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A B S T R A C T

Confirming histological patterns of lung carcinoma is important for determining the prognosis and the next steps
of treatment for a patient. Confirming the histologic patterns (subtype) of lung adenocarcinoma is important for
determining the prognosis and treatment options for a patient. The task is challenging, and often requires the
input of experienced pathologists, who by themselves lack interobserver concordance. A computer-aided diag-
nosis holds the potential to accelerate the time to diagnosis. As many adenocarcinoma tissue samples contain
multiple histologic patterns, accurate computer-aided diagnosis requires annotations manually labeled by pa-
thologists. We propose a method that merges weak supervised learning and Integrated Learning using Transfer
Learning using two datasets: The Cancer Genome Atlas (TCGA), and the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) to reduce the need for manual annotation by a pathologist while maintaining accuracy.
Whole-slide images (WSI) are first determined to be either adenocarcinoma or squamous cell carcinoma, then
further identify the subtypes by generating weak classifiers for each subtype, then using integrated learning to
create a strong classifier.

Our model was evaluated with independent datasets from the CPTAC dataset and a dataset from a private
hospital. It can achieve AUC values of 0.86, 0.91, 0.82, 0.77, 0.96, 0.98 in Acinar, LPA, Micropapillary, Papillary,
Solid, and Normal, respectively.
1. Introduction

Lung cancer is the most common malignant tumor in the world and is
a leading of death cancer patients [1, 2]. Lung adenocarcinoma and
squamous cell carcinoma are the primary types of non-small cell carci-
noma (NSCLC), of which adenocarcinoma accounts for almost half of all
cases [3]. The most serious invasive lung adenocarcinoma typically
consists of complex mixtures of multiple patterns [4]. In 2015, the World
Health Organization released guidelines with five subtype patterns:
lepidic, acinar, papillary, micropapillary, and solid with prognostic dif-
ferences that may be helpful in identifying candidates for adjunctive
therapy [4, 5, 6].
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Identification of subtle histopathological patterns in complex tissue
images under microscope is a time-consuming and subjective process [7,
8]. Due to the complexity and subjectivity of the classification, concor-
dance between different pathologists is low regardless of the image
source: microscopic or WSI. Notably, in a study classifying classical and
difficult images of lung adenocarcinoma subtypes, the Cohen's kappa (κ)
among 26 lung cancer pathologists were 0.77 � 0.07 for the classical
images and 0.38 � 0.14 for difficult examples [10].

Recent studies have shown that advanced deep learning algorithms
can enhance the ability of pathological image analysis across a multitude
of tasks, such as discriminating cancer subtypes [12], identifying tumor
regions [13], semantic segmentation [14], detecting tumor metastasis
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[15], mitotic counting [16], and it has also been used across difference
species of cancer [17, 18, 19]. With regards to lung cancer, studies [20,
21] in 2017 have shown morphological features of WSI images can be
used to predict the prognosis of lung cancer. We believe that artificial
intelligence can be used to assist the pathologist—working alongside,
rather than replacing. Wei, et al., in their 2019 study, first attempted to
automatically classify histological subtypes of lung cancer on stained
sections using emerging deep learning techniques, demonstrating that
deep learning models could potentially help pathologists improve the
classification of lung adenocarcinoma subtypes by automatically
screening and highlighting cancer areas, with objective, physician-level
results [22].

This study expands the dataset used to include The Cancer Genome
Atlas (TCGA) [23], one of the largest publicly available pathological
image datasets, and the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) [24]. Images for each cancer type are selected and fused weakly
supervised learning and integrated learning with transfer learning to
create a model that utilizes a voting strategy to determine the
classification.

2. Methods

2.1. Overview

The experimental flow of our lung adenocarcinoma subtype classifier
is shown in Figure 1.
Figure 1. ASC 6-class model experimental process. Data processing: The WSIs are fir
After that, the patients are divided into training patients and test patients, and the tile
resampling strategy to select training patient of sub-model from huge training patient
of sub-model (A) Training: Each sub-model is trained using respective training set
Testing: Put test tiles into the trained sub-model and get the predicted subtypes of
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First, images for adenocarcinoma and squamous cell carcinoma from
the TCGA dataset are used to create a lung carcinoma classifier.

The adenocarcinoma subtype classifier (ASC) is then created using
transfer learning from the lung carcinoma classifier model. The ASC
consists of 10 different learners trained using the bagging strategy that
use a voting strategy to determine the classification between six different
subtypes. The data for the ASC comes from the CPTAC dataset, which is
manually labelled by pathologists from the First Affiliated Hospital of
Xinjiang Medical University.

2.2. Data collection

Two open datasets, the Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC) and the Cancer Genome Atlas (TCGA) are the data
sources for this experiment. To reduce the amount of labelling needed to
be done by doctors, TCGA lung cancer data is used to establish a classifier
for lung adenocarcinoma and squamous cell carcinoma. The pre-training
dataset is composed of 822 Lung Adenocarcinoma (LUAD), 751 Lung
Squamous Cell Carcinoma (LUSC), and 591 Normal WSIs. This provides
pre-training weights for the ASC.

Four pathologists from the First Affiliated Hospital of Xinjiang Med-
ical University labelled specific areas of the CPTAC WSIs for lung cancer
subtypes, which were subsequently used for both the training and testing
sets of the models. The CPTAC dataset was employed over the TCGA
dataset because it contains multiple subtypes of adenocarcinoma. All
adenocarcinoma images were annotated with the following subtypes:
st sliced according to the doctor's label results to obtain the tiles of each subtype.
s are divided into training sets and test sets according to the patients. Then, use a
s and the rest patient as validation patient which is using to control training time
and validation set, and the result will be fed into bagging model as input (B)
the sub-models, then the sub-models vote to get the merged result.
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acinar, adherent, papillary, micropapillary, and solid. A small number of
adenocarcinoma WSIs were added to balance the model data, for a total
of 113 WSI from 65 patients. 14 WSIs from 8 patients containing all
subtypes are selected as testing patients to assess the ability of the model,
and the 99 WSIs from the remaining 56 patients are used for training the
model.

2.3. Data pre-processing

For the carcinoma classifier model, TCGAWSIs were sliced into 512�
512 pixel sized tiles at 5x magnification. Then, each tile was given the
same label as the WSI that it came from.

For the ASC, the WSI from the CPTAC dataset were manually labelled
by three doctors of thoracic surgery from the First Affiliated Hospital of
Xinjiang Medical University. Each WSI was annotated by the doctor into
what they found to be appropriate subtypes.

First, the annotated areas were sliced into 512 � 512 pixel sized tiles
at 5x magnification. The boundary tiles and tiles that are primarily
background are removed. To balance the amount of data in each subtype,
tiles were sliced with overlap. Thus, some pixels may appear in multiple
slices. The number of tiles for each type was normalized to the number of
tiles labelled “Solid” – the most abundant type. Tiles were sliced from
outside the labelled area, and these were used for the “Normal” label.

Table 1 contains the number of tiles that are used for training and
testing of the ASC. We utilize the Bagging method, which involves
creating multiple models. The mean and standard deviation represent the
distribution of tiles between the ten different models created under
bagging. Bagging is described further below.

2.4. Classifier

DeepPATH (DP) code adapted from Coudray et al. [12] and Deepslide
(DS) code adapted from Wei, et al. [22] are used as the lung carcinoma
classifier and the adenocarcinoma subtype classifier (ASC). The Deep-
PATH model is based on inception v3 architecture with initial 5 convo-
lution nodes combined with 2 max pooling operations and followed by
11 stacks of inception modules. It ends with a fully connected and then a
softmax output layer. The Deepslide model is based on an 18-layer
ResNet using multi-class cross entropy loss function.

2.5. Bootstrap aggregating (bagging)

This study uses Bootstrap aggregating (Bagging) integrated learning
to combine weak learners into strong one. Bagging is a method proposed
by Breiman to reduce the variance of learning algorithms [25]. Given a
model, bagging extracts samples with replacement from the training
population several times, then uses the samples extracted each time to
build multiple models (weak learners), and finally uses the mean
(regression problem) or majority voting (classification problem) method
to aggregate the results of the weak learners to get a strong learner [25,
26]. In this study, we utilize the majority voting method.
Table 1.Mean and Std. Dev of the number of WSI/tiles in training and validation sets
for each subtype.

Class WSI

μtrain σtrain μvalid σvalid
Acinar 22 2 12 2

Lepidic 5 0 3 0

Micropapillary 13 2 9 2

Papillary 28 2 15 2

Solid 25 3 14 3

Background 36 3 18 3

Total 99
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2.6. Data partitioning

Although overlapping is used when slicing, the number of tiles that
we have is still unbalanced. The number of tiles from different patients in
each subtype varies greatly, so to ensure diversity of data, an upper limit
is set for the number of tiles that can be provided by any single patient.
For different patients in each subtype, a resampling strategy is used to
select patients for the training and verification sets, so that the number of
patients in each weak learner is similar, but the patients are different. The
mean and standard deviation of the numbers of WSI and tiles for the
training and verification set used by the learners for each subtype are
shown in Table 1.

2.7. Model training using transfer learning

Previous research [12] has shown that the Inceptionv3 [27] archi-
tecture can distinguish lung adenocarcinoma and squamous cell carci-
noma well. In this experiment, the model parameters obtained from the
pre-training model are taken as the initialization weights of the six
classification model parameters, except the last layer. For the
pre-training model we trained for 230,000 steps, and the ASC model
adopts early stopping. In this experiment, the loss function is the cross
entropy between the prediction probability and the real class label, and
the optimization algorithm utilizes RMSPropOptimizer with an initial
learning rate of 0.001, weight attenuation of 0.9, momentum of 0.9, and
epsilon of 1.0.

2.8. Test process and visualization of results

A comprehensive assessment of the model is carried out at both WSI
and patch levels in this study. Since the model is trained at the patch
level, the test is also conducted on the patches cut from WSI. The pre-
dictive probability of each subtype for each type is determined and the
category corresponding to the maximum prediction probability is
obtained.

Because each test patch has a true subtype label from the pathologist,
this study uses the confusion matrix to evaluate the model prediction
results in all subtypes. We use ROC curves to reflect the generalization of
the predicted subtypes of the model. At the WSI level, the prediction
results of all patches on the same WSI are counted. In order to consider
both quantity and probability, we sum the probability of all patches for
their given subtype and the result is taken as the criterion of predicting
the main and secondary components, which is then compared with the
results provided by doctors.

We visualize the histological patterns of lung adenocarcinoma
detected on full slide images. They are displayed by covering the slices of
WSI with color blocks representing the predicted categories and then
generating an overlay for the original WSI image. This visualization
method can directly display the prediction results of the model and
provide an easy-to-understand reference for doctors. If the doctor's
annotation is provided, the prediction results of the model can be eval-
uated at the same time as shown in Figure 2.
used by all learners in each subtype, and the numbers of WSI/tiles of the test sets

Tiles

test μtrain σtrain μvalid σvalid test

5 773 180 452 180 624

2 528 114 261 114 562

4 501 147 333 147 431

4 823 161 494 161 447

6 959 247 495 247 591

14 960 134 403 133 770

14 - 3425



Figure 2. Heatmap generated from the lung carcinoma classifier (A.i-iv) and ASC imode (B.i-iv). The latter simultaneously shows doctor's annotated curve to compare
with the model results.

Table 2. Precision, Recall, F1 score, AUC value of each model for training the
ASC subype classifier. DP represents the DeepPATH model, DS represents
Deepslide model. Rows with mean are the average of each weak learner, and
rows with bagging represent the strong learner. Pretrain represents models using
the pre-training weights.

Model Precision Recall F1 AUC

DP_mean 0.22 0.29 0.22 0.68

DP_bagging 0.28 0.34 0.26 0.75

DP_pretrain_mean 0.51 0.51 0.48 0.82

DP_pretrain_bagging 0.59 0.55 0.52 0.88

DS_mean 0.55 0.52 0.49 0.84

DS_bagging 0.63 0.56 0.53 0.89

DS_pretrain_mean 0.57 0.55 0.51 0.86

DS_pretrain_bagging 0.66 0.58 0.54 0.91
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3. Results

3.1. Accurate prediction of subtype regions

This experiment demonstrates that the proposed method can directly
predict the subtype and location of adenocarcinoma in WSI. First, we can
judge whether an WSI contains adenocarcinoma or squamous cell car-
cinoma via our pre-training model. We can then further predict the
subtype categories and location by our ASC subtype model if it is
adenocarcinoma. The experimental results show that the ASC subtype
model can accurately predict the locale of the subtype and the primary
subtype category as shown in Figure 2.

On the WSI level, the quantity of the tiles and the predictive results of
tiles on a WSI are used to determine the predominant and minor sub-
types. The experimental results show that for predominant subtype ac-
curacy of our model can reach 75% accuracy for primary subtypes and
67% accuracy for secondary subtype classification.

3.2. Transfer learning improves model accuracy

Because the training data of the ASC subtype model requires pa-
thologists to annotate and provide ground truth labels, the process is
highly time-consuming and laborious. In this experiment, we use the pre-
4

training model without additional annotated data to provide pre-training
weights for the ASC subtype model. This helps improve the accuracy of
the model and reduces the amount of detailed annotated data required.
Table 2 shows that compared to the average weak learners represented
by the mean, the strong learners represented by bagging achieve better
results. The DP rows are ones using the DeepPATH code adapted from
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Coudray et al. [12], while DS represents Deepslide code adapted from
Wei, et al. [22]. Furthermore, using the pre-training model parameters as
the pre-training weight, the average evaluation index of each model is
5%–20% higher than that of the unused model.

Figure 3 shows the comparison of ROC curves with and without pre-
training weights of the model under different subtypes. For nearly all
subtypes, the result of the model with pre-training weights is better, and
particularly improved for Lepidic-primary adenocarcinoma. Testing was
also carried out on tiles at 20x magnification and 256*256px size slices,
but results were worse than those at 5x magnification and 512 � 512px
size slices.

3.3. Inconsistent annotations

Wei et al. [22] demonstrate that the consistency of annotations be-
tween different doctors only achieves a kappa of 0.4 for a group of 3
doctors. We achieved a kappa score between our model and a pro-
fessional's annotations of 0.43, matching the kappa found by Wei et al..

In order to examine the effect of different doctors' labeling on the
experimental results, we respectively selected one doctor's and two
doctors' labeling data to carry out the experiment. Figure 4 shows the
confusion matrix between the prediction result of each subtype in the test
set and corresponding real label. In Figure 4A, the results of the two
doctors are consistent with the result found byWei et al. Figure 4B shows
that one doctor's result is more concentrated than using labeled data from
two doctors and average accuracy is higher although testing sets are not
the same and the former has less training data.
Figure 3. ROC curves with and without pre-training weight of
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4. Discussion

The study demonstrates that transfer learning can be helpful to
relieve the pressure of model tagging, and that the bagging strategy can
be applied to the deep learning model for the classification of lung can-
cers and subtype recognition for adenocarcinomas. The results suggest
that the strong learner result will be better when the weak classifier result
is better. Both the present study andWei et al. [22] show that the result of
micropapillary is the worst in all invasive adenocarcinoma subtypes,
while micropapillary and solid adenocarcinoma are the most likely
pathological subtypes of recurrence, and adherent growth-oriented
adenocarcinoma has a lower risk of recurrence. Acinar and papillary
adenocarcinoma are the pathological subtypes with moderate recur-
rence. Therefore, it is necessary to improve the accuracy of micro-
emulsion prediction. As shown in Figure 4B the accuracy of
microemulsion is improved, demonstrating the importance of consistent
annotation, as adding more pathologists when measuring concordance
harms the metric.

Our study grows the number of classes that we can identify to the five
subtypes within invasive adenocarcinomas as identified by the IASLC [3],
as well as background material. Previous studies into utilizing machine
learning for classification on adenocarcinoma slides have generally
identified fewer classes, as shown in Table 3, this study is on par with
other studies that are classifying the most number of potential classes in
the tissue image. Furthermore, this study, along with Wei, et al. [22], are
the only two studies that we could find that classified all adenocarcinoma
subtypes, an important factor in determining a patient's prognosis.
our model on test set, and AUC value are show in legend.



Figure 4. The confusion matrix between the prediction result and the real label of each subtype in the test set under two doctors' annotation (A), under one doctor's
annotation (B).

Table 3. Abbreviations: ACC, adenocarcinoma; SCC, squamous cell carcinoma; LP,
lepidic; AC, acinar; PA, papillary; MP, micropapillary; SO, solid.

Researchers Year Objective ACC
Subtype
Identified

Method

Gertych,
et al. [28]

2019 5-class ACC subtype
classification: AC, MP, SO,
Cribriform, Non-tumorous

AC, MP, SO,
cribriform

Fine-tuned
and de-novo
CNN

Nishio, et al.
[29]

2021 5-class lung tissue
classification: normal,
emphysema, atypical
adenomatous hyperplasia,
lepidic pattern of ACC, and
invasive ACC

LP Homology-
based

Yang, et al.
[30]

2021 6-class lung tissue
classification: ACC, SCC,
small-cell lung cancer,
pulmonary tuberculosis,
organizing pneumonia,
normal lung

None DNN

Wei, et al.
[22]

2019 6-class ACC WSI primary
subtype classification; LP,
AC, PA, MP, SO, benign/
imperfect sample

LP, AC, PA,
MP, SO

DNN

This Paper – 6-class ACC WSI primary
subtype classification; LP,
AC, PA, MP, SO, background

LP, AC, PA,
MP, SO

Transfer
Learning þ
DNN
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We note that the consistency of different doctors’ labeling results is
very low, which can signal that the human labelers may not be able to
determine what the common characteristics are for a particular subtype.
This phenomenon is because various adenocarcinoma subtypes can be
histologically divided into different types, and there are some differences
in the morphological characteristics of each type. For one, acinar
adenocarcinoma can be divided into simple acinar, complex acinar,
glandular fusion, sieve arrangement, and the pathological manifestations
of papillary adenocarcinoma can be divided into pseudo-clay, moderate
papillary size, and different papillary size, and the prognosis of each type
is also different. Therefore, we can try to predict the different categories
of subtypes directly. Even with less data of each type, the consistency
between the same data and the difference between the different data will
be higher.

One challenge facing adenocarcinoma subtype classification is
achieving high concordance with professionals, as well as establishing a
gold standard. Comparing the accuracy of the trained model with one
versus two pathologists changes the kappa significantly. Furthermore,
6

even within doctors, concordance is low. Within the dataset used in this
study, we found that variance between tiles marked Background and
Acinar were higher than the rest. This led to worse performance for these
classes, demonstrating the need for higher concordance between just
pathologists, not just pathologists and AI models. Thus, we believe that
our study ultimately reinforces the need for a new method to compare
classification accuracies.
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