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We have previously shown that rotavirus (RV) inner capsid protein VP6 has an adjuvant effect on norovirus (NoV) virus-like
particle- (VLP-) induced immune responses and studied the adjuvant mechanism in immortalized cell lines used as antigen-
presenting cells (APCs). Here, we investigated the uptake and presentation of RV VP6 and NoV GII.4 VLPs by primary bone
marrow-derived dendritic cells (BMDCs). The adjuvant effect of VP6 on GII.4 VLP presentation and NoV-specific immune
response induction by BMDC in vivo was also studied. Intracellular staining demonstrated that BMDCs internalized both
antigens, but VP6 more efficiently than NoV VLPs. Both antigens were processed and presented to antigen-primed T cells,
which responded by robust interferon γ secretion. When GII.4 VLPs and VP6 were mixed in the same pulsing reaction, a
subpopulation of the cells had uptaken both antigens. Furthermore, VP6 copulsing increased GII.4 VLP uptake by 37% and
activated BMDCs to secrete 2-5-fold increased levels of interleukin 6 and tumor necrosis factor α compared to VLP pulsing
alone. When in vitro-pulsed BMDCs were transferred to syngeneic BALB/c mice, VP6 improved NoV-specific antibody
responses. The results of this study support the earlier findings of VP6 adjuvant effect in vitro and in vivo.

1. Introduction

Rotavirus (RV) and norovirus (NoV) account for the major-
ity of acute viral gastroenteritis (AGE) cases globally [1].
Introduction of RV vaccination into national immunization
programs has reduced the incidence of RV AGE [2], but
vaccine against NoV is still under development [3]. Due to
the challenges in propagation of NoV in cell culture, exclud-
ing live attenuated vaccines [4], NoV vaccine development is
largely based on virus-like particles (VLPs) [3], which are
spontaneously formed after the expression of NoV major
capsid protein VP1 in vitro, e.g., in a baculovirus-insect cell
expression system [5]. Nonlive RV-subunit vaccines are
under development due to the safety concerns and low effi-
cacy of live attenuated vaccines in developing countries [6].
The most abundant and conserved RV protein, VP6, forms
the intermediate layer of triple-layered RV particle [7] and
although it does not induce classical neutralizing antibodies,

intracellular neutralization by VP6-specific polymeric immu-
noglobulin (Ig)A [8] and VP6-specific CD4+ T cells are asso-
ciated with protection in mice [9]. Highly immunogenic VP6
proteins can form various nanostructures in vitro [10], and
VP6 has been suggested as the next-generation nonlive
vaccine candidate against RV [11–13]. Our group has
combined oligomeric VP6 nanostructures with NoV VLPs
to generate nonlive subunit combination vaccine against
NoV and RV [14, 15].

Preclinical and clinical studies have shown that immuni-
zation with NoV VLPs leads to a robust antibody response
with surrogate neutralization capacity—a factor that corre-
lates with protection [16–18]. However, the heterogenicity
of numerous NoV genotypes [19] and the antigenic evolution
of the most prevalent NoV genotype, GII.4 [20], make
vaccine development challenging [3]. Adjuvant is an option
to strengthen and broaden NoV immune responses, and
NoV vaccine candidate adjuvanted with aluminum
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hydroxide and monophosphoryl lipid A has been tested in
phase IIb clinical trials [21]. However, due to the local and
systemic adverse events associated with adjuvanted vaccines
[22], our hypothesis is that in the pediatric NoV vaccine
candidate we developed, extremely immunogenic VP6 pro-
tein may serve to substitute the external adjuvant. To this
end, we have shown that RV VP6 in our combination vaccine
has an adjuvant effect on NoV immune responses in vitro
and in vivo [14, 23–25]. The adjuvant mechanism has
been studied in immortalized cell lines used as antigen-
presenting cells (APCs), namely, RAW macrophages and
JAWSII dendritic cells (DCs), and the results suggested
that VP6 acts as an immunomodulator and immunosti-
mulator and facilitates NoV VLPs internalization by the
APCs [23].

DCs are professional APCs that play a principal role in
both T and B cell immune responses leading to adaptive
immunity [26]. DCs capture the antigens and, after pro-
cessing them, present the digested proteins as short pep-
tides within MHC class I and II molecules to effector T
cells [27]. DCs modulate the cytokine environment by
exerting cytokines and chemokines, which attract other
cells to the inflammation site, and naïve T and B cells
within lymph nodes [28]. Mouse bone marrow-derived
dendritic cells (BMDCs) have been used as a research tool
in studies investigating antigen uptake and presentation
in vitro [29–32], and VLPs derived from different viruses
have been shown to be uptaken and processed by the
BMDCs [30, 32, 33]. Furthermore, antigen-pulsed BMDCs
can be used in vivo to examine the role of DCs in the gen-
eration of immunity against various infectious diseases [29,
34, 35] as well as immunotherapeutic agents [36, 37]. In
the present study, we used BALB/c mouse primary
BMDCs to investigate the ability of these cells to uptake,
process, and present NoV and RV antigens in vitro and
to generate an immune response in vivo. Furthermore,
the adjuvant effect of RV VP6 in enhancing NoV VLP
uptake and immune response induction by the pulsed
BMDCs was investigated.

2. Materials and Methods

2.1. Antigens.NoV GII.4 VLPs (accession no. AF080551) and
RV VP6 proteins (accession no. GQ477131) were produced
in a baculovirus-insect cell expression system and purified
through sucrose-gradients as previously described [14, 38].
Final purification was conducted by consecutive ultrafiltra-
tions containing dissociation and reconstitution steps as
described earlier for RV VP6 [39]. Briefly, the structure of
VP6 nanotubules was dissociated in 80mM sodium acetate
(pH3.0, overnight at +4) and filtrated using Vivaspin 300K
centrifugal filter devices (Sartorius AG, Frankfurt, Germany)
to remove large impurities. The filtrate was then subjected to
another ultrafiltration with 30K filter unit (Amicon Ultra-15,
Millipore Corporation, Carrigtwohill, Ireland), and the
retentate containing VP6 was collected. The tubular form of
VP6 proteins was restored by exchanging buffer to sterile
phosphate buffered saline (PBS, Lonza, Verviers, Belgium),
pH7.3-7.5. Finally, the preparation was concentrated with

30K filter units (Millipore). Similar purification step was con-
ducted for NoV VLPs. VLPs were dissociated in 50mM
ammonium acetate (pH9.0) at low protein concentration
(0.1mg/ml) [40]. After overnight incubation, the preparation
was ultrafiltered (3000×g) using Vivaspin 300K filter units
(Sartorius). The filtrate was then subjected to another filtra-
tion with Millipore 30K filter units (4000×g) leaving GII.4
dimers in retentate. Finally, VLP structures were recon-
structed with sterile PBS (pH7.3-7.5, Lonza), and the final
product was concentrated using 50K filter units (Millipore).

The final products were characterized as described earlier
[39, 41]. Accordingly, the protein concentration was mea-
sured using a BCA protein assay kit (Pierce), and morphol-
ogy of purified RV VP6 nanotubes and NoV VLPs were
observed using electronmicroscopy (EM) (Figure 1). In addi-
tion, saliva-based histoblood group antigen (HBGA) binding
assay [42] was conducted to confirm intact NoV VLPs
HBGA binding (data not shown). Another batch of NoV
GII.4 VLPs (accession no. BAG70446), used as antigen in
splenocyte coculture assay (described below), were produced
as previously described [43].

2.2. Isolation and Generation of BMDCs. Primary bone mar-
row (BM) cells were isolated and cultured according to the
published procedures [44, 45]. Femurs and tibiae of naïve
BALB/c OlaHsd (Envigo RMS BV, Horst, the Netherlands)
mice were cut with scalpel from each end and flushed with
cold PBS to collect BMs, which were passed through 70μm
cell strainers (Becton-Dickinson, BD, Franklin Lakes, NJ,
USA). The single cell cultures were suspended in complete
medium (CM, RPMI-1640 supplemented with 100U/ml
penicillin, 100μg/ml streptomycin, 50μm 2-mercaptoetha-
nol, 2mm l-glutamine, and 10% fetal bovine serum (FBS),
all from Sigma-Aldrich) and subjected to centrifugation for
10min, 300×g. The cells were seeded on nontreated
14.2mm sterile petri dishes (VWR, Radnor, PA, US) at 1 ×
106 cells/ml (10ml/plate) in CM/10% FBS supplemented
with a recombinant mouse granulocyte-macrophage
colony-stimulating factor (GM-CSF, Abcam, Cambridge,
UK) at 20ng/ml and cultured for 8 days (37°C and 5%
CO2). Five milliliters of fresh medium containing GM-CSF
(20 ng/ml) was added on days 4 and 7, and nonattached cells
were harvested from plates with gentle washing on day 8. The
cells were tested for the expression of CD11c molecules,
costimulation molecules (CD80, CD86), and MHC class
II (I-A/I-E) by surface staining and flow cytometry as
described below.

2.3. BMDC Pulsing. Frozen BMDCs were thawed, washed
two times with 15ml of CM/10% FBS, and seeded at
2‐2:5 × 106 cells/ml in 24-well nontreated cell culture
plates (Corning Costar) for pulsing. RV VP6 and GII.4
VLPs were added to the cell cultures as single or mixed
antigens at the concentration of 100μg/ml. Lipopolysaccha-
ride (LPS) (Sigma-Aldrich) was used at a concentration of
1μg/ml as a positive stimulant for cytokine release assays.
Unpulsed cells receiving no antigen were used as negative
control. All the pulsing reactions were carried out at +37°C,
5% CO2 for 20–22h. Supernatants of the BMDC cultures
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were collected and stored at -80°C until use. BMDCs were
harvested from the wells and washed 2–3 times with 15ml
CM/10% FBS (300×g, 10min) to remove the free antigen.

2.4. Cell Staining and Flow Cytometry. For the staining of cell
surface and internalized molecules, previously published
procedures with some modifications were utilized [23].
Briefly, BMDCs were washed with staining buffer (Becton
Dickinson, BD, San Jose, CA) following a blocking step on
ice for 10min using rat anti-mouse CD16/CD32 (Fc Block,
Clone 2.4G2, BD). After washing with DPBS (Lonza), dead
cells were stained with Horizon™ Fixable Viability Stain
780 (FVS780, BD) for 10min at RT in the dark, washed,
and were divided into staining reactions (0:25 – 0:5 × 106
cells/reaction). For the analysis of cell surface molecule
expression, the following anti-mouse antibodies were used
for staining: anti-CD11c (HL3) conjugated to phycoerythrin
(PE), CD80 (16-10A1) conjugated to peridinin chlorophyll-
cyanine5.5 (PerCP-Cy5.5), CD86 (GL1) conjugated to PE-
Cy7, and I-A/I-E (M5/114.15.2) conjugated to Alexa Fluor
647 (all purchased from BD). The antibodies were added to
cell suspensions and incubated on ice for 30min. For intra-
cellular staining, the cells were subjected to fixation and per-
meabilization using a Cytofix/Cytoperm Plus kit (BD)
according to the manufacturer’s instructions. VP6 proteins
were stained with rabbit polyclonal rotavirus group A anti-
body (GenWay Biotech Inc., San Diego, CA) reacting with
FITC-conjugated goat anti-rabbit Ig (BD). For the detection
of intracellular GII.4 VLPs, the cells were stained with
NoV-positive human serum (diluted 1 : 2000) following PE-
conjugated polyclonal anti-human IgG (eBioscience, Thermo
Fisher Scientific, Waltham, MA) staining. All the intracellu-
lar staining steps were conducted on ice for 30min. Finally,
both surface and intracellularly stained cells were washed
twice to remove unbound antibodies and acquired with a
FACSCanto II fluorescence-activated flow cytometer (BD).

Surface molecule expression, as well as VP6 and GII.4
VLP internalization, was examined by overlaying histograms
of unpulsed and pulsed cells and comparing median fluores-
cence intensity (MFI) of each population. In addition, dot
plots of BMDCs pulsed with GII.4 VLPs alone and in combi-
nation with VP6 were created to investigate cell populations
positive for internalized proteins. Negative populations were
defined using unpulsed BMDCs stained with the same proce-
dures as the GII.4- or VP6-pulsed cells. The data analysis was
conducted with FlowJo analysis software (v. 10, Three Star
Inc., San Carlos, CA).

2.5. Mouse Immunizations. Unpulsed BMDCs (Gr I),
BMDCs pulsed with GII.4 VLPs (Gr II) or with VLPs and
VP6 as a mixture (Gr III) or separately (Gr IV), were admin-
istered intramuscularly to 7-week-old female BALB/c
OlaHsd mice on study week 0 (Figure 2). Each experimental
group contained five mice. The mice received second immu-
nization at study week 3. The mice were euthanized at study
week 5, and the sera were collected as described before [46].
In separate experiments, GII.4 VLPs and VP6 were used as
protein antigens (10–30μg/dose) to immunize mice accord-
ing to our standard protocol [14, 15] to obtain antigen-
primed splenocytes for in vitro enzyme-linked immunospot
(ELISpot) and splenocyte coculture assays (described below).
All procedures were authorized and conducted under the
guidelines of the Finnish National Animal Experiment Board
(permission number ESAVI/10800/04.10.07/2016).

2.6. ELISpot Assay. An ELISpot assay was used to enumerate
interferon gamma- (IFN-γ-) producing T cells of antigen-
primed splenocytes in response to stimulation with unpulsed
or pulsed BMDCs [45]. Ninety-six-well MultiScreen HTS-IP
filter plates (Millipore, Billerica, MA, USA) were coated with
anti-mouse interferon IFN-γ (Mabtech Ab, Nacka Strand,
Sweden) and blocked with CM containing 10% FBS.
Unpulsed or pulsed BMDCs were added in CM/10% FBS

500 nm

(a)

500 nm

(b)

Figure 1: Structure and integrity of the purified RV VP6 and NoVGII.4 VLPs. The proteins were produced in a baculovirus-insect cell system
and purified by sucrose gradients followed by ultrafiltrations of dissociated proteins as described in Materials and Methods. Electron
microscopy images of reconstructed rotavirus VP6 nanotubes (a) and norovirus GII.4 virus-like particles (b) examined by a FEI Tecnai
F12 electron microscope (Philips Electron Optics) at a magnification of 11 000x and 12 000x, respectively, after negative staining with 3%
uranyl acetate, pH 4.6. Scale 500 nm.
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on plates at 5000, 20 000, and 40 000 BMDCs/well. GII.4
VLPs and VP6 nanotubes were also added as free protein
antigens (30μg/ml), and Concanavalin A (ConA, Sigma-
Aldrich) at the concentration of 10μg/ml was used as a
positive control. Splenocytes of GII.4 VLP and VP6 immu-
nized mice were thawed, washed twice, and added
(0:2 × 106 cells/well) into the wells followed by ~20 h incu-
bation at +37°C and 5% CO2. After discarding the cells, bio-
tinylated anti-mouse IFN-monoclonal antibody (0.5μg/ml)
was added and the spots were developed with alkaline-
phosphatase (ALP) conjugated streptavidin (1 : 1000) react-
ing with BCIP/NBT substrate for 12min (all reagents from
Mabtech). The spots were counted by an ImmunoSpot®
automatic CTL analyzer (CTL-Europe GmbH, Bonn, Ger-
many), and the results are expressed as mean spot-forming
cells (SFCs) per 106 viable splenocytes of replicate wells.

2.7. Splenocytes and BMDC Cocultures. Unpulsed and pulsed
BMDCs were cocultured with GII.4 immunized and naïve

mouse splenocytes for the detection of antigen-specific anti-
body production in vitro. Splenocytes were thawed, washed,
and seeded at 2 × 106 cells/ml (1ml/well) in 24-well plates
(Corning Inc.). GII.4 VLP-pulsed and GII.4 VLP-unpulsed
BMDCs were washed three times to efficiently remove free
antigen from the cultures and mixed with splenocytes
(0:1 × 106 BMDCs/reaction). GII.4 VLPs were added a con-
centration of 0.05μg/ml as a control (representing the theo-
retical concentration of residual free protein after washing).
Splenocytes lacking any BMDC or VLP stimulation were also
used as negative control. Cells were cultured on a 24-well
microplate (Corning Costar) at 37°C and 5% CO2 for seven
days. Supernatants were collected from the cultures on day
1 and day 7 and tested in enzyme-linked immunosorbent
assay (ELISA) as described below to detect GII.4-specific IgG.

2.8. IgG, IgG1, and IgG2a ELISA. NoV GII.4 and RV VP6-
specific IgG, IgG1, and IgG2a were measured by ELISA as
previously described in details [46]. Briefly, GII.4 VLPs and

BM cells + GM-CSF 

8 d
CD11c+

w/o antigen GII.4 VLPs GII.4 VLPs + VP6 

GII.4 VLPs 

VP6

Gr I Gr II Gr III                             Gr IV

1st imm. 2nd imm. Term.

Wk 0 Wk 3 Wk 5

(a)

Gr. Pulsing antigen Conc.
(𝜇g/ml)

Number of BMDCs/inj.
(Wk 0) 

Number of BMDCs/inj.
(Wk 3) 

Number of
mice 

I Unpulsed BMDCs – 0.5 × 106 0.5 × 106 5

II GII.4 VLP 100 0.2 × 106 0.4 × 106 5

III GII.4 VLP + VP6 (mixed) 100 + 100 0.2 × 106 0.4 × 106 5

IV GII.4 VLP and 

VP6 (separatelya)

100

100

0.2 × 106  VLP DC + 

0.5 × 106 VP6 DC

0.4 × 106  VLP DC + 

0.5 × 106  VP6T DC

5

aPulsing reactions were done separately, and pulsed cells were combined prior immunizations

(b)

Figure 2: Bone marrow-derived dendritic cell (BMDC) pulsing and experimental immunization groups. (a) Schematic representation of
BMDC pulsing with norovirus GII.4 virus-like particles (VLPs) and rotavirus VP6 alone or as mixed antigens. The horizontal arrow
illustrates the immunization schedule. (b) Immunization groups, protein concentrations used in pulsing reactions, the number of BMDCs
used for immunizations, and the number of mice per immunization group are shown. w/o: without.
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VP6 were used to coat half-area 96-well polystyrene micro-
plates (Corning Inc.) overnight at +4°C. After blocking with
5% milk in PBS, the serum samples (diluted 1 : 100) from
each mice or undiluted coculture supernatants were added
on plates in duplicates. Secondary antibodies specific for
mouse IgG (1 : 4000, Sigma-Aldrich), IgG1 (1 : 6000, Invitro-
gen, Carlsbad, CA), or IgG2a (1 : 6000, Invitrogen) reacting
with OPD substrate (Sigma-Aldrich) were used to detect
GII.4- and VP6-specific antibodies from the samples. Victor2

microplate reader (Wallack, Perkin Elmer) was used to
measure the optical density (OD) values at 490nm from the
plates, and the results were analyzed after subtracting
background OD values (blank wells) from each OD reading.
Sample giving OD above the cut-off value (mean OD of neg-
ative control mice + 3 × SD and at least 0.1 OD) was consid-
ered as positive. The results are expressed as the mean of all
OD values (±SEM) in the immunization group.

2.9. Cytokine ELISA. Quantities of interleukin 6 (IL-6) and
tumor necrosis factor α (TNF-α) in supernatants of BMDC
cultures were examined using commercial enzyme-linked
immunosorbent assay (ELISA) kits: mouse IL-6 DuoSet
(R&D Systems, Minneapolis, MN) and TNF-α DuoSet
(R&D System) according to the manufacturer’s instructions.
The supernatants were diluted 1 : 2 and ran as duplicates. The
ODs were measured at 490 nm as described above. Standard
curves were plotted and used to calculate the cytokine con-
centration (pg/ml) in the supernatants.

2.10. Blocking Assay. In order to determine the surrogate
neutralization ability of NoV GII.4-specific antibodies, a
blocking assay was conducted according to a published pro-
tocol [24] using human saliva type A as the source of HBGAs
[42]. Individual mouse sera (diluted 1 : 50) or groupwise
pooled sera (titrated from 1 : 50) were preincubated with
0.1μg/ml GII.4 VLPs for 1 h at +37°C in low-binding tubes
(Eppendorf, Hamburg, Germany) prior to adding the
preparations on saliva-coated plates. The bound VLPs
were detected using human NoV-positive serum (1 : 4000)
and horseradish peroxidase- (HPR-) conjugated anti-
human IgG antibody (1 : 6000, Novex, Invitrogen) reacting
with OPD substrate (Sigma-Aldrich). The OD readings
were measured as described above. Wells incubated with
VLPs lacking mouse sera were added to each assay to
determine the maximum binding OD. The blocking index
(%) was calculated as 100%� ½ðODwells withVLP‐serum
mix/maximumbindingODÞ × 100%�. The results are
expressed as the mean blocking indexes of individual mice
for each immunization group or as mean blocking indexes
of replicate wells if groupwise pooled sera were used.

2.11. Statistical Analyses. The Mann-Whitney test was
employed to assess the statistical differences in the observa-
tions between immunization groups. All analyses were con-
ducted by IBM SPSS Statistics for Windows (IBM Corp.,
Armonk, NY), Version 23.0. A statistically significant differ-
ence was defined as a p value < 0.05.

3. Results

3.1. Characterization of the BMDCs. The surface staining
confirmed that over 90% cells had CD11c+ phenotype indi-
cating successful generation of BMDCs (Figure 3, left middle
panel) [44]. In addition, the cells were observed under an
inversion light microscope (Nikon, Minato, Japan) with a
Moticam 1000 camera (Motic Microscopy, Wetzlar, Ger-
many) attached, showing typical morphology of BMDCs
(Figure 3, right middle panel) [47]. High expression of
maturation markers (Figure 3, bottom panel) indicated
spontaneous maturation during cultivation with GM-CSF.
The BMDCs were frozen in CM containing 10% dimethyl
sulfoxide (DMSO) until further use [48]. The viability per-
cent of the freeze-thawed BMDCs was recurrently 80–90%
indicating a good recovery of the cells.

3.2. BMDCs Internalize GII.4 VLPs and VP6 Nanotubules In
Vitro. The uptake of GII.4 VLPs and VP6 by BMDCs was
examined by flow cytometry after intracellular staining of
internalized proteins. Figure 4 illustrates the shift in the
histogram MFI for GII.4 VLPs (Figure 4(a)) and VP6
(Figure 4(b)) after incubation with BMDCs in comparison
to untreated BMDCs. The antigen-specific intracellular
staining increased for GII.4 VLPs (MFI 1622) and for
VP6 (MFI 1101) when compared to untreated, similarly
stained, cells (MFI 953 and MFI 507, respectively) indicat-
ing that both proteins were internalized by the BMDCs.
VP6 nanotubes were more efficiently uptaken than the
VLPs as the antigen-positive populations were 2.2% for
GII.4 VLP (Figure 4(a), density plot) and 17.1% for VP6
(Figure 4(b), density plot).

3.3. GII.4 VLP- and VP6-Pulsed BMDCs Present Antigen and
Stimulate T and B Cells In Vitro. To confirm that GII.4 VLP-
and VP6-pulsed BMDC function as APCs, we used unpulsed
or pulsed BMDCs as APC in ELISpot IFN-γ assay. Robust
IFN-γ production from antigen-primed splenocytes was
detected against GII.4 VLP- (Figure 5(a)) or VP6-
(Figure 5(b)) pulsed BMDCs. The magnitude of IFN-γ
releasing cells increased in relation to the higher number of
pulsed BMDCs for both GII.4- (from 298 ± 41 to 1550 ±
125 SFC/106 cells, Figure 5(a)) and VP6- (from 255 ± 25 to
1395 ± 85 SFC/106 cells, Figure 5(b)) specific assay. Unpulsed
BMDCs did not activate IFN-γ production. GII.4 VLPs or
VP6, used as free antigens (30μg/ml), stimulated consider-
ably lower number of IFN-γ-producing cells (145 SFC/106

cells for GII.4 and 175 ± 65 SFC/106 cells for VP6) than
pulsed BMDCs, suggesting that GII.4 VLP- and VP6-pulsed
BMDCs serve as excellent APCs in vitro.

We next determined whether GII.4 VLP-pulsed BMDCs
can stimulate B cells for IgG production in vitro using
GII.4-primed and naïve control mouse splenocytes as
responder cells (Figure 5(c)). The coculture supernatants
were tested for the presence of GII.4-specific IgG. As a result,
no GII.4-specific antibody was present after 1 day of cocul-
ture, but after 7 days, a relatively high level of IgG (mean
OD 1:899 ± 0:081) was detected in the supernatant of GII.4
VLP-primed mouse splenocytes cocultured with VLP-
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pulsed BMDCs. In contrast, GII.4 VLP-pulsed BMDCs could
not activate naïve mouse splenocytes for antibody produc-
tion (OD 0:066 ± 0:001, data not shown). To rule out that
antigen-specific antibody production was due to the free
VLPs in the BMDC preparation, a theoretical residual con-
centration (0.05μg/ml of protein) was added as a control
stimulant, which failed to induce GII.4-specific IgG in the
supernatant (Figure 5(c)). Splenocytes cultivated without
BMDCs or VLP stimulation did not produce GII.4-specific
antibody (data not shown).

3.4. VP6 Improves the Uptake of GII.4 VLPs and BMDC
Cytokine Release In Vitro. The effect of VP6 on GII.4 VLP
uptake by BMDC and cytokine release was investigated from
cultures of solely GII.4 VLP-pulsed BMDCs in comparison to
GII.4 VLP and VP6-copulsed BMDC cultures (Figure 6).
Unpulsed and intracellularly stained BMDCs were used to
gate the GII.4 and VP6 negative population (Figure 6(a),
A). After pulsing with GII.4 VLPs, a small population of
GII.4-positive cells (1.9%) was detected (Figure 6(a), B).
When VP6 was coadministered with GII.4 VLPs, a 37%
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Figure 3: Characterization of granulocyte-macrophage colony-stimulating factor (GM-CSF) generated bone marrow-derived dendritic cells
(BMDCs) by flow cytometry analysis. The BMDCs were gated first to exclude debris (left upper panel) and then to exclude nonviable cells
(right upper panel). The expression of CD11c is illustrated by a histogram gated on a CD11c-positive subset (left middle panel). Moticam
10000 camera, attached to an inversion light microscope (20x magnification), was used to take an image of generated BMDCs (right
middle panel). The expression of CD80, CD86, and MHC class II (I-A/I-E) molecules on surface-stained CD11c+ BMDCs (filled
histogram) is illustrated with unstained cells (dotted line) by overlaid histograms (bottom panel) with median fluorescence intensity (MFI)
values depicted in the boxes. Results are representative of three independent experiments.
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increase in the GII.4-positive cells was detected (2.63% of all
gated BMDCs) (Figure 6(a), C). Much larger population of
copulsed BMDCs had internalized VP6, as 10.4% of BMDCs
were positive to intracellularly stained VP6 (Figure 6(a), C).
The double staining revealed that 1.56% of the cells were pos-
itive for both GII.4 VLP and VP6, indicating that these cells
had uptaken both antigens. An increase in inflammatory
cytokines, IL-6 and TNF-α, was detected in the supernatant
of copulsed BMDCs in comparison to GII.4 VLP-pulsed cells
(Figure 6(b)). Solely GII.4 VLP-pulsed BMDCs released cyto-
kines closed to the baseline (unpulsed cells), but when VP6
was coadministered with the VLPs, a twofold (from 78.1 to
176.7 pg/ml) and a fivefold (from 41.1 to 200.2 pg/ml)
increase in the IL-6 and TNF-α levels, respectively, was
detected. LPS, used as a positive control, induced robust
levels of both cytokines (Figure 6(b)).

3.5. GII.4 VLP- and VP6-Pulsed BMDCs Induce Antigen-
Specific Immune Responses In Vivo. Next, we evaluated the
ability of GII.4 VLP- and VP6-pulsed BMDCs to induce an
immune response in mice. Unpulsed BMDCs, BMDCs
pulsed with GII.4 VLPs as single antigen, or coadministered
with simultaneously or separately VP6-pulsed BMDCs were
transferred to syngeneic BALB/c mice two times (Figure 2),
and the antibody responses were evaluated (Figure 7). All
immunizations with pulsed BMDCs induced antigen-
specific IgG responses in comparison to unpulsed cells. The
highest magnitude of GII.4-specific IgG response was
detected in the immunization group that received simulta-
neously VLP- and VP6-pulsed BMDCs (Gr III), although
the difference compared to other immunization groups was

not statistically significant (p = 0:056 – 0:222, Figure 7(a)).
VP6-specific IgG response was similar in groups receiving
VP6-pulsed BMDC (p = 0:310, Figure 7(b)). Group receiving
only GII.4-pulsed BMDCs did not produce VP6-specific IgG
confirming the antigen specificity of the assay.

Evaluation of serum levels of IgG subtypes, IgG1 and
IgG2a (indicative of Th2 and Th1 responses, respectively),
revealed differences between immunization groups. The
magnitude of IgG1 followed the same pattern as the total
IgG levels; simultaneously GII.4 VLP- and VP6-pulsed
BMDCs (Gr III) induced IgG1 responses that trended the
highest of all groups (Figures 7(c) and 7(d)). Mice that were
immunized with GII.4 VLP-pulsed BMDCs (Gr II) totally
lacked IgG2a response, indicating a strong Th2-type
response (Figure 7(e)). When VP6 was mixed in the pulsing
reaction with the VLPs (Gr III), IgG2a production increased
significantly (p < 0:008, Figure 7(e)). Separately VP6-pulsed
BMDCs improved GII.4-specific IgG2a response to some
extent (Gr IV), but not as efficiently as VP6 mixed in the
pulsing reaction with VLPs (Gr III) (Figure 7(e)). No differ-
ence in the VP6-specific IgG2a responses was detected
between the groups receiving simultaneously or separately
pulsed BMDCs (Figure 7(f), p = 1:0).

3.6. BMDCs Pulsed Simultaneously with GII.4 VLP and VP6
Induce GII.4-Specific Blocking Responses. Sera from mice
immunized with pulsed or unpulsed BMDCs were further
tested for blocking activity to determine the surrogate neu-
tralization ability of GII.4-specific antibodies (Figure 8).
When individual mouse serum blocking activities were
tested, only a group that received simultaneously GII.4
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Figure 4: Internalization of norovirus GII.4 virus-like particles (VLPs) and rotavirus VP6 nanotubes. Flow cytometry analysis of norovirus
GII.4 VLPs (a) or VP6 nanotubes (b) uptaken by bone marrow-derived dendritic cells (BMDCs) after 22 h incubation with 100 μg/ml of
proteins. The intracellular staining of unpulsed BMDCs (dotted line) or BMDC pulsed with the proteins (filled histogram) is shown by
overlaid histograms with median fluorescence intensity (MFI) values depicted in the boxes. The percentual uptake of GII.4 VLPs and VP6
nanotubes is shown in the SSC-A versus GII.4-PE (a) or VP6-FITC (b) density plots of BMDCs gated on viable cells. The gates in the
density plots are drawn according to the unpulsed BMDCs stained with similar procedures as the pulsed cells (data not shown).
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VLP- and VP6-pulsed BMDCs (Gr III) resulted in the mean
blocking index (63:6 ± 28:5%) above 50%, whereas a group
that received separately pulsed BMDC (Gr IV) completely
failed to develop blocking activity in the serum (mean block-
ing titer 1:8 ± 0:8%) (Figure 8(a)). A group immunized with
GII.4-pulsed BMDCs (Gr II) resulted in mean blocking titer
of 26:5 ± 11:8%with only one mouse having a blocking index
over 50%. The assay was repeated using groupwise pooled
sera, which confirmed that only a group that received
double-pulsed BMDCs (Gr III) developed a considerable
blocking activity in the serum (Figure 8(b)). The control
group (Gr I) was negative for blocking antibodies.

4. Discussion

The mechanisms leading to protective NoV immunity are
not well characterized. However, humoral immunity seems
to be especially important as blocking antibodies, memory
B cells, and salivary IgA have all been shown to correlate with
protection [16, 18, 49]. In order to generate a strong adaptive

B cell immunity, help from CD4+ T cells is essential, and the
APCs capable of binding, internalizing, and processing
microbes are the key players in priming T cells [26]. We have
previously studied the maturation and activation of immor-
talized cell lines serving as APCs in response to our NoV
and RV combination vaccine antigens, GII.4 VLPs and RV
VP6 [23]. However, as immortalized APCs are genetically
modified, and do not represent the natural cell populations,
primary BMDCs were utilized in the present study. BMDCs
are an excellent model to study the immunological processes
in vitro, as they are relatively easy to obtain and sustain, and
can be pulsed in vitro to be transferred back to syngeneic
mice [29, 44, 50, 51]. However, BMDCs are heterogenic cell
population, comprised of many cell types in addition to
DCs [52]. CD11c is the best marker for DCs [44], and in
our BMDC preparations, the number of CD11c+ cells was
recurrently over 90%, indicating high purity. Frozen-
thawed BMDCs were used in this study to reduce assay var-
iability and the amount of labor and time, as if the BMDCs
were generated from precursor cells for each assay. It has
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Figure 5: Functionality of norovirus GII.4 virus-like particles (VLPs) and rotavirus VP6-pulsed BMDCs in vitro. Splenocytes of mice
immunized with GII.4 VLPs (a) or VP6 (b) were analyzed for interferon gamma (IFN-γ) production by an ELISpot assay after overnight
stimulation with an increasing number of unpulsed, or GII.4 VLP- or VP6-pulsed (100 μg/ml) BMDCs, or native protein antigens
(30 μg/ml). Mean IFN-γ spot-forming cells (SFCs) per 106 viable splenocytes with standard errors of two to three independent
experiments are shown. Unpulsed and GII.4 VLP-pulsed BMDCs were cocultured with GII.4 VLP-immunized mouse splenocytes on a 24-
well microplate for seven days, and the supernatant was collected for the measurement of GII.4-specific IgG (c) by ELISA as described in
Materials and Methods. GII.4 VLP was added at the concentration of 0.05 μg/ml as a control, representing the theoretical free protein
concentration in the BMDC preparations. Shown are the mean optical density (OD) values of two GII.4 VLP-primed mice with standard
deviations.
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been shown that freeze thawing does not affect the uptake,
processing, or antigen presentation capacity of murine
BMDCs, and frozen cells retain the ability to induce
antigen-specific immune responses in vivo [48]. We investi-
gated the antigen uptake and functionality of GII.4 VLP-
and VP6-pulsed BMDCs in vitro, followed by adoptive trans-
fer of these cells to mice to study the in vivo immunogenicity,
and in particular, the adjuvant effect of VP6.

The intracellular staining showed that both GII.4 VLPs
and VP6 were uptaken by the BMDCs, which is concurrent
with the previous results obtained by us and others with cell
line-derived APCs [23, 53]. VP6 was internalized more effi-
ciently than the VLPs, most likely because of the size and/or
shape difference between tubular VP6 (0.2-1.5μm) and
spherical GII.4 VLPs (~38 nm). Larger complexes have been
shown to be preferentially uptaken by the APCs [53, 54], but
also surface charge is known to affect the attractiveness of a
particle to be phagocytosed [55]. Upon uptake of foreign par-
ticles, immature DCs are known to go through series of bio-
logical and phenotypical changes (such as upregulation of
costimulatory and MHC II molecules) leading to maturation
[26]. BMDCs are known also to be easily activated in vitro
without microbial stimuli, e.g., in response to conditions in
the propagation culture or to certain treatments [56]. Unfor-

tunately, we could not measure the upregulation of matura-
tion markers in response to GII.4 VLP and VP6 uptake, as
we detected high baseline expression of CD80, DC86, and
MHC II molecules in our untreated BMDC culture indicat-
ing spontaneous maturation. We ruled out the possible bac-
terial contamination of the culture as background cytokine
levels in unstimulated BMDC cultures were low, but in
response to LPS, robust levels of TNF-α and IL-6 were
induced. Despite spontaneous maturation, BMDCs are
known to continue capture, process, and present exogenous
antigens [31, 57, 58]. Platt et al. [31] have shown that the
postmaturation uptake occurs, with comparable efficacy to
immature DCs, through receptor-mediated endocytosis,
which is the route that we have previously shown to be (par-
tially) responsible for VP6 uptake [23].

We also examined the functionality of the pulsed
BMDCs, particularly, whether they are able to present the
antigen and induce antigen-specific T and B cell responses
in vitro. Robust IFN-γ secretion was detected in the ELISpot
assay by antigen-primed splenocytes stimulated with GII.4
VLP- or VP6-pulsed BMDCs. IFN-γ production against
native protein constructs was considerably lower, indicating
that the pulsed BMDCs were responsible for presenting the
captured and processed antigens to T cells. Given that only
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Figure 6: Adjuvant effect of VP6 on GII.4 virus-like particle (VLP) internalization and cytokine release in vitro. BMDCs were pulsed ~22 h
with 100μg/ml of GII.4 VLPs alone or in combination with VP6 (100 μg/ml) and intracellularly double-stained with antibodies specific for
GII.4 VLPs and VP6. The flow cytometry analysis of unpulsed cells (a, A), GII.4 VLP-pulsed cells (a, B), and GII.4+VP6-pulsed cells (a, C) is
represented as dot plots with GII.4-specific fluorescence (PE) plotted on x-axis and VP6-specific fluorescence (FITC) plotted on y-axis. The
level of tumor-necrosis factor α (TNF-α) and interleukin 6 (IL-6) in BMDC supernatants was measured by ELISA after ~22 h incubation with
100μg/ml of GII.4 VLPs alone or in combination with VP6 (100 + 100 μg/ml) (b). Lipopolysaccharide (LPS) was used as a positive control.
Shown are the mean concentrations (pg/ml) with standard deviations of replicate wells.
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a small fraction of the total amount of pulsed BMDCs used in
the ELISpot had internalized GII.4 VLPs (~1.6%) and VP6
(~10%), the ability of these BMDCs to stimulate T cells seems
to be very powerful. Furthermore, GII.4 VLP-pulsed BMDCs
triggered in vivo-primed splenocytes for GII.4-specific IgG
production after seven days, indicating the activation of
memory B cells [59]. The B cell stimulation could have
occurred through CD4+ T cell activation, which subse-

quently drove cognate B cells into IgG production, but in
addition to this, DCs can also interact directly with B cells
providing signal through CD40 ligation [59, 60]. Further-
more, extrafollicular DCs and macrophages are able to
uptake and retain intact antigens on cell surface or in intra-
cellular vesicles and transfer them to naïve B cells to initiate
antibody production [61]. However, at least in in vitro set-
tings, GII.4 VLP-pulsed BMDCs could not directly activate
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Figure 7: The humoral immune responses generated by in vitro-pulsed BMDCs. Norovirus GII.4 virus-like particle- (VLP-) pulsed bone
marrow-derived dendritic cells (BMDCs) were transferred intramuscularly two times to mice either alone (Gr II) or in combination with
simultaneously (Gr III) or separately (Gr IV) VP6-pulsed BMDCs as described in Materials and Methods. Unpulsed BMDCs were used as
negative control cells (Gr I). Mouse termination sera were tested individually (1 : 100 dilution) in GII.4- (left panel) and VP6- (right panel)
specific IgG (a, b), IgG1 (c, d), and IgG2a (e, f) ELISAs. Group mean optical density (OD) values at 490 nm with standard error of the
means (error bars) are shown. ∗Statistically significant p value.
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naïve B cells for antibody production, as the coculture with
naïve mouse splenocytes was negative for GII.4-specific
antibody.

The repetitive surface structure of VLPs efficiently cross-
links B cell receptors leading to strong humoral responses
[62] but also facilitates the phagocytosis of these particles
by professional APCs [63]. However, studies with certain
VLPs have shown that although VLPs are readily and effi-
ciently internalized by the DCs, they fail to trigger DC activa-
tion [30, 32]. The lack of activation might be a result of the
absence of additional stimuli (such as viral RNA) to cells of
innate immunity [64, 65], suggesting that some VLPs might
require an external stimulator to efficiently initiate DC-
driven immune responses. In an earlier study, we observed
that coadministered RV VP6 promoted GII.4 VLP internali-
zation and activated macrophages more efficiently than VLPs
alone [23]. We reasoned that VP6 enhances VLP-specific
responses through depo effect acting as a delivery vehicle
and also by stimulating inflammatory cytokine production
[23]. Here, we demonstrated that GII.4 VLP and VP6 enter
in the same BMDCs when mixed in the same pulsing reac-
tion. The uptake of GII.4 VLPs was enhanced by 37% when
codelivered with VP6, which is almost exactly the same result
as obtained with RAW macrophages (30% enhancement,
respectively), although the number of VLP uptaken BMDCs
is much lower compared to RAW cells [23]. Also, concurrent
with the previous study [23], we noticed enhanced TNF-α
and IL-6 production in cultures after pulsing GII.4 VLPs with
VP6 in comparison to solely VLP-pulsed BMDCs. TNF-α is
an important inflammatory cytokine, which recruits other
APCs to inflammation site and facilitates their trafficking in
draining lymph nodes [66]. In addition, TNF-α and IL-6 pro-
vide B cells proliferation and activation stimuli [67]. The
results obtained here and previously, with immortalized cell
lines as APCs, suggest that coadministration of VP6 might
serve the additional stimulus needed to more efficiently acti-
vate APCs with VLP-based vaccine.

After confirming the APC functionality of GII.4 VLP-
and RV VP6-pulsed BMDCs in vitro, we investigated their
function in vivo. We have previously shown that VP6 has
to be administered at the same time and at the same site as
NoV VLPs, in order to exert adjuvant effect on NoV immune
responses [24]. Here, we were especially interested to exam-
ine if VP6 nanotubes have to be uptaken by the same BMDCs
as GII.4 VLPs to enhance NoV-specific immune responses.
In order to study that we transferred simultaneously and sep-
arately VLP- and VP6-pulsed BMDCs to mice and compared
the responses to the ones induced by BMDCs pulsed only
with VLPs, all study groups immunized with pulsed BMDCs
developed GII.4-specific IgG antibodies, but on average, the
level of IgG trended the highest in the group receiving simul-
taneously VLP- and VP6-pulsed BMDCs. Higher number of
mice in the experimental groups might have improved the
statistical significance of the results. The importance of VP6
being mixed with VLPs is supported by the fact that only
the group receiving copulsed BMDCs generated antibodies
with considerable blocking potential (>50% blocking index).
Furthermore, a group receiving only VLP-pulsed BMDCs or
separately pulsed BMDC failed to induce >50% blocking
activity, indicating that the generation of blocking activity
was related to double pulsing the BMDC. Whether it was
due to higher levels of IgG or improved quality of antibodies
in this group remains to be unraveled but supports the adju-
vant effect of VP6.

IgG subtype measurement revealed that GII.4 VLP-
pulsed BMDCs induced only IgG1, indicative of Th2-type
response, whereas coadministration with VP6-pulsed cells
resulted in more balanced IgG1/IgG2a production, indicat-
ing unbiased Th1/Th2 response. Typically, the in vivo
immune response triggered by antigen-pulsed BMDC is
shifted to Th1 type [30, 51, 68], in which T cells respond to
DC contact by producing Th1-type cytokines such as IFN-
γ. Although we showed that both VLP- and VP6-pulsed
BMDCs elicited strong IFN-γ production in antigen-
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Figure 8: Blocking antibody responses generated by ex vivo-pulsed BMDCs. Norovirus GII.4 virus-like particle- (VLP-) pulsed bone marrow-
derived dendritic cells (BMDCs) were transferred intramuscularly two times tomice either alone (Gr II) and in combination with simultaneously
(Gr III) or separately (Gr IV) VP6-pulsed BMDCs as described in Materials and Methods. The immune sera of mice were tested individually
1 : 50 (a) or as a pool with serial dilutions (b) against GII.4 VLPs in blocking assays utilizing human saliva type A as the source of histoblood
group antigens. The blocking index (%) was calculated as follows: 100%� ½ðODwells withVLP‐serummix/maximumbindingODÞ × 100%�.
The error bars represent the standard error between individual mice (a) or two independent assays (b), and the horizontal dashed line
illustrates the blocking titer 50%.
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primed T cells in vitro, the in vivo conditions in initiating pri-
mary response in naïve animals differ remarkably. There
could be several reasons why GII.4-pulsed BMDCs induced
solely Th2-typic response. GII.4 VLPs can be uptaken by dif-
ferent subpopulation of BMDCs than VP6, or different pat-
tern recognition factors (PPRs) can be involved activating
distinct signaling cascades, leading to either Th1- or Th2-
related cytokine production [63, 69]. As both immunization
groups receiving VP6-pulsed BMDC, either simultaneously
or separately pulsed with GII.4 VLPs, resulted in GII.4-spe-
cific IgG2a production, it seems likely that the uptake of
VP6 modulates the cytokine environment, affecting also to
VLP uptaken cells through a bystander effect. However,
revealing the exact mechanism behind the skewing of the
Th1/Th2 response requires additional studies.

The immune responses to pulsed BMDCs versus native
protein antigens are naturally very different; as in the latter,
the proteins are directly interacted with B cells and other
immune cells. However, the results obtained here with
in vivo transfer of GII.4 VLP- and VP6-pulsed BMDC further
promote our earlier findings [14, 23–25] of the adjuvant
effect of VP6 on NoV VLP-induced immune responses.

5. Conclusions

Taken together, this study showed that both NoV VLPs and
RV VP6 nanotubes were internalized and processed by
mouse BMDCs. Codelivered RV VP6 nanotubes enhanced
the uptake of NoV VLPs and BMDC activation, which pre-
sumably further reflected in better NoV-specific humoral
responses in vivo, when pulsed BMDCs were used to immu-
nize syngeneic mice. The results of this study support the
earlier findings of VP6 acting as a natural adjuvant for
NoV-specific immune responses both in vitro and in vivo.
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