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CLINICAL AND POPULATION STUDIES

Role of Gut Microbiota in Statin-Associated 
New-Onset Diabetes—A Cross-Sectional and 
Prospective Analysis of the FINRISK 2002 
Cohort
Kari Koponen , Oleg Kambur, Bijoy Joseph , Matti O. Ruuskanen , Pekka Jousilahti , Rodolfo Salido, Caitriona Brennan , 
Mohit Jain, Guillaume Meric , Michael Inouye, Leo Lahti , Teemu Niiranen, Aki S. Havulinna , Rob Knight , Veikko Salomaa

BACKGROUND: Dyslipidemia is treated effectively with statins, but treatment has the potential to induce new-onset type-2 diabetes. 
Gut microbiota may contribute to this outcome variability. We assessed the associations of gut microbiota diversity and composition 
with statins. Bacterial associations with statin-associated new-onset type-2 diabetes (T2D) risk were also prospectively evaluated.

METHODS: We examined shallow-shotgun-sequenced fecal samples from 5755 individuals in the FINRISK-2002 population 
cohort with a 17+-year-long register-based follow-up. Alpha-diversity was quantified using Shannon index and beta-diversity 
with Aitchison distance. Species-specific differential abundances were analyzed using general multivariate regression. 
Prospective associations were assessed with Cox regression. Applicable results were validated using gradient boosting.

RESULTS: Statin use associated with differing taxonomic composition (R2, 0.02%; q=0.02) and 13 differentially abundant species in 
fully adjusted models (MaAsLin; q<0.05). The strongest positive association was with Clostridium sartagoforme (β=0.37; SE=0.13; 
q=0.02) and the strongest negative association with Bacteroides cellulosilyticus (β=−0.31; SE=0.11; q=0.02). Twenty-five microbial 
features had significant associations with incident T2D in statin users, of which only Bacteroides vulgatus (HR, 1.286 [1.136–1.457]; 
q=0.03) was consistent regardless of model adjustment. Finally, higher statin-associated T2D risk was seen with [Ruminococcus] 
torques (ΔHRstatins, +0.11; q=0.03), Blautia obeum (ΔHRstatins, +0.06; q=0.01), Blautia sp. KLE 1732 (ΔHRstatins, +0.05; q=0.01), and 
beta-diversity principal component 1 (ΔHRstatin, +0.07; q=0.03) but only when adjusting for demographic covariates.

CONCLUSIONS: Statin users have compositionally differing microbiotas from nonusers. The human gut microbiota is associated 
with incident T2D risk in statin users and possibly has additive effects on statin-associated new-onset T2D risk.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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Dyslipidemia and cardiovascular diseases are the 
leading causes of morbidity and mortality world-
wide.1 Inhibitors of HMG-CoA (3-hydroxy-3-meth-

ylglutaryl coenzyme A) reductase, also known as statins, 
are the most common pharmacotherapeutic tools used 
in their prevention and treatment.2,3 Statins’ primary func-
tion, that is, upregulation of hepatic LDL (low-density 
lipoprotein)-cholesterol receptors, has proven to be an 

effective way of lowering plasma LDL-cholesterol and 
consequently the risk for cardiovascular diseases.3 How-
ever, to some, treatment comes with side effects in the 
form of an increased risk for type-2 diabetes (T2D), 
among other complications.
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The risk for statin users to develop T2D ranges 
between 9% and 45% according to meta-analyses of 
observational studies and randomized controlled trials.4,5 
A wide variety of candidate mechanisms for explaining 
the pathology of statin-associated new-onset diabe-
tes (SANOD) have been presented, including induced 
hepatic gluconeogenesis,6 disturbed glycemic control in 
hepatocytes,7 insulin resistance via inhibited signal trans-
duction,8–10 and impaired insulin secretion via multiple 
intracellular mechanisms.9,11–13 An epigenetic component 
via microRNA signaling has also been presented.14

The term microbiota entails the community of bacte-
ria, archaea, viruses, fungi, and other single-cell organ-
isms inhabiting our bodies, as well as their vast collective 
of genes, which complement the metabolic capabilities 
of the human body.15 Recent advances in technology and 
methodology surrounding microbiota have presented 
novel ways to evaluate health associations and risk fac-
tors.16,17 Most of this research has focused on the fecal 
gut microbiota, the microbes living in the lumen of the 
large intestine, which acts as a proxy for the microbial 
constituents living on the epithelial lining of the intestine. 
Given its dynamic nature, the gut microbiota holds poten-
tial for explaining some of the variability in the develop-
ment of SANOD.

Increasing evidence indicates that the human gut 
microbiota is a contributor to interindividual variation in 
statins’ therapeutic effects.18 It has also been connected 
with overall development of T2D in the general popula-
tion.19 However, knowledge on the associations between 
the human gut microbiota and T2D risk in statin users 
specifically, and whether the gut microbiota modulates 
this risk, is still limited. Statin use has been noted to be 
associated with higher richness and lower dysbiosis of 
the gut microbiota via lower occurrence of a proinflam-
matory enterotype.20 This, in turn, is reflected in lower 
levels of systemic inflammation, the role of which in T2D 
pathophysiology is of increasing interest.20,21 Also, micro-
bially derived metabolites, mainly short-chain fatty acids, 
have been shown to reduce hepatic fat content22 and 
improve peripheral insulin sensitivity.23,24 Statins have 
been previously associated with an increased potential to 
produce short-chain fatty acids.25 Adverse associations 
have also been presented, where statin use in the pres-
ence of microbial endotoxins has been shown in animal 
models to induce insulin resistance in adipose tissue.26

While statins increase the risk of new-onset diabetes, 
there seems to be potential for alleviating or aggravating 
this risk via the gut microbiota, although direct study of 
these associations in statin users is still scant. Thus, we 
set out to assess whether there are microbial compo-
nents that associate with SANOD risk. Our aims for this 
study were the following: (1) to analyze cross-sectional 
associations of statin treatment with human gut micro-
biota diversity and composition at the population level. 
(2) To analyze whether these microbial associations are 
connected with incident T2D risk during follow-up. (3) To 
prospectively analyze possible shifts of SANOD risk in 
the presence of these microbial features.

METHODS
Resources needed for the replication of this study are listed 
in Major Resources Table in the Supplemental Material. Data 
described in the article are available from Finnish Institute for 
Health and Welfare Biobank based on a written application as 
instructed on the website of the Biobank (https://thl.fi/en/
web/thl-biobank). The corresponding author had full access to 
all the data in the study and took responsibility for their integrity 
and analysis. The data are not freely available because they 
contain information that could compromise research participant 
privacy/consent. Code used in the analyses is openly available 
at 10.5281/zenodo.7503450. FINRISK 2002 was approved 
by the Ethical Committee on Epidemiology and Public Health 
of the Helsinki and Uusimaa Hospital District (decision num-
ber 87/2001), and the participants gave informed consent. 
The study was conducted according to the World Medical 
Association’s Declaration of Helsinki on ethical principles.27

Cohort and Sample Selection
The FINRISK surveys, conducted every 5 years by the Finnish 
Institute for Health and Welfare from 1972 until 2012, were 
designed to provide population-level information on risk fac-
tors for noncommunicable diseases, health behavior, and their 
changes in adult Finns between the ages 25 and 74.28

This study utilized data from the FINRISK 2002 cohort, 
which consisted of 8738 individuals. The sample for the cur-
rent study consisted of 5755 individuals after exclusions. The 
following exclusions were used: individuals with missing fecal 
samples, missing data on statin use, no permission for register 
access from the participant, pregnant women and individuals 
who had used antibiotics within 6 months before the baseline 

Nonstandard Abbreviations and Acronyms

HDL high-density lipoprotein
HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A
LDL-C low-density lipoprotein cholesterol
SANOD statin-associated new-onset diabetes
T2D type 2 diabetes

Highlights

• Statin use associates with compositional differ-
ences in the gut microbiota at the population level.

• Incidence of new-onset type-2 diabetes in statin 
users is linked with gut microbiota composition.

• Higher [Ruminococcus] torques, Blautia obeum, and 
Blautia sp. KLE 1732 abundances associate in an 
additive manner with higher risk for statin-associ-
ated new-onset type-2 diabetes.
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investigation. A flowchart for the sample selection is shown in 
Figure S1. The antibiotics used in this filtering included antibac-
terials for systemic use (ATC: J01), antimycotics for systemic 
use (ATC: J02), antimycobacterials (ATC: J04), and antivirals 
for systemic use (ATC: J05).

Prospective analyses for SANOD risk in statin users were 
done in 2 subsamples. The first subsample included T2D-free 
individuals at baseline and individuals who used statins at base-
line or started using them during follow-up (n=1823). The sec-
ond subsample for SANOD-analyses consisted of individuals 
who used statins and were T2D-free at baseline and those who 
never used statins and were T2D-free at baseline (n=3922). 
Flowcharts for subsamples’ sample selections are displayed in 
Figure S1.

Follow-Up
In Finland, each resident is assigned a unique personal iden-
tity number at birth or after immigration, which ensures reli-
able linkage to electronic health records. The Finnish national 
health registers ensure practically 100% coverage of all major 
health events and deaths over an individual’s lifetime. The 
participants of the current study have been followed through 
December 31, 2019 (17+ years from baseline). Only those 
few participants who had moved permanently abroad before 
the disease event or December 31, 2019 were lost to follow-
up. The reliability of the Finnish health care registers has been 
documented.29,30

Baseline Data Collection, Covariates, and Other 
Variables
The FINRISK 2002 study utilized several different data col-
lection methods. Individuals filled in a questionnaire at home 
answering various socioeconomical and lifestyle-related ques-
tions. They also participated in a health examination where 
the questionnaire was inspected, anthropometric features and 
blood pressure were measured, and a blood sample was drawn 
by trained health care practitioners. Fecal samples were col-
lected from willing donors. Medical history and information on 
drug use were collected from national registries and linked with 
pseudonymized FINRISK study identifiers with the help of the 
previously mentioned national personal identity numbers.

Statins included HMG-CoA reductase inhibitors (ATC: 
C10AA) and combinations of various lipid modifying agents 
(ATC: C10BA) as listed in the ATC/DDD Index of the WHO.31 
Covariates used included common gut microbiota perturbing 
factors that were baseline age, sex, smoking, medications, 
prevalent diseases, and body mass index (BMI).32,33 An indi-
vidual was flagged as a smoker if they had smoked within 
6 months of baseline investigation. Adjusted medications 
included dummy variables for use of blood pressure medication 
(reported on the questionnaire), psychotropics (ATC: N05 and 
N06), and metformin use (ATC: A10BA02). An individual was 
flagged as a medication user if they had a registered purchase 
within 4 months before baseline investigation, and at least 3 
separate purchase events. Adjusted prevalent diseases were 
coronary heart disease, ischemic stroke, and T2D. Metformin 
and prevalent T2D were excluded from adjustment in prospec-
tive analyses of SANOD risk. BMI was calculated as weight 
(kg) divided by height (m) squared. All continuous covariates 
were converted into Z scores.

Fecal Samples
Those willing to donate a fecal sample were given a sampling 
kit alongside detailed instructions and a prepaid postal parcel 
for returning the samples via mail. Samples were collected into 
50-mL Falcon tubes without a stabilizing solution and mailed to 
the laboratory under typical Finnish winter conditions between 
Monday and Thursday. The samples were frozen immediately 
upon reception and stored unthawed at −20 °C until sequenc-
ing in 2017.

Sequencing was performed at the University of California, 
San Diego. Microbial DNA was extracted using a MagAttract 
PowerSoil kit (Qiagen). Library preparation was carried out 
using a miniaturized version of the Kapa HyperPlus Illumina-
compatible preparation kit (Kapa Biosystems). Samples were 
normalized to 5 ng with an Echo 550 acoustic liquid handling 
robot followed by enzymatic fragmentation, end-repair, and 
adapter-ligation reactions performed with a Mosquito HV liq-
uid handling robot (TTP Labtech, Inc). PCR-amplified and bar-
coded libraries were quantified using PicoGreen assay.

Sequencing adapters were based on the iTru protocol34 and 
sequencing itself was performed with an Illumina Hi-Seq 4000 
(Illumina Inc.) for 150-bp reads. Average read count per sample 
was 900 000 reads. After removing human DNA reads by map-
ping them against the reference genome assembly GRCh38 
using Bowtie2,35 the reads were classified taxonomically using 
SHOGUN v1.0.536 by mapping them against bacterial and 
archaeal genomic sequences found in the NCBI RefSeq data-
base Version 82 (May 8, 2017).

To quantify differences in community composition, we used 
Shannon index for alpha-diversity.37 Aitchison distance for 
beta-diversity,38 and centered log-ratio (CLR) transformed rela-
tive abundances for species-specific differential abundance 
comparisons. Relative abundances were calculated by scaling 
the raw counts to the total sum of reads. Alpha-diversity was 
calculated from unfiltered species-level raw counts. To exclude 
very rare taxa, the species-specific analyses were filtered to a 
core microbiota that included species with a minimum of 1% 
prevalence and a minimum of 0.01% relative abundance. The 
Aitchison distances were also broken down into principal com-
ponents, of which the first 2 were chosen to be used in down-
stream analyses. Finally, all microbiota features were converted 
into Z scores before analysis when they were used in a predic-
tor capacity.

Final preparation and analysis of the microbial counts data 
was done in R version 4.1.3.39 Central packages were phyloseq 
(1.38.0), vegan (2.3.2), and microbiome (1.16.0).40–42

Traditional Statistical Methods
Covariate effects in statistical models were evaluated in a 
stepwise manner. We report the results for demographically 
adjusted and fully adjusted models. Fully adjusted models 
included demographic variables (ie, baseline age and sex) and 
variables for BMI, smoking, medications, and prevalent condi-
tions for cardiovascular disease, T2D, and stroke. The variables 
for metformin and prevalent T2D were removed from covariates 
in the analyses for SANOD. To account for the large amount of 
tests in our analyses, we corrected all P values of the analyses 
for multiple testing by using the Benjamini-Hochberg false dis-
covery rate procedure.43 The significance threshold was set at 
an false discovery rate–corrected q value of 0.05.

https://www.ahajournals.org/doi/suppl/10.1161/ATVBAHA.123.319458
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Univariate linear regression was used to assess alpha-diver-
sity associations. Analysis of similarities was used to apply a 
statistical test to assess whether Aitchison distances between 
statin users and nonusers differed.44 Permutational multivari-
ate ANOVA was used, with the number of permutations set to 
999, to determine the proportion of variance each gut micro-
biota feature explains in the Aitchison-distances between 
samples.45 A visual inspection of the ordination of the first 2 
principal components of Aitchison-distances indicated possible 
clustering between groups for statin users versus nonusers, 
which was tested for statistical significance with the factorfit-
function from the vegan R-package version 2.6.2.42 These prin-
cipal components were also used as predictors in downstream 
analyses of SANOD risk. General multivariate regression was 
used for species-specific associations, as implemented in the 
MaAsLin2 R-package Version 1.10.0.46 Cox regression was 
used in all prospective analyses.

The assumption of permutational multivariate analysis of 
variance for homogeneity of variances was checked. The pro-
portionality of hazards assumption for each Cox model was 
tested with a Schoenfeld test, and the results were verified by 
inspecting residual plots.

Machine Learning Methods
For applicable analyses where the final tested outcome was 
binary (ie, analysis for SANOD), we used extreme gradi-
ent boosting utilizing XGBoost R library (Version 0.90.0.2).47 
Samples were randomly partitioned into a training set (70%) 
and a validation set (30%). Training set was used for discovery 
and validation set for evaluation. Prediction models we devel-
oped and tested using simple cross-validation with 5 iterations 
of the training set. The optimal models were then tested in the 
validation set, where their performance was assessed.

Incident T2D was set as the label. Included covariates were 
the same sets of variables as in the fully adjusted traditional 
counterpart of the analysis. Conventional covariates were 
assessed with and without the microbiome features. Microbial 
features were preselected using the same filtering thresholds 
as in traditional taxa-specific analyses. Before ML-step, micro-
bial relative abundances were CLR-transformed. For the final 
assessment, we extracted the top 25 species contributing to 
information gain in the validation set and compared their over-
lap with the results of the traditional analysis results.

Resampling strategy included 5-fold cross-validation, which 
was performed in a stratified manner (based on participant 
sex). Division to training and testing sets was performed before 
hyperparameter optimization, so there was no data leakage. 
Hyperparameters were optimized among 10 randomized grids 
of the parameter space. Both, tree-based and linear models were 
assessed. Other optimized hyperparameters included minimum 
weight, number of leaves of each tree, subsample ratio of the 
training sample, and percentage of features used for building 
each tree. The following ranges were considered for hyperpa-
rameters: Eta: 0.001 to 0.3; gamma: 0.1 to 5; max_depth: 2 to 
10; scale_pos_weight: 1 to 12; min_child_weight: 1 to 10; sub-
sample: 0.2 to 0.8; nrounds: 50 to 5000; and colsample_bytree: 
0.2 to 0.9. Binary logistic regression was used as an objective 
function. Model performance was evaluated using binary classi-
fication error rate. Error rate was calculated as nwrong cases

nall cases
. For the 

purpose of prediction, values >0.5 were considered as positive 

instances, and values <0.5 as negative instances. The number 
of decision trees for the final models were set to 100 (default) 
and learning rate to 0.1. These parameters were not optimized 
and remained the same for all runs.

The values for optimized parameters of the models were the 
following. For analysis of all covariates and microbiota learner 
was tree-based, for example, consisted of tree ensemble. 
Maximal number of leaves for each tree (max_depth) was set to 
5, and minimal weight (min_child_weight) to 1.04. Subsample 
ratio of the training sample (parameter subsample) was set to 
0.705, and percentage of features used for building each tree 
(colsample_bytree) to 0.706. For the analysis of all covariates 
without microbiota, the learner was of linear type (gblinear), for 
example, the model consisted of weighted sum of linear func-
tions. Subsample ratio of the training sample (parameter sub-
sample) was set to 0.711.

RESULTS
Descriptive Statistics
Baseline statin users were significantly older and con-
sisted of more men compared with nonusers. Smoking 
was less frequent among statin users. Statin users were 
also more frequently users of antihypertensive drugs, 
metformin, and psychotropics. Systolic blood pressure 
was higher in statin users. Cholesterol levels (ie, total-, 
non-HDL-, LDL-, and HDL [high-density lipoprotein] cho-
lesterols) and apolipoprotein Apo B and Apo A1 levels 
were all lower in statin users. Plasma triglyceride levels 
were higher in statin users than in nonusers. The preva-
lence for coronary heart disease, stroke, and T2D were 
greatly elevated in statin users when compared with 
nonusers. A detailed description of the main sample can 
be found in the Table. The descriptive statistics for sub-
samples are listed in Table S1.

Cross-Sectional Associations With Statin Use
Microbiota alpha-diversity was not significantly higher in 
statin users versus nonusers (mean Shannon-diversity: 
3.47±0.42 versus 3.43±0.42; q=0.14). For beta-diversity, 
statin use associated significantly with the first 2 PCs of 
Aitchison distances (q=0.001, Figure 1). Additionally, a 
significant analysis of similarities result (analysis of simi-
larities: R=0.07; q=0.01) indicated that statin users and 
nonusers had compositionally differing gut microbiotas. 
Permutational multivariate analysis of variance tests 
yielded significant results in both demographically and 
fully adjusted configurations (R2=0.02%; q=0.02, fully 
adjusted), including a significant interaction between 
baseline age and statin use (R2=0.02%; q=0.03, fully 
adjusted), meaning that baseline age and statin use both 
individually and together may be associated with com-
positionally different microbiotas irrespective of other 
microbiota influencing covariates. However, a significant 
dispersion test (F=10.14; P=0.004) signaled that these 

https://www.ahajournals.org/doi/suppl/10.1161/ATVBAHA.123.319458
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results might be also due to a heterogenous dispersion 
effect between groups. No interaction between sex and 
statin use was detected.

In species-specific analyses, we identified 26 spe-
cies that associated significantly with statin use in the 
demographically adjusted model (Table S2) and 13 spe-
cies in the fully adjusted model (Figure 2; Table S2). Of 
these, the strongest positive association with statins in 
the fully adjusted model was for Clostridium sartagoforme 
(β=0.37; SE=0.13; q=0.02) and the strongest negative 
association was for Bacteroides cellulosilyticus (β=−0.31; 
SE=0.11; q=0.02).

Prospective Statin Type-2 Diabetes Risk 
Analyses

Type-2 Diabetes Risk Analyses in Statin Users
Incidence of T2D was significantly higher among statin 
users in a χ2 test (16.3% versus 5.2%; q=1.66×10−40). 

However, alpha-diversity did not associate with incident 
T2D risk in neither the demographically nor fully adjusted 
Cox models. In beta-diversity analyses PC1 had a statis-
tically significant positive (higher risk) association with 
incident T2D in both the demographically (HR, 1.30 
[1.15–1.46]; q=2.10×10−4) and the fully adjusted (HR, 
1.20 [1.07–1.35]; q=9.62×10−3) models (Figure S2; 
Table S3).

Species-specific analyses of the gut microbiota with 
the demographically adjusted model revealed 24 spe-
cies with significant associations (Figure S2; Table 
S3). The strongest association with lower T2D risk was 
observed for Butyrivibrio crossotus (HR, 0.80 [0.71–0.90]; 
q=0.01) and strongest association with higher risk was 
observed for Bacteroides vulgatus (HR, 1.34 [1.18–1.52]; 
q=1.91×10−3). The fully adjusted model identified 1 spe-
cies, namely B. vulgatus (HR, 1.29 [1.14–1.46]; q=0.03).

Additionally, of the 24 significant species found in Cox 
regression models 4 were found in the top 25 micro-
biome features of a fitted XGBoost model, 3 of which 
were in the top 3. These species, in descending order of 
information gain, were Bacteroides stercoris, [Clostridium] 
citroniae, Clostridium saccharobutylicum, and B. vulgatus.

Type-2 Diabetes Risk Analyses in a Combined 
Sample
To determine whether the significant gut microbiota 
features observed in incident T2D analyses in statin 
users modified the inherent T2D risk associated with 
statin use, we assessed their influence on statin HR in 
a sample where statin nonusers were added and follow-
up statin users were removed. Follow-up statin users 
were left out due to their inclusion causing a major viola-
tion of the proportionality of hazards assumption. These 
combined-sample analyses showed no significant asso-
ciations between alpha-diversity and incident T2D. Nei-
ther did alpha-diversity shift SANOD risk (interpreted as 
ΔHRstatins of >±0.05).

For beta-diversity, PC1 displayed a significant associ-
ation with incident T2D in the demographically adjusted 
(HR, 1.20 [1.05–1.37]; q=0.03) but not in the fully 
adjusted model (Figure 3; Table S4). No significant inter-
actions were detected. SANOD risk increased by 0.07 
from 4.31 to 4.38 in the demographically adjusted model 
once PC1 was added as a covariate.

In species-specific analyses we found 14 of the origi-
nal 24 significant species that were associated with inci-
dent T2D risk in the demographically adjusted model 
(Figure 3; Table S4). The fully adjusted model found no 
significantly associated species. The strongest asso-
ciation with lower risk was observed for Ruminococcus 
champanellensis (HR, 0.78 [0.69–0.88]; q=1.31×10−3, 
demographically adjusted) and the strongest association 
with higher risk for Coprococcus comes (HR, 1.25 [1.08–
1.44]; q=7.69×10−3, demographically adjusted).

Out of the 14 significantly associated species, seven 
modified SANOD risk by at least ±0.05, of which in 3 

Table. Descriptive Statistics for the Main Sample Divided 
Into Statin Users and Nonusers at Baseline

 Statin users 
Statin 
 nonusers P value 

n 393 (6.8%) 5362 (93.2%) -

Baseline age, y 61.06±7.68* 48.81±12.79* 4.44×10−113*

Men, n 220 (56.0%)* 2523 (47.1%)* 6.26×10−4*

Current smoking, n 55 (14.0%)* 1309 (24.4%)* 3.52×10−6*

Antihypertensive drugs 
use, n

200 (50.9%)* 666 (12.4%)* 3.45×10−94*

Metformin use, n 33 (8.4%)* 52 (1.0%)* 4.87×10−32*

Psychotropics use, n 48 (12.2%)* 340 (6.3%)* 7.40×10−6*

BMI, kg/m2 28.89±4.35* 26.84±4.64* 8.44×10−18*

SBP, mm Hg 143.91±20.91* 135.68±20.04* 2.73×10−13*

DBP, mm Hg 80.32±11.16 79.43±11.19 0.13

Total cholesterol, mmol/l 5.11±0.97* 5.65±1.06* 5.31×10−24*

Non–HDL cholesterol, 
mmol/l

3.74±0.94* 4.14±1.09* 3.86×10−15*

LDL-cholesterol, mmol/l 2.94±0.72* 3.43±0.90* 4.14×10−32*

HDL-cholesterol, mmol/l 1.37±0.36* 1.51±0.41* 8.14×10−13*

Triglycerides, mmol/l 1.71±1.07* 1.40±0.93* 5.04×10−8*

Apo B, g/L 0.95±0.20* 1.00±0.25* 9.78×10−6*

Apo A1, g/L 1.49±0.27* 1.54±0.28* 3.28×10−4*

CRP, mg/L 2.30±3.55 2.38±4.45 0.69

Prevalent CHD, n 100 (25.5%)* 57 (1.1%)* 2.07×10−180*

Prevalent stroke, n 23 (5.9%)* 44 (0.8%)* 2.80×10−19*

Prevalent diabetes, n 50 (12.7%)* 109 (2.03%)* 9.60×10−36*

Descriptive statistics for the main sample after exclusions (n=5755). Values 
for continuous variables are means±SD and for categorical variables the number 
of observations and their proportion in their respective population in parentheses. 
Groups were compared using Welch t test for continuous variables and for cat-
egorical variables using χ2 test. BMI indicates body mass index; DBP, diastolic 
blood pressure; CHD, coronary heart disease; CRP, C-reactive protein; HDL, 
high-density lipoprotein; LDL, low-density lipoprotein; and SBP, systolic blood 
pressure.

*P values smaller than the significance threshold (P<0.05).
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cases the direction of ΔHRstatins was in harmony with the 
direction of the HR of the species itself (ie, a species that 
associated with a higher/lower risk also had a positive/
negative ΔHRstatins, respectively). These 3 species were 
[Ruminococcus] torques (HR, 1.17 [1.03–1.32]; q=0.03, 
ΔHRstatins, +0.11), Blautia obeum (HR, 1.22 [1.06–1.41]; 
q=0.01, ΔHRstatins, +0.06), and Blautia sp. KLE 1732 (HR, 
1.24 [1.09–1.41]; q=0.01, ΔHRstatins, +0.05). Diabetes-
free survival curves for the demographically adjusted 
microbial features that were significant with a harmoni-
ous ΔHRstatins are displayed in Figure 4.

DISCUSSION
Our study is the first to assess the impact of statin 
medication on the human gut microbiota in an epidemi-
ological setting with a large population-based sample 
using shotgun sequencing. It supports previous find-
ings on the connections between statin treatment and 
a differing gut microbiota composition. Additionally, we 
uncovered novel associations between the inherent 

T2D risk associated with statin use and specific gut 
microbiota features that associate with risk in an addi-
tive manner. Especially notable are the associations 
with increased risk for statin-associated new-onset 
type-2 diabetes of [Ruminococcus] torques, B. obeum, 
and Blautia sp. KLE 1732.

Our observations that statin use associated with 
a compositionally differing gut microbiota and was 
approaching significance in its association with higher 
alpha-diversity, are in line with previous findings, although 
it is important to note that that our results for beta-diver-
sity might have been influenced by heterogenous dis-
persion of sample variances between statin users and 
nonusers.1,20,48,49 Higher richness and diversity of the 
gut microbiota has been associated inversely with BMI 
and triglyceride levels as well as positively with HDL-
cholesterol in a cohort of 893 individuals.50 However, on 
the species level our study gives mixed results between 
beneficial and detrimental taxa. Statin use was associ-
ated negatively with multiple cellulolytic and polysaccha-
ride utilizing symbionts such as B. cellulosilyticus51 and 

Figure 1. Ordinations of beta-diversity principal components 1 and 2 for statin users and nonusers.
Ordination plot based on the first 2 principal components based on Aitchison distances. Statin users are indicated with purple. The false 
discovery rate corrected P values (Q value) for a factorfit-test between the groups is displayed above the plot. Both ellipsoids depict the spread 
of 95% of the respective groups according to Student t-distribution. The amount of variance explained by each respective principal component 
is marked on their axis labels. PC indicates principal component.
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Bacteroides thetaiotaomicron.52,53 It was also positively 
associated with both potential pathogens and symbionts 
such as multiple Clostridium species and Bifidobacterium 
pseudolongum, a potentially therapeutic bacterium for 
metabolic disorders.54 These results might be a feature 
of our cross-sectional setting, where perceived positive 
associations of statin medication on the gut microbiota 
are difficult to disentangle from the negative underlying 
conditions of the participants needing statin medication.

Our prospective results that showed an association 
between gut microbiota composition of statin users and 
higher risk for incident T2D, irrespective of covariate 
effects, indicate that the gut microbiota plays a role in 
incident T2D risk. Noteworthy are the identified multi-
ple species that modified the future risk of developing 
SANOD over a lengthy 17+ years long follow-up time. 
Many of these same species were identified as being 
connected with overall T2D risk in a similar manner in a 
study by Ruuskanen et al55 in this same cohort. Especially 
noteworthy were the Blautia and Ruminococcus species 
in our results, which were associated with higher risk 
for future SANOD. These same 2 species were among 
the top microbial features contributing to higher incident 
T2D risk in Ruuskanen et al’s analyses in an eastern 
Finnish subsample of 3871 individuals. Blautia and Rumi-
nococcus have been identified as 2 of the few genera 
that consistently across studies associate with a higher 
T2D risk.19 Our study adds to this knowledge by suggest-
ing that Blautia, along with [Ruminococcus] torques, might 
also have additive links with the inherent risk of statin 
medication for developing T2D. Unfortunately, our find-
ings did not survive full adjustment, hinting that dysbiosis 
of the microbiota may also play a role. Alternatively, as 

explained above, adjustment for obesity and factors cor-
related with it may be overadjustment, that is, adjusting 
for factors that are along the same biological pathway.

The taxonomic statuses of some Ruminococcus spe-
cies, including [Ruminococcus] torques, have been dis-
puted and have since been renamed as members of the 
novel Mediterraneibacter genus.56 Findings of previous 
studies on Ruminococcus and T2D are mixed. The major-
ity of studies has reported consistently associations 
with increased risk between T2D and the Ruminococ-
cus genus, although when moving from the genus-level 
to the species-level results are inconclusive.19 As noted 
above, many Ruminococcus species have been renamed 
as members of the novel Mediterraneibacter genus and 
thus, species-specific variation is a probable explana-
tion for the mixed results. Additionally, varying outcomes 
have been hypothesized to be also due to heterogene-
ity of the assessed exposures (ie, effects of metformin 
treatment versus bariatric surgery, etc.).19 Indeed, Ruus-
kanen et al55 found that R. champanellensis, the species 
with the strongest association with lower incident T2D-
risk in our study, was negatively associated with T2D 
risk in their eastern Finnish subsample. It is notewor-
thy, however, that this was only the case if participants 
who developed T2D in the first 2 years were excluded. 
Also, a human gut enterotype where Ruminococcus was 
among the top contributors has been noted to be more 
prevalent in individuals with lower BMI.20 In our results, 
multiple members of the Ruminococcus genus associ-
ated with a lower risk for incident T2D by themselves 
but shifted SANOD risk toward higher risk. Given the 
available information, detailed study of the relation of 
genera Ruminococcus and Mediterraneibacter and their 

Figure 2. Statistically significant associations of bacterial species with statin medication.
Forest plot displaying statistically significant regression coefficients along with their SEs (q<0.05) of individual species with statin use in 
general multivariate regression models that were adjusted for baseline age, sex, body mass index, smoking, antihypertensive drugs, metformin, 
psychotropics, prevalent coronary heart disease, prevalent ischemic stroke, and prevalent type-2 diabetes. All continuous predictors were 
converted to Z scores and individual species relative abundances were centered log-ratio-transformed. The effect size is the scaled unit change 
of centered log-ratio transformed relative abundances of the species. Q values: false discovery rate corrected P values.
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underlying species with SANOD risk and overall T2D 
risk is warranted.

In this study, we utilized shallow-shotgun sequenced 
whole metagenomic data, which gives us far better 
resolution for taxa identification and classification, as 
opposed to the often-used 16S ribosomal RNA-based 
sequencing methods, especially on the species level.57 
This in turn increases confidence in species-specific 
results. Another major strength of our study is the large 
and population-based study sample, which is still a rare 
feature for microbiota studies. This, coupled with a 17+-
years long follow-up period, gives us the sufficient statis-
tical power to uncover prospective microbiota-phenotype 
associations that might not be possible to detect with 
smaller sample sizes. It is important to note that many 
of the associations we detected started to emerge only 

after the 5-year mark of follow-up, similar to findings of 
Ruuskanen et al.55 Another strength of our study is the 
reliable end point data enabled by Finnish nationwide 
health care registers that ensure practically a 100% cov-
erage of all major health events.29

Despite its strengths, our study has also limitations. The 
cross-sectional results do require confirmation and clarifi-
cation in prospective settings. Another limitation, stemming 
from the largely cross-sectional nature of the FINRISK 
studies, is the lack of longitudinal microbiome data. Also, 
due to being register-based purchase data, compliance 
with prescribed medications is unknown. Additionally, 
although statins can be evaluated broadly as one overarch-
ing drug group, different statin types may display differing 
effects. Also, various drugs including ezetimibe, fibrates, 
ACE-inhibitors, and angiotensin receptor blockers have 

Figure 3. Sample-wide associations of gut microbiota features with type-2 diabetes (T2D) risk.
Forest plot displaying associations of gut microbiota features with incident T2D risk in the whole sample using Cox regression. HR is depicted 
with a point and the 95% CI by bars. Results from demographically adjusted models (baseline age and sex) are indicated by gray and those 
from fully adjusted models (demographic covariates, body mass index, smoking, antihypertensive drugs, psychotropics, prevalent coronary heart 
disease, and prevalent ischemic stroke) are indicated by black. All continuous predictors were converted into Z scores before analysis and 
species relative abundances were centered log-ratio–transformed before Z-conversion. Beta-diversity was quantified using Aitchison distance. 
Statistically significant results (q<0.05) are indicated with an asterisk (*). Q values: false discovery rate corrected P values. PC indicates 
principal component.
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been noted to ameliorate insulin sensitivity, and thus may 
act in favor of reducing incident T2D when taken in com-
bination with statins.58 It is therefore necessary to supple-
ment our findings with analyses for each commonly used 
statin type separately and in combination with the listed 
drug groups. Finally, since geographic location, culture, 
ethnicity, and many other environmental factors strongly 
influence the gut microbiota, care should be taken when 
generalizing these results to other populations.59

In conclusion, our study found novel associations 
between statin use and the gut microbiota. We identified 
microbiota features that potentially influence the risk for 
statin-associated new-onset type-2 diabetes, thus offer-
ing tools to study and understand pathogenesis of the 
disease and help defining a health-promoting gut micro-
biota profile in the future. Our study makes a meaning-
ful contribution to the collective understanding of how 
statin medication and the gut microbiota interact with 
each other and suggests more precise ways to hopefully 
help refine clinical practice in a way that decreases side 
effects associated with statin use.
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