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Abstract

Modelling of the development of facial morphology during childhood and adolescence is

highly useful in forensic and biomedical practice. However, most studies in this area fail to

capture the essence of the face as a three-dimensional structure. The main aims of our

present study were (1) to construct ageing trajectories for the female and male face between

7 and 17 years of age and (2) to propose a three-dimensional age progression (age

-regression) system focused on real growth-related facial changes. Our approach was

based on an assessment of a total of 522 three-dimensional (3D) facial scans of Czech chil-

dren (39 boys, 48 girls) that were longitudinally studied between the ages of 7 to 12 and 12

to 17 years. Facial surface scans were obtained using a Vectra-3D scanner and evaluated

using geometric morphometric methods (CPD-DCA, PCA, Hotelling’s T2 tests). We

observed very similar growth rates between 7 and 10 years in both sexes, followed by an

increase in growth velocity in both sexes, with maxima between 11 and 12 years in girls and

11 to 13 years in boys, which are connected with the different timing of the onset of puberty.

Based on these partly different ageing trajectories for girls and boys, we simulated the

effects of age progression (age regression) on facial scans. In girls, the mean error was 1.81

mm at 12 years and 1.7 mm at 17 years. In boys, the prediction system was slightly less suc-

cessful: 2.0 mm at 12 years and 1.94 mm at 17 years. The areas with the greatest deviations

between predicted and real facial morphology were not important for facial recognition.

Changes of body mass index percentiles in children throughout the observation period had

no significant influence on the accuracy of the age progression models for both sexes.

Introduction

The human face is a complex biological structure with fixed anatomical features (e.g. eyes,

nose, lips, chin). The spatial position and relative proportions of each facial component
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constitute some of our most distinguishing visible traits. These individual traits, together with

features that are characteristic of specific groups defined by age, sex or ancestry affiliation, are

essential for the identification of individual persons [1,2]. Some of the most difficult tasks in

forensic practice are connected with human age, especially with facial age estimation and age

progression. The need for accurate and objective methods for identifying individuals is related

to current socio-political developments. The reasons include an increasing number of cases

requiring age estimation in living individuals with no valid proof of date of birth and a large

number of missing persons. The identification of such subjects may clarify cases with signifi-

cant legal and social ramifications for individuals as well as for society [3].

According to the International Commission on Missing Persons (ICMP) [4], thousands of

persons go missing every year as a result of war conflicts, human rights violations, disasters,

organized violence, or refugee flows and migration. The International Organization for Migra-

tion (IOM) [5] estimates that one billion people—out of the seven billion people on the

planet—are on the move as migrants. A large proportion of the cases are missing children

younger than 18 years. According to the National Centre for Missing and Exploited Children

(NCMEC) [6], approximately 800,000 children are reported missing in the USA every year.

Missing Children Europe (MCE) [7], the European federation for missing and sexually

exploited children, reported 250,000 children missing every year in the EU, and, for example,

that only 46% of the children reported missing in 2015 were found within the same year.

According to Europol [8], at least 10,000 refugee children are unaccounted for after arriving in

Europe, with many feared to be exploited and abused for sexual or labour purposes. However,

national reports seem to suggest that the number of missing unaccompanied children could be

much higher and that many children go missing even before being registered by the authori-

ties. According to Lampinen et al. [9], in more than 50% of cases the child has been missing

for more than three years, and in a quarter of the cases the child has been missing for more

than a decade. Resolving cases where a child is missing for that length of time is complicated

by the fact that children change dramatically as they age, making their identification difficult

[10].

The age progression techniques routinely employed to assist in the location of missing per-

sons currently rely on the skills of trained forensic artists able to age a face without the direct

employment of scientific principles [11]. Most forensic artists use photographs of biological

relatives (e.g. parents, siblings, grandparents) to improve the prediction of the current facial

appearance [12,13]. In recent years, however, a number of face ageing systems have been pro-

posed. There are two main approaches to studying age progression: prototyping-based age

progression and modelling-based age progression [14]. Both these approaches require face

ageing sequences for the same person spanning a wide range of ages, which are very costly to

collect [15]. Most authors have used face ageing datasets consisting of photographs, for exam-

ple AGFW, CACD, FG-Net or MORPH [14–17]. Knowledge of age-stable features (i.e. moles,

diameter of the iris) is another factor that improves age progression images [18,19]. Neverthe-

less, the they are difficult to get right, subjective and variable even when a high degree of ana-

tomical and artistic modelling expertise is applied [20].

Progress in computer science and improvements to medical imaging technologies have led

to the development of computer systems for forensic facial reconstruction [21,22] or for three-

dimensional modelling of facial ageing using longitudinal [23,24] and cross-sectional data

[25].

Successful facial classification and recognition of individuals according to their age requires

knowledge about ontogenetic development [26]. Facial morphology changes with time and

does not progress at a uniform pace [27]. For example, puberty causes significant changes to

the face over a short period of time [28]. Facial shape changes associated with postnatal
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ontogenetic allometry are very similar among diverse regional groups, but subtle differences

are present. Developmental shape changes are less consistent in early ontogeny compared to

later ontogeny, during which developmental shape changes are very similar among different

regional groups [29]. Nevertheless, the specification of population-specific ontogenetic trajec-

tories is required.

The proportion of body fat is another factor that influences facial morphology and plays an

important role in facial shape variation of adolescents as well as adults. Generally, relative wid-

ening of the mid- and lower face, reduction of eye height, widening of the nose, thickening of

the lips and down-turning of the corners of the mouth occur with increasing body fat [30–32].

The optimal tool for measuring changes in adiposity during childhood is the body mass index

(BMI), either by itself or as the proportional (percentage) change in BMI, which can be

adjusted for sex and age [33].

Our previous study [23], which dealt with longitudinal facial growth of juveniles aged

between 12 and 15 years, was focused on ontogenetic trajectories and proposed an age progres-

sion model. In the present study we also evaluated facial morphology but widened the age

interval to span from childhood to adolescence (from 7 to 17 years of age). We supposed that

the widening of the interval to earlier and later stages of facial development would help to

identify certain ontogenetic traits typical for this period (i.e. the onset of puberty), which could

improve the age progression model. From a legal perspective, the interval included the age of

criminal liability (i.e. 15 years of age in Czech Republic). In the current study we also tested an

age regression model that could be helpful in comparing images of younger and older children

to determine whether they are the same individuals. Using a 3D stereophotogrammetric scan-

ning system in conjunction with modern geometric morphometric methods, we attempted to

simulate age-progressed effects on facial scans for both sexes based on the following partial

aims: (1) to confirm facial age changes (the effect of age) between particular categories (from 7

to 17 years of age) within each sex, (2) to evaluate facial ageing trajectories separately for boys

and girls over the whole observation period, (3) to propose an age progression (age regression)

model and describe age-related facial changes, and (4) to test the effect of changes in body

mass index (BMI) percentiles over the observation period on the age progression (regression)

model.

Subjects and methods

The study was approved by the Institutional Review Board of Charles University, Faculty of

Science on September 2011. The subjects were children from a high school in the town of

Kladno and an elementary school in Prague, Czech Republic, who were longitudinally studied

between 2009 and 2015. The complete study sample consisted of two longitudinal sets of 3D

facial surface scans from 7 and 17 years of age (the first group consisted of 23 girls and 17 boys

scanned once a year between 7 to 12 years of age; the second one consisted of 25 girls and 22

boys scanned once a year between 12 and 17 years of age, too). The parents of all the children

were informed about the 3D optical-scanning procedures and had expressed their consent

with the investigation. The inclusion criteria of the study were: Caucasian origin, absence of

craniofacial anomalies and facial trauma. The height and weight of each child were measured

every year. BMI was calculated as body weight (in kilograms)/body height^2, (in metres^2).

The percentile BMI graph can be used to accurately evaluate individuals’ BMI within the range

of variability of this index for the population of corresponding age. For the construction of

BMI percentile curves for the Czech population, the LMS method was used [34], based on the

Box-Cox power transformation. In the Czech Republic, subjects with BMI values between the

25th and the 75th percentile are considered to have normal weight. Values between the 75th
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and the 90th percentile signal overweight children, and the 90th percentile is the upper cut-off

threshold for identifying overweight children. Children whose BMI-for-age values are above

the 97th percentile are identified as obese. Those with BMI values below the 25th percentile

have a reduced body weight [35,36]. All statistical processing was performed in R 3.3.2. Signifi-

cance was decided at the level of α = 0.05.

Scanning and image processing

Acquisition of three-dimensional surface models was performed in two stages. First, each sub-

ject’s face was captured using a structured light-based optical scanner Vectra 3D (Canfield Sci-

entific Inc., Fairfield, NJ). The subjects were scanned sitting on a chair and asked to make a

neutral facial expression. The bundled software, Mirror PhotoTools (Canfield Scientific Inc.,

Fairfield, NJ), was used to control the scanner and export high-resolution surface models.

Next, these surface models were manually processed in RapidForm 2006 (INUS Technology

Inc., Seoul, South Korea). Manual removal of extraneous data (parts of the neck, ears and hair)

was carried out by a trained anthropologist. Finally, each surface was simplified to approx. 25k

vertices using the programme’s inbuilt tools.

Homology of surface representations

Homology of representation is crucial for any study in geometric morphometry. In triangle

meshes, such as those used in this study, homology translates to vertices with the same index,

describing the same anatomical feature. Unfortunately, surface representations generated by

neither the scanner nor RapidForm, exhibit the said property. We therefore used the proven

workflow CPD-DCA (coherent point drift—dense correspondence analysis) [37] to create

homologous representations of our facial surfaces.

CPD-DCA works in stages. The first stage requires a small set of landmarks placed on each

of the surfaces under study. We used a set of nine landmarks at the following locations:

exoR = right exocanthion, exoL = left exocanthion, enR = right endocanthion, enL = left endo-

canthion, N = nasion, Pn = pronasale, chR = right cheilion, chL = left cheilion and

Pg = pogonion. These landmarks were used for rigid pre-alignment only, which accelerated

convergence in the next stage.

For the next stage, a template surface (also known as the base mesh) had to be selected arbi-

trarily. An automatic non-rigid registration algorithm was used to fit that base mesh on to

each other surface (a technique known as floating surfaces). That fitting was then made tighter

by projecting the registered vertices of the base mesh on to the floating surface. This produced

a representation of the floating mesh, which was homologous to the base mesh.

Vertices that had been improperly matched in the previous stage were identified and

removed from all specimens in the sample. Finally, generalized Procrustes analysis (GPA) was

used to rigidly align the homologous surface representations. The resulting vertices in these

aligned surfaces are also known as quasi-landmarks and can be treated as ordinary landmarks.

Because of the still high number of quasi-landmarks (about 25k per specimen), dimension

reduction was performed using principal component analysis (PCA). This entire workflow is

implemented in Morphome3cs [38].

Visualization of ageing patterns

We constructed a progression of heat maps to visualize average year-to-year changes exhibited

by the faces under study. Thanks to the vertex homology that we created in the previous step,

it was possible to express the year of facial growth of a particular specimen by subtracting the

respective vertex coordinates from two specific measurements. To construct a visualization of
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the transition from a specific age to the next year, we averaged these vertex coordinate differ-

ences, motion vectors as it were, from all series (subjects) that were scanned at both these ages.

The visualization of each transition consists of two colour maps. One visualizes the length of

the said mean motion vectors. The other map shows the statistical significance at each vertex.

It is constructed by running Hotelling’s T2 tests on the motion vectors for a particular vertex

from all available specimens and mapping the resulting p-values to the vertices. If a particular

vertex exhibited a p-value of less than 0.05, we deemed its location as undergoing significant

ageing-related motion.

Facial averaging

We constructed a separate ageing trajectory for each sex. In the following paragraphs we

describe the creation of the ageing trajectory for one of the sexes; the other is constructed anal-

ogously. Our data consisted of two longitudinal datasets; one from 7 years to 12 and the other

from 12 to 17 years of age. The ageing trajectory was created by modelling principal compo-

nent scores.

We discovered that there is a considerable amount of noise in the ageing progression of

individual specimens. We therefore chose to simplify the ageing model in each longitudinal

group to a linear one. Specifically, we fitted a linear model to each series in a particular group

and obtained the group model by calculating the mean intercept and slope of the individual

models. This gave us two partial trajectories: one for the 7–12 years old group and one for 12–

17-year-olds. As the final step, we glued these two trajectories with a Hermitian cubic function

that smoothly interpolated between their centres.

For each sex, we constructed a plot which visualized individual ageing models and a global

compound model consisting of per-category mean models and a cubic interpolation.

Prediction using the fitted model

The model obtained in the previous subsection can be applied in the space of principal compo-

nent scores. We simulated ageing by transforming a specimen into principal component space

and adding the desired portion of the ageing trajectory. The resulting principal component

scores were transformed back to facial surfaces. Note that this model can be used not only for

forward prediction, as we have done, but also retrospectively.

We measured the magnitude of the error by comparing our predicted faces against the

ground truth. In each age group we took the youngest occurrence of each specimen and simu-

lated their ageing to the oldest known occurrence. That prediction was compared against the

known face by calculating distances between respective vertices, which was facilitated by vertex

homology. These prediction errors were averaged from all specimens in a group and plotted as

a colour map.

To determine whether our age progression framework provided useful data, we calculated

prediction error values for each specimen using the ageing algorithm and using no prediction

at all, using a non-aged face for the estimation. We compared the errors using a paired t-test to

ascertain if there was a systematic improvement of the prediction.

Prediction error due to BMI

We further examined the relationship between the mean prediction error and the severity of

obesity. As a measure of obesity we used the percentile of BMI within each age and sex group,

instead of raw BMI. The percentile of BMI was calculated using the software Rust.cz, which

outputs the BMI percentile for a given sex, age, weight and height based on a large study
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performed on the Czech population [39]. We constructed linear models of the prediction

error by BMI percentile and determined its significance using ANOVA for linear models.

Results

Superimposition of average faces between each age category was used to evaluate growth

changes in facial morphology in 7 to 17 years old girls and boys. In girls (Fig 1) the most evi-

dent growth changes occurred between 7 and 13 years of age. Generally, an overall elongation

of the face was observed between each age category up to the age of 13 years, especially in

terms of the lengthening of the forehead and the lower face. An increasing prominence of the

eyebrow ridges, nose tip and chin was observed from 7 to 14 years of age, with the greatest

accentuation between the ages of 10 and 14 years; after this age, no marked changes in these

parts were apparent. In the area of the cheeks (mostly their lateral parts), noticeable growth

changes were apparent up until the age of 14 years. The region around the eyes became deeper

in relation to the facial plane, except in the age categories from 14 to 16 years, where anterior

growth of the region under the eyes occurred. As for the lips area, marked changes (anterior

growth of both lips) were evident from 7 to 11 years of age. A deepening of the mentolabial

crease was observed up to the age of 13 years, especially in relation to the more prominent

lower lip and chin. Overall, the most significant growth changes occurred between the ages of

12 and 13 years—growth of the whole forehead region, the nose region and the mandible.

After the 13th year of age, the growth changes slowed down. Between the ages of 14 years and

16 years, no or minimal changes (anterior changes of lower eyelids and the mentolabial crease)

occurred, and after the age of 16 years, growth practically stopped. These results are apparent

from both the colour-coded maps and the statistical significance maps.

In boys (Fig 2) between 7 and 11 years of age, slight growth of the forehead, the nose, the

lips area and the chin was observed. The annual growth increases in these facial regions

remained rather steady. The most noticeable growth changes occurred after 11 years of age

and continued until the age of 14, especially in terms of anterior growth of the forehead and

eyebrow ridges, increase of nose prominence and enlargement of the downward projection of

the chin. In addition, a flattening of the cheeks (especially between 13 and 15 years) and deep-

ening of the orbit region in relation to more prominent eyebrow ridges occurred in all age cat-

egories and became more marked with age. After 14 years of age, facial growth slowly

decreased, but still persisted up until the end of the observation period. After 16 years, growth

changes were observed only in a minor part of the nose and chin.

The ageing trajectories for girls and boys were constructed in the principal components

(PC1, PC2) space to observe the ageing trends between the ages 7 and 17 years. A PCA scatter

Fig 1. Visualization of facial growth changes between the ages of 7 and 17 years in girls. Shell distances of

superimposed average facial forms of particular age categories are represented by colour deviation maps supplemented

with colour histograms (upper row). The most protrusive parts of the average faces are represented in red whereas

those which are situated deeper are coloured blue. The statistical significance of form differences was analysed per

vertex and coded in blue shades (significant differences) or grey (no significant difference) on the superimposed

average faces (lower row).

https://doi.org/10.1371/journal.pone.0212618.g001
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plot with ageing trajectories for girls is shown in Fig 3. The first two principal components

accounted for over 85.6% of the sample’s variability. The first principal component (PC1)

explained 79.2% of total variability and represents the facial ageing process. Towards positive

values of PC1, the age of individuals increased. PC2 explained 6.4% of total variability and was

associated with changes affected by facial concavity/convexity. Individual ageing trajectories of

girls between 7 and 12 years were longer than in 12–17-year-olds, indicating different growth

rates, which are better documented by the global ageing trajectory. The global ageing trajectory

indicated steady annual growth changes up to the age of 10 years. The most intensive and pro-

nounced facial growth changes occurred between 10 and 14 years of age and were much more

pronounced between 11 and 12 years. After 14 years of age, annual growth changes slowed

down rapidly.

For boys, an identical PCA scatter plot with ageing trajectories was constructed (Fig 4). The

first two principal components were responsible for over 83.5% of the sample’s variability. The

first principal component (PC1) explained 79.2% of total variability and represents the facial

ageing process. Towards positive values of PC1, the age of individual increased. PC2 explained

8.5% of total variability and was associated with facial concavity/convexity. In contrast to girls,

Fig 2. Visualization of facial growth changes between the ages of 7 and 17 years in boys. Shell distances of

superimposed average facial forms of particular age categories are represented by colour deviation maps supplemented

with colour histogram (upper row). The most protrusive parts of the average faces are represented in red whereas those

which are situated deeper are coloured blue. The statistical significance of form differences was analysed per vertex and

coded in blue shades (significant differences) or grey (no significant differences) on the superimposed average faces

(lower row).

https://doi.org/10.1371/journal.pone.0212618.g002

Fig 3. PCA scatter plot histogram for individual ageing trajectories (thin arrows), average ageing trajectories

(thick arrows) and the global ageing trajectory (green arrow) of girls from 7 to 17 years of age in the space of the

first (PC1) and second (PC2) principal components.

https://doi.org/10.1371/journal.pone.0212618.g003
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the individual ageing trajectories of the younger group (from 7 to 12 years) and the older one

(12 to 17 years) were similar in length. The global ageing trajectory showed the same annual

changes up until 10 years of age. The most significant growth occurred from the age 10 to that

of 14 years, with the maximum between 11 and 13 years of age. After the age of 14 years,

annual growth changes slowly decreased.

The age progression (regression) model used the global ageing trajectories to predict facial

morphology is shown in Figs 3 and 4. The model was tested by simulating ageing from 7 to 12

years and 12 to 17 years of age for both sexes separately. The mean error between real and pre-

dicted facial morphology at 12 and 17 years was visualized using superimposition and colour-

coded maps. In girls, the mean error at 12 years of age was 1.81 mm, and at 17 years it reached

1.7 mm. The smallest deviations (of less than 1 mm) between real and predicted faces in both

age categories were found in the glabellar area and the part around the nasal root (more pro-

nounced in 17-year-olds—up to the lateral parts of nose). The major part of the forehead,

together with the eyebrow ridges, the eyes and the whole orbital region, the nose (nasal ridge,

tip, alae), the zygomatic region and the lips were areas with error values of less than 2 mm. The

largest deviations (greater than 3 mm) were observed only in marginal parts of the whole face

(Fig 5). In boys, the mean error between real and predicted faces at 12 years of age was 2.0

mm, and at 17 years of age it reached 1.94 mm. The areas with the smallest deviations (in boys

set under 1.25 mm) were found in the glabellar area, lateral parts of the nose and part of the

zygomatic region in 12 years old boys. In the oldest age category, the smallest error was

observed just around the lateral parts of the nose. Areas with deviations of less than 2 mm

were, in both age categories, situated in the central part of the face, with the exception of the

eyelids, the nasal tip and a minor part of the eyebrow ridges in the older age category. The

observed mean error was slightly greater in both age categories of boys compared with girls,

but it was also situated only in marginal parts of the face (Fig 6).

For both age groups and sexes, our algorithm consistently improved the prediction com-

pared to using the non-aged face (p<0.001 in all cases). In males the prediction was improved

on average by 2.7 mm and 2.0 mm in 7 year-olds and 12 year-olds, respectively. Similarly, in

females the prediction was improved by 3.0 mm and 1.1 mm, respectively.

Fig 4. PCA scatter plot visualizing individual ageing trajectories (thin arrows), average ageing trajectories (thick

arrows) and the global ageing trajectory (green arrow) of boys from 7 to 17 years of age in the space of the first

(PC1) and second (PC2) principal components.

https://doi.org/10.1371/journal.pone.0212618.g004
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We compared changes of BMI percentiles throughout the observation period with each

individual’s mean error of the age progression (regression) model. Using ANOVA, no statisti-

cal significant effect of changing BMI percentiles on the mean error was found in either of the

sexes (p = 0.925 for boys, p = 0.0804 for girls). Nevertheless, according to the slope of the linear

regression line and the distribution of the individuals (Fig 7), some differences between the

two sexes were observed. In boys, changes of BMI percentiles during the observation period

were smaller compared to girls, and no influence was apparent according to the slope of the

regression line. In girls, the distribution of individuals indicated a shift to positive values of

changes of BMI percentiles. The slope of the regression line indicates that the magnitude of the

changes in BMI percentiles was inversely proportional to the mean error of the age-progres-

sion (regression) model. Nevertheless, the influence on the accuracy of the model was non-

significant.

Discussion

The understanding of changes in facial appearance caused by ageing is an essential point in

several forensic disciplines, including age estimation, facial age recognition and age

Fig 5. Visualization of mean error values obtained as the difference between the predicted and real facial surface

in 12-year-old girls (upper row) and 17-year-old girls (lower row), as represented by facial colour-coded maps

with a histogram (right).

https://doi.org/10.1371/journal.pone.0212618.g005
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Fig 6. Visualization of mean error values obtained as the difference between the predicted and real facial surface

in 12-year-old boys (upper row) and 17-years-old boys (lower row), as represented by facial colour-coded maps

with a histogram (right).

https://doi.org/10.1371/journal.pone.0212618.g006

Fig 7. Scatter plot visualizing the relationship between changes of BMI percentiles (x-axis) and individual mean

error (in mm) of an age progression (regression) model (y-axis) in three weight groups (<25,25–75 and>75 BMI

percentiles) supplemented with a linear regression line for girls (left plot) and one for boys (right plot).

https://doi.org/10.1371/journal.pone.0212618.g007
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progression (age regression). Accurate methods are required in cases where individuals are

undergoing criminal proceedings, are requesting asylum, in cases involving pedo-porno-

graphic materials or the ever increasing number of missing children [40–42]. Effective facial

age progression leading to the successful recovery of missing persons is important both for

families and for law enforcement organizations. The age progression technique is also highly

beneficial in different biomedical disciplines such as maxillofacial surgery or plastic surgery,

especially when it comes to the planning of surgery or other medical procedures.

Numerous studies dealing with facial age progression have recently been published, mostly

by computer vision scientists [13,43–46]. These authors usually assess the accuracy of their

algorithms based on mathematical similarity between an age-progressed image and a target

individual. Although this is well suited for their purposes, it is insufficient for determining the

effectiveness of age-progression techniques in the real world, which requires assessment by

human subjects [12]. Investigators of computational approaches are also limited by the num-

ber of high-resolution images depicting individuals over time, which are mostly two-dimen-

sional, and by the cross-sectional nature of their approaches [10,25]. The absence of 3D facial

models of missing persons that need to be age-progressed is another potential problem in real

forensic scenarios, and methods of 3D face reconstruction from 2D photographs or images

from video surveillance cameras have been intensively studied for many years [47–49]. In

forensic practice, most age progressions are still produced by specialized artists, and the reli-

ability of age progressions for the same individuals created by different artists can vary sub-

stantially [50]. It is important to develop more objective prediction methods that will be based

on natural growth patterns. For this reason, the present study is based on a longitudinal evalu-

ation, which allows to directly measure the mean error between real and predicted faces.

In a previous study [23] we found a strong influence of age on facial soft tissue morphology

between 12 and 15 years of age. We reported differences in facial morphology as well as diver-

gences in growth trajectories between the two sexes over the observation period. The process

of facial development varies in different phases of the human life [51–56], so it is necessary to

construct age progression models for specific periods.

In girls, we observed noticeable changes between 7 and 13 years of age, with the most signif-

icant changes occurring between 12 and 13 years of age. After the age of 13 years, the facial

growth slowed down, and after 16 years of age it practically ceased. Bulygina et al. [51] also

reported a significant decline in the rate of growth at approximately 13 years of age and a ces-

sation of growth at about 15 years of age. Contrary to girls, facial changes in boys were evident

over the entire observation period (up to the age of 17 years), but after the age of 16 years,

growth changes were observed only in a minor part of the nose and chin. The most evident

growth changes concerned the whole forehead region, the nose region and the mandible in

both sexes. Similar results were observed in some previous studies [54,57–59]. Generally, facial

changes were more intensive in boys compared to girls in most of the age categories except for

the category between 10 and 11 years, in which the changes were the most noticeable in girls.

The divergence in facial growth patterns was closely connected with the onset of puberty,

which occurs about two years earlier in girls [28,51]. However, before puberty, males tend to

have larger faces than females of the same age.

The different age-related facial surface changes were connected with the global ageing tra-

jectories for both sexes. We observed very similar growth rates between the ages of 7 and 10

years in both sexes. Between 10 and 14 years of age, we observed increasing of growth velocity

in both sexes, with maxima between 11 and 12 years in girls and between 11 and 13 years in

boys. Similarly, Matthews et al. [59] reported different peaks in the rate of growth, with girls’

growth accelerating from approximately 11 years of age and boys’ accelerating from approxi-

mately age twelve. Bulygina et al. [51] similarly found that male and female growth trajectories
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are not always parallel but undergo some degree of divergence after the age of about 12 years.

This divergence mainly concerns the change of shape; the magnitude of shape change per size

change seems to be similar between the sexes in their study. Slightly different results were

reported by Primozic et al. [60]. According to their study, the amount and velocity of facial

growth in both sexes appears to be similar throughout the period of 6–12 years of age, irrespec-

tive of the presence of a pubertal growth spurt. Generally, the postnatal divergence of trajecto-

ries is an important aspect in developing adult shape differences [61].

Our age progression (regression) model achieved better results in facial prediction in both

age categories of girls. However, the mean error between real and predicted faces was slightly

lower in both older age categories (from 12 to 17 years of age) of girls and boys. By contrast, in

our previous study [23], where we modelled the facial appearance from 12 to 15 years of age,

the male age-progression model worked slightly better. In both our studies, the facial features

with the smallest deviations were situated in the central part of the face. The mean error of our

age-progression systems regardless of the age category did not exceed 2 mm. In the cross-sec-

tional study [25], synthetically grown 3D faces were quantitatively compared with longitudi-

nally collected images, and 85% of the faces were predicted correctly to within three

millimetres.

The shape and configuration of internal facial features (i.e. the eyes, nose and mouth) are

crucial criteria in facial recognition [62]. According to Tome et al. [63], the regions with the

greatest discrimination power in facial recognition are the nose and forehead. Conversely, the

external shape, which can conspicuously change during maturation, with weight gain or loss,

or with changes in hairstyle, can affect identification accuracy [50] and may modify the repre-

sentation of internal facial features in terms of face recognition [64].

Although the proportion of body fat affects facial shape [30–32], changes of BMI percentiles

throughout the observation period had no significant influence on the accuracy of age our pro-

gression models for both sexes. Nevertheless, our present study indicates a slight influence on

the accuracy of the model in girls. Although BMI is generally used as an accurate tool for esti-

mating body fat mass in obese adolescents, differences in this index between thinner children

can be largely attributable to fat-free mass [65], as BMI does not distinguish between body fat

and muscle mass, which weighs more than fat. Nevertheless, body fat must be taken into con-

sideration in studies of facial soft tissues [66].

The algorithm for facial prediction, which was based on longitudinal 3D data, was first pre-

sented in our previous study [23] a few years ago. The extension of the age range in the current

study improved the accuracy of the age-progression model, which could become a very useful

tool not only in several forensic disciplines, but also in different biomedical disciplines. The

results show that our facial age progression framework produces considerably better ageing

estimates than using a non-aged face. We assume, however, that each sex exhibits a common

ageing pattern. Our framework does not take into account the initial form, changes in body

composition or any other factors that would likely contribute to even more accurate predic-

tions. Nevertheless, no ageing algorithm, regardless of what parameters it accounts for, can

predict the true appearance of a subject with absolute accuracy. Therefore, all predictions

should be considered tentative. Future investigations should be focused on the inclusion of

facial texture to further improve the accuracy of age progression (regression) models, espe-

cially with regard to facial recognition.
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Writing – review & editing: Jana Koudelová.
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based on longitudinal data: Age progression from 12 to 15 years using 3D surface models. Forensic Sci

Int. 2015; 248:33–40. https://doi.org/10.1016/j.forsciint.2014.12.005 PMID: 25576677

24. Mydlová M, Dupej J, Koudelová J, Velemı́nská J. Sexual dimorphism of facial appearance in ageing

human adults: A cross-sectional study. Forensic Sci Int. 2015; 257:519.e1–e9.

25. Matthews H, Penington A, Clement J, Kilpatrick N, Fan Y, Claes P. Estimating age and synthesising

growth in children and adolescents using 3D facial prototypes. Forensic Sci Int. 2018; 286:61–9. https://

doi.org/10.1016/j.forsciint.2018.02.024 PMID: 29567544

26. Fu Y, Guo G, Huang TS. Age synthesis and estimation via faces: A survey. IEEE Trans Pattern Anal

Mach Intell. 2010; 32(11):1955–76. https://doi.org/10.1109/TPAMI.2010.36 PMID: 20847387

27. Hutton TJ, Buxton BF, Hammond P, Potts HWW. Estimating average growth trajectories in shape-

space using kernel smoothing. IEEE Trans Med Imaging. 2003; 22(6):747–53. https://doi.org/10.1109/

TMI.2003.814784 PMID: 12872950

28. Enlow DH, Hans MG. Essentials of facial growth. Philadelphia: Saunders; 1996.

29. Freidline SE, Gunz P, Hublin J-J. Ontogenetic and static allometry in the human face: Contrasting Khoi-

san and Inuit. Am J Phys Anthropol. 2015; 158(1):116–31. https://doi.org/10.1002/ajpa.22759 PMID:

26146938

30. Windhager S, Patocka K, Schaefer K. Body fat and facial shape are correlated in female adolescents.

Am J Hum Biol. 2013; 25(6):847–50. https://doi.org/10.1002/ajhb.22444 PMID: 24105760

31. Ferrario VF, Dellavia C, Tartaglia GM, Turci M, Sforza C. Soft Tissue Facial Morphology in Obese Ado-

lescents: A Three-Dimensional Noninvasive Assessment. Angle Orthod. 2004; 74(1):37–42. https://doi.

org/10.1043/0003-3219(2004)074<0037:STFMIO>2.0.CO;2 PMID: 15038489

32. Coetzee V, Perrett DI, Stephen ID. Facial Adiposity: A Cue to Health? Perception. 2009; 38(11):

1700–11. https://doi.org/10.1068/p6423 PMID: 20120267

33. Cole TJ, Faith MS, Pietrobelli A, Heo M. What is the best measure of adiposity change in growing chil-

dren: BMI, BMI %, BMI z-score or BMI centile? Eur J Clin Nutr. 2005; 59(3):419–25. https://doi.org/10.

1038/sj.ejcn.1602090 PMID: 15674315

34. Cole TJ, Freeman J V, Preece MA. British 1990 growth reference centiles for weight, height, body mass

index and head circumference fitted by maximum penalized likelihood. Stat Med. 1998; 17(4):407–29.

PMID: 9496720
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