range from 0.5 to 1) obtained on the independent validation set (1

best, 5 worst). This boxplot shows the median rank along with the

quartile ranges for each of the five features.

Found at: doi:10.1371/journal.pone.0001047.s003 (0.59 MB EPS)

Figure S3 Comparison of ranked AAC results. Two tables

showing a pairwise comparison of the five feature types. Each cell

(row = i, column = j) depicts the the p-value obtained by perform-

ing a one-sided Wilcoxon rank sum test with as null hypothesis

that the median rank of type i is lower than type j, based on the

AACs (TPR range from 0.5 to 1) achieved for each of the six

experiments. The plot on the left shows individual comparisons,

the plot on the right includes comparisons of groups of features.

Cell-shading reflects the p-values.

Found at: doi:10.1371/journal.pone.0001047.s004 (0.81 MB

EPS)

Figure S4 Comparison of a module-based signature (A) and

a gene-based signature (B). The module-based signature from the

Inter1 experiment contains 55 modules, and the gene-based

signature contains 21 genes (Table 1). For both signatures an

enrichment score for their overlap with the collection of 2682 gene

sets was calculated based on the hypergeometric distribution. This

resulted in a total of 319 gene sets that were enriched in at least

one module or in the gene-based signature (P,0.05 after

Bonferroni correction). Several modules turned out to have

a similar pattern of enrichment across the gene sets. Additionally,

gene sets that relate to a common theme turned out to have

a similar enrichment pattern across the modules. Therefore, we

clustered the matrix of p-values in both dimensions (2-dimension-

al, hierarchical clustering, complete linkage, Euclidean distance).

The dendrograms at the top, and to the left indicate the clustering,

where we chose to group either dimension into seven distinct

groups. The labels on the right indicate the individual gene set

labels, and the label on the bottom indicates the groups of modules

formed along with the number of modules in each group in

brackets. The main table shows the median p-value for the

enrichment of each of the seven clusters of modules, across these

seven groups of gene sets. Similarly, the table on the right shows

the median p-values for the gene signature. Shading of the cells

reflects the p-values.

Found at: doi:10.1371/journal.pone.0001047.s005 (4.12 MB EPS)
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Figure 9. An Oct1 related module. A) Module activity data of an OCT1 transcription factor related module (Module group 4 in Figure 7) that was
extracted from the Vijver [21] data (Inter1, Table 1). The top heatmap shows the binary condition label, and the discrete module activity data (rows),
for all the Vijver arrays (columns) [4]. Arrays are ordered according to the metastasis free survival time. The heatmap in the middle shows the discrete
gene expression data for the 47 genes (rows) in the module. On the left, a binary heatmap shows the 47 genes, along with the gene sets that show
the most significant overlap with this module. The gene sets are ranked based on their p-value for the overlap with the module (hypergeometric
distribution), we show the top 10 gene sets (p-values ranging from 10213 to 1027, all significant at p,0.05 after Bonferroni correction). On the right,
two Kaplan-Meier curves indicate the predictive power of this module when arrays with the same module activity are grouped. B) The Kaplan-Meier
curves for the three groups defined by the activity of this module on the Vijver [21] data (Inter1 training, Table 1). C) The Kaplan-Meier curves for the
three groups defined by the activity of this module on the independent [3] data (Inter1 test data, Table 1). The legend indicates the three groups and
lists the number of events and total number within the groups. P-values correspond to the logrank test.
doi:10.1371/journal.pone.0001047.g009
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Dataset S1

Found at: doi:10.1371/journal.pone.0001047.s006 (5.69 MB

XLS)

Table S1

Found at: doi:10.1371/journal.pone.0001047.s007 (0.03 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0001047.s008 (0.03 MB

DOC)
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