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THE CLINICAL AND SCIENTIFIC
IMPORTANCE OF MUCOSAL
INFLAMMATION

Standing at the interface between the
host and the environment, mucosal-lined
surfaces represent the first line of defense
against potential pathogens. This defen-
sive role is particularly relevant to the
mucosa of the gastrointestinal tract, the
pulmonary system, and the urinary tract,
each of which is particularly susceptible
to the development of inflammatory dis-
eases due to their role as a barrier that

must not only protect, but also serve the
physiological function of each of the
organ systems. In the case of the gastroin-
testinal tract, mucosal inflammation is
manifest as inflammatory bowel disease
(including Crohn’s disease and ulcerative
colitis) (1–3) or necrotizing enterocolitis
(NEC), a leading cause of death in pre-
term infants (4). In the case of the pul-
monary system, mucosal inflammation
may be manifest as pneumonitis, pneu-
monia, or asthma (5–7), acute and chronic
pulmonary conditions that have a high

degree of morbidity and potential mortal-
ity. And in the case of the urinary tract,
mucosal inflammation may be manifest as
interstitial nephritis, cystitis, and urethri-
tis (8–10), causes of significant morbidity
in patients of all ages. To elucidate the
pathogenesis of mucosal inflammatory
diseases, research over the past several
decades has focused on the role of the
immune system in their development—
in particular the relationship between
mucosal lymphocytes, macrophages, and
neutrophils, and the effects of their cellu-
lar by-products on mucosal integrity and
function (11–13). However, recent work
has shed light upon the important role
that the epithelia itself may play as a pri-
mary regulator of the immune response
in the development of mucosal inflam-
mation. No longer an innocent bystander,
the epithelial-lined mucosa at each of
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opment of pneumonitis and nephritis respectively. Recent work in support of these concepts is extensively reviewed, while
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these sites has been shown to possess
all of the required armamentarium to
allow an effective response to invading
challenges, and to lead the battle to
neutralize potential microbial threats
(14–16). Not only is the epithelium able
to respond to potentially dangerous mi-
crobial products, it also may sense en-
dogenous molecules that are released
during conditions of stress, hypoxia, or
injury—so-called danger molecules that
may play a critical role in the develop-
ment of mucosal inflammation (17–19).
In order, therefore, to understand the
pathogenesis of mucosal inflammation
and to assist in the rational design of
anti-inflammatory strategies, it is neces-
sary to define the receptors and signal-
ing pathways that mediate the inflam-

matory response with respect to the ep-
ithelium itself.

The innate immune system consists of
a series of receptors and their associated
signaling molecules that is present both
on leukocytes and epithelial cells
through the body, and which initiates an
immune response by responding directly
to pre-formed ligands ([20] provides a re-
cent review). The innate immune system
lies in contradistinction to the adaptive
immune system, a set of cellular and mo-
lecular interactions that must first
“learn” how to deal with a potential
pathogen, and then respond through the
release of antibodies or other cellular de-
rived products. The innate immune sys-
tem includes pattern recognition recep-
tors such as the TLRs, the NOD-like
receptors (NLRs), the RIG-like receptors
(RLRs), and C-type lectins, and their role
in inflammatory signaling in leukocytes
has been extensively reviewed
(21–23,186). Relatively few reports have
focused on the ability of the innate im-
mune system to signal within the epithe-
lium, although emerging evidence from
a variety of laboratories including our

own indicates that innate immune sig-
naling within the epithelium plays a crit-
ical role in the pathogenesis of mucosal
inflammation. The current review will
focus on the TLR family, which has been
shown to play a critical role in the re-
sponse of epithelial cells to bacterial and
endogenous ligands in the pathogenesis
of various mucosal inflammatory dis-
eases (Table 1).

DEFINING THE CONTROVERSIES IN THE
PATHOGENESIS OF MUCOSAL
INFLAMMATION

A central controversy in the field of
mucosal inflammation may be stated as
follows (Figure 1 provides a pictorial rep-
resentation of this): Is mucosal inflamma-
tion a reflection of a leukocyte-driven
immune response that has gone awry, re-
sulting in tissue injury and the loss of
mucosal barrier function (Figure 1A)? Or
is it the mucosa itself, long known to
play a role as a primary immune organ
that is capable of producing a large
number of pro-inflammatory molecules,
that somehow has developed an exag-
gerated response that then leads to mu-

Table 1. Toll-like receptors and their known
ligands

TLR Ligand(s)

1 Triacyl lipoproteins (126)
2 Lipoproteins (127)

Peptidoglycan (128,129)
Lipoteichoic acid (128)
Zymosan (130,131)
Heat shock proteins (132,133)

3 Double stranded RNA (134)
4 LPS (37,135)

Taxol (136)
Heat shock proteins (132,137,138)
Fibronectin (139)
Hyaluronic Acid (140)
Heparan Sulfate (141)
Fibrinogen (142)
Respiratory Syncytial Virus Fusion 
Protein (106)

Murine Retroviral Envelope Protein 
(143)

5 Flagellin (58)
6 Diacyl Lipopeptides (144)

Lipoteichoic acid (131)
Zymosan (131)

7 Single-stranded RNA (145,146)
Imidazoquinoline (59)

8 Single-stranded RNA (146)
Imidazoquinoline (147)

9 Bacterial (demethylated CpG) DNA 
(148)

10 Unknown
11 Profilin (149)

Uropathogenic Bacteria (114)

Figure 1. Mechanisms by which TLR signaling leads to mucosal inflammation. As stated in
the text, there are two potential mechanisms by which TLR signaling can lead to the de-
velopment of mucosal inflammation. (A) TLR activation in response to DAMPs (damage
associated molecular patterns) and PAMPs (pathogen associated molecular patterns) on
leukocytes leads to the release of pro-inflammatory cytokines, resulting in epithelial de-
struction. (B) TLR activation by DAMPs and PAMPs on the epithelium itself directly impairs
epithelial function and initiates the release of cytokines, leading to the development of
mucosal inflammation. The development of mucosal inflammation likely arises from a
combination of these mechanisms.
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cosal injury (Figure 1B)? Mucosal sur-
faces, such as the intestinal mucosa and
the upper respiratory tract, are con-
stantly exposed to environmental stim-
uli, such as commensal luminal bacteria
in the intestine, as well as endogenous
stimuli, or, as is the case in the lower
respiratory tract and urinary tract mu-
cosa, may encounter and respond to en-
dogenous and exogenous stimuli in dis-
ease states. In either case, the mucosa
must be able to mount an effective im-
mune response, resist barrier failure, and
coordinate this response with both mu-
cosal and sub-mucosal leukocytes, while
avoiding initiation and propagation of
an exaggerated inflammatory response.
But where does the answer lie in terms
of what is initiating the mucosal inflam-
matory response?

In seeking to answer this question, we
and others have focused on the innate
immune receptors that are present on
the mucosa, and have examined the re-
sponse of these receptors to known lig-
ands in the development of mucosal in-
flammatory disorders. Such ligands may
be broadly grouped into two categories:
the so called “danger signals,” a term
used by Matzinger (24), also called
damage-associated molecular patterns
(DAMPs) ([25,26] provide recent re-
views); and those ligands on the surface
or interior of pathogen-associated mo-
lecular patterns (PAMPs) (Table 2). Not
surprisingly, there is a great deal of in-
terest in identifying the important recep-
tors for DAMPs and PAMPs expressed
by various cell types, so as to accurately
define their relative role in the develop-
ment of inflammation. In this regard,
several investigators have established
that DAMPs and PAMPs are recognized
by TLRs in many cells, including epithe-
lial cells: a list of the TLRs and their cog-
nate ligands appears in Table 1. Al-
though current dogma suggests that
circulating leukocytes play a central role
in the coordination of the immune re-
sponse, emerging evidence suggests that
the epithelium also plays a key role in
the recognition and response to various
“danger molecules” (27–31). This review

will examine in detail the various roles
of epithelial signaling via TLRs in the
development of common, and often dev-
astating, mucosal inflammatory condi-
tions. Much of the focus will be on the
TLR-initiated signaling in response to
PAMPs, as the majority of work has
been performed in this area.

RECOGNIZING DANGER: TLRS AND
FRIENDS

Several recent investigators have shed
light upon the important role of TLR sig-
naling in the development of mucosal
inflammation (31–34). To understand
how TLRs may signal within the epithe-
lium, information may be gained by ana-
lyzing TLR signaling in other systems,
primarily within leukocytes. A full de-
scription of the molecular mechanisms
by which TLR signaling occurs is be-
yond the scope of this review; currently
accepted concepts with respect to TLR
signaling are described below (21,35
have recent reviews).

The structure of each member of the
TLR family of receptors provides impor-
tant clues to how they function. All cur-
rently recognized TLRs are homologous
with the interleukin-1 (IL-1) receptor,
sharing an intracellular signaling domain,
known as the Toll/IL-1R (TIR) domain
(36). A model that depicts the currently
accepted mode of TLR signaling in leuko-

cytes is shown in Figure 2, in which the
interaction with TLR4 and its cognate lig-
and lipopolysaccharide (LPS, endotoxin)
is shown. The interaction of TLR4 with
LPS leads to the activation of myeloid dif-
ferentiation primary response protein 88
(MyD88)-dependent signaling, resulting
in the induction of pro-inflammatory
genes such as TNF-α, IL-1β, IL-6, and
IL-10 (37–39) and MyD88-independent
signaling cascades leading to activation of
type-1 interferon (40 has a recent review)
(38,41). MyD88-depedent signaling occurs
as TIR domain-containing adapter protein
(TIRAP/Mal) (42,43) and MyD88 (44–46)
interact with TLR4 and recruit IL-1 recep-
tor-associated kinase (IRAK) family mem-
bers IRAK1 and IRAK4 to the signaling
heterocomplex consisting of TLR4,
MyD88, and TIRAP (46). Subsequent sig-
naling occurs through tumor necrosis fac-
tor receptor-associated factor 6 (TRAF6)-
mediated (47) activation of transforming
growth factor-β-activated protein kinase 1
(TAK1) (48). TAK1 forms a complex with
TAK1 binding proteins (TAB), TAB1 (49),
TAB2 (50), and TAB3 (51). The TAK1/
TAB1/TAB2/TAB3 complex formation
leads to the phosphorylation of IκB by IκB
kinase (IκK) (52), initiating nuclear factor-
kappa B (NF-κB) signaling pathways and
parallel activation of several mitogen-acti-
vated protein kinases (MAP-kinases) in-
cluding c-Jun N-terminal kinase (JNK)

Table 2. A summary of known damage associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns (PAMPs)

Endogenous Signals (DAMPs) Exogenous Signals (PAMPs)

Heat shock proteins (Hsp60, Hsp70, Gp96) Proteoglycan (128,129)
(132,133,138)

Fibrinogen (142) Lipoteichoic acid (128)
Surfactant Protein-A (150) Lipoproteins (126,127,144)
Fibronectin extra domain A (139) Zymosan (130,131)
Heparan Sulfate (141) Microbial Hsp (132,137,138)
Soluble Hyaluronan (140) Viral ds RNA, ss RNA, synthetic poly I:C 

(134,145,146)
β-defensin 2 (151) Lipopolysaccharide (LPS) (135,152)
High mobility group box 1 protein (HMGB1) Plant derivatives (Taxol) (136)
(153)

Messenger RNA (mRNA) (154) Viral proteins (106,143)
Self DNA (155) Flagellin (58)
Uric Acid (156) Bacterial DNA (148)
Profilin (149)
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(53), p38 MAP-kinase (54), and extracellu-
lar signal-regulated kinase (ERK) (55), ul-
timately resulting in pro-inflammatory
gene induction (56,57). It is noteworthy
that MyD88-dependent signaling is
thought to be the predominant signaling
pathway for TLR2 (41), TLR5 (58), TLR7
(59), and TLR9 (60,61).

As shown in Figure 2, TLR4 also may
signal in the absence of MyD88. Evi-
dence for this was demonstrated by
Kawai et al., who described that the acti-
vation of NF-κB and MAP-kinases was
reduced significantly, but not abolished,
in MyD88-deficient mice (38). The
MyD88-independent signaling pathway

proximally involves the activation of
TRAM, a TIR-domain containing adapter
molecule. TRAM associates with and ac-
tivates TRIF, another TIR-domain con-
taining adapter protein (62,63). TRIF
then interacts with and activates TANK-
binding kinase 1 (TBK1) and IKKε, two
IκK homologs, which leads to the phos-
phorylation of IRF3 (64,65) and translo-
cation of IRF3 to the nucleus where it
regulates the expression of various
genes, including the type I IFN family of
genes (66). TRIF also interacts with
TRAF6 and receptor interacting protein 1
(RIP), leading to the activation of NF-κB
(67,68). Importantly, TLR3 signals mainly
through the MyD88-independent, TRIF-
dependent pathway (62).

TLR-DEPENDENT SIGNALING IN THE
INTESTINAL MUCOSA: A ROLE IN THE
PATHOGENESIS OF INTESTINAL
INFLAMMATION?

There is a wide and diverse spectrum
of diseases that involves the develop-
ment of inflammation of the intestinal
mucosa. Such diseases include inflamma-
tory bowel disease that is, Crohn’s dis-
ease and ulcerative colitis, necrotizing
enterocolitis (which is a leading cause of
death and disability in newborn infants)
and a variety of infectious causes of in-
testinal dysfunction, due to entero-
invasive organisms such as Salmonella
and Escherichia coli. As shown in Figure 1,
signaling via TLRs could lead to the de-
velopment of intestinal inflammation
through direct interaction of TLRs with
the intestinal epithelium, or through ef-
fects on sub-epithelial and circulating
leukocytes whose activation then leads
to the initiation and propagation of mu-
cosal inflammation. Although evidence
exists to support this latter possibility,
the expression of various TLRs in entero-
cytes (Table 3) suggests the possibility
that direct interaction of intestinal TLRs
with cognate ligands (see Table 1) may
occur. Enteric bacteria in general, and
LPS in particular, have been shown to
play a critical role in the development of
many diseases of intestinal inflammation
(69–72), further suggesting the possibility

Figure 2. TLR4 signaling pathways. LPS binding to TLR4 requires binding protein (LBP),
MD-2, and the co-receptor CD-14 which initiates MyD88-dependent (blue) and MyD88-
independent (yellow) signaling pathways. See text for details.
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that enterocyte TLR signaling may con-
tribute directly to the development of
these diseases.

To address the role(s), if any, of intes-
tinal epithelial TLR signaling in the
pathogenesis of intestinal inflammation,
we, and others, have focused on TLR4,
the receptor for LPS. Multiple enterocyte
cell lines, including (IEC-6) rat entero-
cytes (27,73), primary and cultured (HT-
29 and T84) colonocytes (74–76) and
(CMT93) mouse rectal cells (75) express
TLR4, the TLR4 adapter protein MD-2,
and MyD88. In these cell lines, activation
by LPS leads to pro-inflammatory signal-
ing (74–76) as well as changes in cellular
processes including proliferation (73)
and intracellular TLR4 trafficking (77).
These findings provide evidence that en-
terocytes may respond directly to LPS
via TLR4, yet by no means prove the
physiological relevance of such a re-
sponse. However, clinical significance for
TLR signaling in the pathogenesis of in-
testinal mucosa is suggested as patients
with inflammatory bowel disease dem-
onstrate an increase in the expression of
TLR4 and TLR2 in the intestinal mucosa
(75,78), and we have found that TLR4 ex-
pression is increased in experimental and

human necrotizing enterocolitis (32).
Sensitization of the intestinal mucosa
through upregulation of TLRs also oc-
curs in other diseases of intestinal in-
flammation, including inflammatory
bowel disease and intestinal celiac dis-
ease (75,79–81), suggesting a potential
role in the injury response.

In seeking to further understand the
role of enterocyte TLR4 in the pathogen-
esis of intestinal inflammation, our labo-
ratory recently has examined the role of
enterocyte TLR4 activation in the patho-
genesis of necrotizing enterocolitis
(NEC) (32). NEC is the leading cause of
death from gastrointestinal disease in
preterm infants (71), and, currently, is
one of the leading causes of death of
newborns in the United States overall
with a mortality rate of nearly 15% (82).
We have established recently that entero-
cyte TLR4 activation plays a critical role
in the pathogenesis of NEC (32). Specifi-
cally, we found that NEC in both mice
and humans is associated with increased
expression of TLR4 in the intestinal mu-
cosa, and that physiological stressors as-
sociated with NEC development,
namely exposure to LPS and hypoxia,
sensitize the murine intestinal epithe-

lium to LPS through upregulation of
TLR4 (32). In support of a critical role
for TLR4 in the development of NEC,
TLR4-mutant C3H/HeJ mice were pro-
tected from the development of NEC
compared with wild-type C3H/HeOUJ
littermates (32), a finding consistent with
previous work by Caplan et al. (33).
TLR4 activation in vitro led to increased
enterocyte injury by induction of entero-
cyte apoptosis and reduced epithelial
healing, due to an inhibition of entero-
cyte migration and proliferation. This
latter finding suggests a role for entero-
cyte TLR4 in the regulation of intestinal
mucosal repair. In support of this possi-
bility, increased NEC severity in wild-
type C3H/HeOUJ mice resulted from in-
creased enterocyte apoptosis and
reduced enterocyte restitution and pro-
liferation compared with TLR4-mutant
mice. TLR4 signaling also led to in-
creased serine-phosphorylation of intes-
tinal focal adhesion kinase (FAK), a mol-
ecule necessary for efficient enterocyte
migration. Surprisingly, TLR4 co-
immunoprecipitated with FAK in entero-
cytes, and siRNA-mediated FAK inhibi-
tion restored enterocyte migration after
TLR4 activation, demonstrating that the

Table 3. The expression of Toll-like receptors within the gastrointestinal, pulmonary, and urinary mucosa.

Intestinal Epithelium Pulmonary Epithelium Urothelium

Small Intestine Large Intestine Airway Renal Epithelium Ureter and Bladder Epithelium

TLR1 RNA (157) RNA (158,159) RNA (99,160–163) RNA (110) Not determined
TLR2 RNA (81,164) RNA (80,88,158, RNA (99,100,160–163, RNA (110,112) RNA (171)

159,165,166) 167,168)
Protein (81,165) Protein (158,165) Protein (160,167,169) Protein (170)

TLR3 Protein (75,81) RNA (158, 165) RNA (160–162) RNA (110,171) RNA (171)
Protein (75) Protein (172)

TLR4 RNA (32,33,81) RNA (33,74,79,80, RNA (99,100,160–162, RNA (110,112) RNA (171)
88,165,166) 168,175)

Protein (27,32,75, Protein (75,79,88,158) Protein (160,175) Protein (111,112,176) Protein (176)
80,81,173,174)

TLR5 Protein (173) RNA (74,166) RNA (160–163) RNA (16,171) RNA (16,171)
Protein (75) Protein (160,163,169)

TLR6 Not determined RNA (158,159) RNA (99,160–163) RNA (110) Not determined
TLR7 RNA (177) RNA (158) RNA (160) Absent (178) Not determined
TLR8 Absent (177) RNA (158) RNA (160) Absent (180) Not determined

Protein (179)
TLR9 Protein (181,182) RNA (158,183) RNA (160,162) Neg (110,184) Not determined
TLR10 Not determined Absent (158,185) RNA (160) Not determined Not determined
TLR11 Not determined Not determined RNA (160) RNA (114) RNA (114)
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FAK-TLR4 association regulates intes-
tinal healing. Taken together, these find-
ings demonstrate a critical role for TLR4
signaling in the intestinal epithelium in
the development of NEC through effects
on enterocyte injury and repair (32).

In addition to the effects of enterocyte
TLR4 activation on the regulation of in-
testinal injury and repair, our group also
has demonstrated a surprising role for
enterocyte TLR4 in the regulation of bac-
terial translocation across the intestinal
barrier (see Figure 1A). Translocation of
bacteria across the intestinal barrier is
important in the pathogenesis of not
only intestinal inflammation, but also
systemic sepsis, and may be a critical de-
terminant of the development of multi-
system organ dysfunction. We recently
have shown that enterocyte TLR4 plays a
key role in regulating the ability of ente-
rocytes to internalize Gram-negative bac-
teria into membrane-bound phagosomes.
Further evidence that TLR4 signaling is
both necessary and sufficient for phago-
cytosis by epithelial cells was found as
cultured enterocytes were able to inter-
nalize LPS-coated but not uncoated latex
particles, and MD2/TLR4-transfected
HEK-293 cells acquired the capacity to in-
ternalize E. coli, whereas non-transfected
HEK-293 and HEK-293 transfected with
dominant negative TLR4 bearing a
P712H mutation did not. Strikingly, the
internalization of Gram-negative bacteria
into enterocytes in vivo and the transloca-
tion of bacteria across the intestinal ep-
ithelium to mesenteric lymph nodes
were significantly greater in wild-type
mice as compared with mice with muta-
tions in TLR4 (27). These data suggest a
novel mechanism by which bacterial
translocation occurs, and suggest a criti-
cal role for TLR4 in the phagocytosis of
bacteria by enterocytes in this process.

The work reviewed above indicates
that activation of TLR4 within the intes-
tine is deleterious to the host, through ef-
fects on intestinal barrier injury, repair,
and bacterial translocation. The overrid-
ing concept that enterocyte TLR4 activa-
tion has negative effects on intestinal ho-
meostasis is supported by work

demonstrating that TLR4 plays an im-
portant role in protecting the host from
the development of chemical-induced
colonic inflammation through the main-
tenance of intestinal homeostasis and the
production of cytoprotective factors
(83–85). However, subsequent studies
have demonstrated that TLR4 may play
a permissive role in the development of
spontaneous colonic inflammation (86),
suggesting either that the net effects of
TLR4 on intestinal inflammation are de-
pendent on the specific disease process
examined, the anatomic location of the
disease process, or that the interaction
with various downstream effectors influ-
ences the extent of intestinal inflamma-
tion that develops. It is noteworthy that
the inflammation observed in NEC is
predominantly localized to the small in-
testine as opposed to the colon (4,87), im-
plying that the effects of TLR4 activation
within small intestinal epithelial cells
may lead to different effects than its role
on the colonic epithelia. In support of
this concept, it has been demonstrated
previously that small intestinal entero-
cytes are more responsive to LPS than
colonic enterocytes, due in part to differ-
ences in TLR4 expression and/or activity
(88,89). Moreover, the increase in expres-
sion of TLR4 within the ileum that we
have observed after exposure to hypoxia
and endotoxin suggests that TLR4-
dependent signaling within the small
bowel mucosa may be increased after ex-
posure to these stressors. The combined
effects of the enhanced baseline sensitiv-
ity of the small intestine to LPS, and the
upregulation of TLR4 expression in the
intestine may partially explain the ob-
served effects of enterocyte TLR4 in the
induction of NEC. In support of this pos-
sibility, Caplan et al. have recently
demonstrated that TLR4 expressing mice
are more susceptible to the development
of NEC in a model of formula feeding
and cold asphyxia through a mechanism
involving the enhanced interaction with
luminal bacteria (33).

In addition to TLR4, other TLRs have
been shown to play a role in the patho-
genesis of intestinal inflammation, poten-

tially via TLR-dependent signaling of the
enterocytes themselves. For instance,
both TLR2–/– and TLR9–/– mice were
found recently to develop more severe
intestinal inflammation compared with
wild-type counterparts (90,91). Moreover,
TLR5–/– mice have been found to de-
velop spontaneous colitis (92) and the
TLR5 ligand flagellin has been found to
protect against enterocyte apoptosis (93).
These findings indicate that TLR2, TLR5,
and TLR9 may exert protective roles in
the pathogenesis of intestinal inflamma-
tion, or indeed may provide support for
the maintenance of intestinal homeosta-
sis. Since TLR2, TLR5, and TLR9 share
the downstream mediator MyD88, it is
possible that these studies provide mech-
anistic insights into the protective role of
MyD88 in the maintenance of intestinal
homeostasis as identified by Medzhitov
et al. (83). Once again, though the story is
more complicated than appears on first
glance, as activation of TLR3, the only
TLR family member that does not re-
quire MyD88 to signal, with the specific
ligand polyinosinic:polycytidylic acid
(poly I:C) protected against the severity
of DSS-induced colitis (94).

How do we reconcile the apparently
contradictory roles of TLRs in the devel-
opment of intestinal inflammation? It is
possible that there may be cross talk be-
tween various TLR family members in
the maintenance of intestinal inflamma-
tion, and the balance between intestinal
homeostasis versus intestinal injury may
be a reflection of the relative balance be-
tween TLRs and their associated signal-
ing molecules. Alternatively, different
TLRs within the intestine may be more
or less susceptible to upregulation by dif-
ferent physiological stressors. We and
others also have shown that intestinal
mucosal TLR expression varies in differ-
ent parts of the GI tract (SC Gribar and
DJ Hackam, unpublished report) (95),
which could explain in part the regional
effects of TLR signaling on intestinal in-
flammation that is observed. It also may
be possible that unique, epithelial-
specific, intracellular signaling networks
are activated by specific TLR ligation in
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enterocytes. Additional studies designed
to delineate the precise interaction be-
tween the various enterocyte TLRs and
their downstream receptors are required
to resolve these possibilities.

Further insights regarding a potential
role for TLR signaling in the pathogene-
sis of intestinal inflammation may be
learned from studying genetic polymor-
phisms in humans with diseases of in-
testinal inflammation and sepsis. The
TLR4 Asp299Gly mutation is known to
render TLR4 hyporesponsive to endo-
toxin (99). This mutation has been asso-
ciated with an increased incidence of in-
flammatory bowel disease (ulcerative
colitis and Crohn’s disease) (100,101).
Furthermore, pancolitis, the most severe
manifestation of ulcerative colitis, is
more common in patients with the TLR1
Arg80Thr polymorphism and the TLR2
Arg753Gly polymorphism (102). In pa-
tients with Crohn’s disease, the TLR1
Ser602Ile polymorphism is associated
with a reduced risk of developing ileal
disease (102). While no genetic polymor-
phisms have been associated with NEC,
further study is necessary as the current
observations were made on small co-
horts of patients (103).

TLR-DEPENDENT SIGNALING IN THE
PULMONARY EPITHELIUM: A ROLE IN
THE PATHOGENESIS OF PULMONARY
INFLAMMATION?

Pulmonary inflammatory diseases rep-
resent a broad spectrum of conditions
that include allergic asthma, acute lung
injury and acute respiratory distress syn-
drome (ARDS), chronic obstructive pul-
monary disease (COPD), and infectious
pneumonia (96 has a recent review). Al-
though these diseases traditionally have
been considered to reflect the combined
effects of activation of the adaptive im-
mune system with the release of antibod-
ies and mobilization of host immune
cells, recent evidence has demonstrated
an important role for the TLR family
members of the innate immune system
in their pathogenesis. And, in parallel
with the mechanisms leading to the de-
velopment of mucosal inflammation in

the intestine, an emerging body of litera-
ture now provides evidence that epithe-
lial TLR signaling plays a central role
(15). Previous authors have shown that
the pulmonary epithelium expresses a
variety of TLRs (see Table 3), suggesting
their role in the pathogenesis of pul-
monary inflammation. In support of a
role for TLR signaling in the pulmonary
epithelium in the development of pul-
monary inflammation, Noulin et al. have
demonstrated that TLR4 and MyD88-
dependent signaling are required for the
bronchoconstriction, cytokine response,
protein leak, and neutrophil recruitment
observed in response to inhaled endo-
toxin (28). Furthermore, using MyD88–/–
bone marrow chimeras, Noulin et al.
demonstrated that both resident and
hematopoietic cells are necessary for the
mucosal inflammatory response to in-
haled endotoxin (28). Hajjar et al. demon-
strated that MyD88-deficient mice
transplanted with bone marrow from
MyD88-expressing mice showed reduced
chemokine production compared with
MyD88 expressing mice that were trans-
planted with MyD88-expressing bone
marrow in a model of experimental
Pseudomonas aerogeninosa pneumonia, in-
dicating a requirement for resident pul-
monary parenchymal cells in the re-
sponse to experimental pneumonia. The
local pulmonary cytokine response was
predominately dependent on competent
MyD88 signaling in bone-marrow de-
rived cells, suggesting that collaboration
between local parenchymal cells, includ-
ing epithelial cells, and bone-marrow de-
rived cells is required (29). In a model of
bacterial pneumonia that utilizes inhaled
LPS, the uptake of LPS was observed in
bronchial epithelial cells and was associ-
ated with increased TLR2 and TLR4 ex-
pression in the bronchial epithelium (97).
Similarly, in an equine model of recur-
rent airway obstruction associated with
inhaled endotoxin-rich stable dust, in-
creased epithelial expression of TLR4
was observed and was associated with
increased IL-8 expression by the airway
epithelium (98). Taken together, these re-
ports provide supportive evidence for an

important role for epithelial TLR signal-
ing in the pathogenesis of mucosal in-
flammation in the pulmonary system.

Several groups have shown that air-
way epithelial cells (AEC) express TLRs
and secrete cytokines in response to TLR
activation. AECs have been shown to ex-
press TLR2 and TLR4 and release IL-8 in
response to Streptococcus pneumoniae,
lipoteichoic acid, and lipopolysaccharide
(99,100). Furthermore, TLR9 activation in
bronchial epithelial cells has been shown
to potentiate IL-8 release from bronchial
epithelial cells (101). Although it has
been shown that multiple TLRs may sig-
nal in the airway epithelium (15), micro-
array analysis of the lung has revealed
that TLR4 signaling accounts for 74% of
the pulmonary response to experimental
Klebsiella pneumoniae pneumonia by com-
paring the pulmonary response in wild-
type mice to C3H/HeJ TLR4 mutant
mice. The particular TLR4-dependent re-
sponses included genes that are involved
in cytokine and chemokine induction,
neutrophil activation and recruitment,
growth factor receptors, and TLR adap-
tor molecules (102).

In addition to the evidence for TLR
signaling in pulmonary epithelial cells in
vitro, a variety of studies have shown
that TLR activation may lead to the de-
velopment of pulmonary inflammation
in vivo. For instance, the TLR4 mutant
strains C3H/HeJ and C57BL/10ScCr
showed reduced clearance of pulmonary
H. influenzae and E. coli (103,104). In an
experimental Chlamydia pneumoniae pul-
monary infection model, both TLR4 and
TLR2 were found to be required for sur-
vival (105), while TLR4 and CD14 were
found to play an important role in the re-
sponse to respiratory syncytial virus
(RSV) infection (106). In response to pul-
monary Streptococcus pneumoniae infec-
tion, TLR2-deficient mice revealed only
modestly reduced inflammatory re-
sponse and unchanged bacterial clear-
ance (107) compared with wild-type
counterparts. TLR3-deficient mice devel-
oped a survival advantage compared
with wild-type mice, as well as reduced
expression of IL-6 in the bronchoalveolar



6 5 2 |  G R I B A R  E T  A L . |  M O L  M E D  1 4 ( 9 - 1 0 ) 6 4 5 - 6 5 9 , S E P T E M B E R - O C T O B E R  2 0 0 8

E P I T H E L I A L  T L R  S I G N A L I N G  A N D  M U C O S A L  I N F L A M M A T I O N

fluid in a murine model of influenza A
virus infection (108).

Additional evidence implicating a role
for TLR signaling in the development of
pulmonary inflammation may be found
in studies examining the development of
pulmonary inflammation in human pa-
tients with TLR polymorphisms. For in-
stance, polymorphisms in TLR4
(Ala299Gly and Thr399Ile), which are
known to lead to hyporesponsiveness to
LPS (187), lead to a marked resistance to
infection with Legionella pneumophila
(188). These TLR4 mutations have been
correlated with the development of se-
vere RSV infection in infants (120). An
inactivating polymorphism in TLR5
(TLR5392STOP) that encodes a stop
codon in the ligand binding domain of
TLR5 is associated with an increased sus-
ceptibility to infection with Legionella
pneumophila causing Legionnaire’s dis-
ease (188). Taken in aggregate, the results
of these in vitro and in vivo studies pro-
vide evidence for a role for TLR signal-
ing in the pathogenesis of pulmonary in-
flammation. Additional studies are
required utilizing pulmonary-specific
TLR deletions to further delineate the
relative contributions of pulmonary ep-
ithelial cell versus infiltrating leukocytes
in the development of mucosal inflam-
mation in the lung.

TLR-DEPENDENT SIGNALING IN THE
UROEPITHELIAL TRACT: A ROLE IN THE
PATHOGENESIS OF URINARY TRACT
INFLAMMATION?

Akin to the gastrointestinal and pul-
monary tracts, dysregulated epithelial
signaling in the genitourinary system
may lead to marked organ dysfunction.
The expression of multiple TLRs within
the urinary epithelium has now been es-
tablished, suggesting the possibility that
TLR signaling may regulate the interac-
tion of the urinary epithelium with po-
tential pathogens (see Table 3). TLR sig-
naling within urinary tract epithelial
cells leads to pro-inflammatory signaling
in response to uropathogenic E. coli
(UPEC) and LPS (109,110). Furthermore,
modulation of uroepithelial inflamma-

tion may be mediated by sensitization of
the uroepithelium through regulation of
epithelial TLR expression in response to
infection or injury. An increase in TLR4
expression in the urinary epithelium has
been observed during systemic sepsis in
a murine model of cecal ligation and
puncture (111), and an increase in renal
epithelial TLR2 and TLR4 expression has
been observed in a murine model of local
renal inflammation induced by ischemia
(112). Further demonstrating a role for
TLR activation in uroepithelial inflam-
mation, TLR4 mutant C3H/Hej mice
failed to clear uropathogenic E. coli
(UPEC) and showed reduced inflamma-
tory mediator production compared with
wild-type controls (109). TLR4 mutant
C3H/Hej mice were resistant to LPS-
induced renal failure, had less renal neu-
trophilic infiltrate, and less renal cell
apoptosis compared with wild-type con-
trols (113). In addition to TLR4, other
TLRs may participate in the develop-
ment of uroepithelial inflammation. For
instance, TLR5-deficient mice were
found to be more susceptible to experi-
mental UPEC urinary tract infection
compared with wild-type counterparts
(16), while mice with null mutations in
TLR11, which is normally found to be
strongly expressed in the bladder and
kidney epithelium, developed markedly
less severe kidney inflammation com-
pared with wild-type counterparts (114).
TLR2-deficient mice were protected from
tubular injury and renal function deterio-
ration in a model of kidney ischemia-
reperfusion (115). The clinical signifi-
cance of a role for TLR signaling in the
pathogenesis of genitourinary inflamma-
tion is found in clinical studies in which
the incidence of acute rejection after kid-
ney transplantation is reduced in pa-
tients who received a graft heterozygous
for either the TLR4 Asp299Gly or
Thr399Ile polymorphism compared with
grafts without these mutations (189), al-
though conflicting results have been re-
ported (190). Taken together, these stud-
ies suggest an important role for TLR
signaling in the development of urinary
tract inflammation in a variety of models.

Which cells are required for the devel-
opment of TLR-induced inflammation in
the urinary tract? Evidence suggests that
both epithelial and non-epithelial cell
types may play a role. For instance,
when TLR4 mutant C3H/Hej mice were
transplanted with wild-type hematopoi-
etic cells, the mice were unable to mount
the necessary response to UPEC (30). By
contrast, in a model of cisplatin-induced
renal injury, the development of inflam-
mation was dependent on competent
TLR4 signaling in resident renal paren-
chymal cells, as demonstrated in the
study of TLR4–/– bone marrow chi-
meras (31). Additional work is required
to define more accurately the relative
roles of TLR signaling within the epithe-
lium versus the leukocytes in the devel-
opment of mucosal inflammation in the
epithelial tract.

PEACEFUL COEXISTENCE:
MECHANISMS ALLOWING EPITHELIAL
CELLS TO INTERACT WITH BACTERIA
WITHOUT INITIATING AN
EXAGGERATED INFLAMMATORY
RESPONSE

The information reviewed above high-
lights the important roles that TLRs play
in the regulation of the inflammatory re-
sponse at mucosal surfaces. However, it
is well known that these mucosal sur-
faces are constantly bathed in bacteria,
and yet appear to mount little, if any, in-
flammatory response. These observations
lead to the question, “What controls the
activation of TLRs during basal states,
and what leads to their activation during
inflammatory conditions?” While a com-
plete answer to this question remains
lacking, current evidence suggests that
the regulation of TLR activity occurs
through altering TLR or co-receptor ex-
pression, TLR localization, TLR polarity,
or signaling intermediate or negative
regulatory protein expression, as de-
scribed below.

Regulation of epithelial TLR expres-
sion has been suggested as a mechanism
for the regulation of epithelial cell re-
sponsiveness in the setting of commensal
bacterial exposure and during disease
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states. For instance, low expression of
TLR4, as has been observed in colonic
biopsies from humans (75), has been sug-
gested as a mechanism for colonocyte
LPS hyporesponsiveness. Similar find-
ings of low TLR4 expression have been
observed in colonocyte cell lines (HT-29,
SW480, colo205) and increased TLR4 ex-
pression after IFN-γ or TNF-α priming,
as may occur during inflammatory
states, has been shown to enable LPS re-
sponsiveness (88). Similarly, low expres-
sion of TLR2 has been implicated in
bronchial epithelial cell hyporesponsive-
ness to Gram-positive bacteria (15).

Expression of TLR co-receptors in the
epithelial cells also may play a role in ep-
ithelial TLR responsiveness. Hypore-
sponsiveness to LPS in colonic epithelial
cell lines (Caco-2, T84, SW837, and HT-29)
in the basal state is associated with low
or absent expression of the TLR4 core-
ceptor MD-2 (88,191) and priming of cul-
tured colonocytes (HT-29) with IFN-γ or
TNF-α enabled LPS responsiveness in a
mechanism that involved increased 
MD-2 expression (192). Recently, we also
have demonstrated a transient increase
in the expression of the LPS co-receptor
CD14 in enterocytes after exposure to
LPS (193). In the pulmonary system, ab-
sent expression of the TLR2 coreceptor
CD36 has been implicated in the hypore-
sponsiveness of bronchial epithelial cell
to Gram-positive bacteria (194).

Changes in the subcellular localization
of TLRs also may play a role in their re-
sponsiveness. Dissimilar to plasma mem-
brane localized TLR4 in macrophages,
TLR4 has been shown to be localized
predominately in the Golgi apparatus in
enterocytes (174), and TLR4 activation in
enterocytes has been shown to require
intracellular recognition of LPS in the
Golgi apparatus and recruitment of
IRAK-1 and MyD88 to the Golgi appara-
tus (195). Furthermore, colonic HT-29
and colo205 cells express TLR4 predomi-
nately in cytoplasmic fractions and are
hyporesponsive to LPS in basal states
(89). Intracellular TLR redistribution has
been suggested as a mechanism for fla-
gellin tolerance, as prolonged flagellin

exposure resulted in redistribution of
TLR5 to an intracellular location in T84
colonocytes. Increased cell surface TLR
expression also has been suggested as a
mechanism of increased TLR sensitivity.
Colonic SW480 cells are LPS-responsive
and express TLR4 on the cell surface,
where LPS internalization is not neces-
sary for TLR4-LPS interaction (89). Also,
increased TLR9 surface expression was
noted in response to DNA from patho-
genic bacteria in HT-29 colonocytes (196).

Epithelial cell polarity and differential
localization of TLRs on the apical and
basolateral cell surface also has been
shown to play a role in TLR sensitivity
as the apical surface of epithelial cells is
more likely to encounter bacteria in the
normal state, whereas the basolateral
surface of epithelial cells may be more
likely to encounter TLR ligands only in
states of disease. In support of this con-
cept, TLR4 and TLR2 are expressed at
the apical pole of T84 cells and redistrib-
ute to a cytoplasmic compartment near
the basal pole with activation (77). Fur-
thermore, differential TLR9 signaling
has been shown in colonic HCA-7 ep-
ithelial cells. Apical TLR9 activation
leads to attenuation of activation of NF-
κB pathways, whereas basolateral TLR9
activation leads to activation of NF-κB
signaling (91). In the pulmonary system,
TLR2 was located at the apical pole of
airway epithelial cells, and increased
surface expression was observed in re-
sponse to bacteria, whereas TLR4 was
noted predominately in a basolateral lo-
cation (160). In a recent finding by
Soong et al., TLR2 became enriched in
lipid rafts on the apical surface after bac-
terial infection in airway epithelial cells,
suggesting a role in the regulation of
TLR sensitivity (197).

The regulation of signaling intermedi-
ate molecules also may affect TLR sensi-
tivity. For instance, although fetal intes-
tinal cells are known to be responsive to
LPS, postnatal endotoxin hyporespon-
siveness of enterocytes has been ob-
served, and recently shown to be due to
a decrease in the expression of the TLR4
signaling intermediate, IRAK1 (198).

Negative regulatory molecules may play
a role in regulating epithelial TLR signal-
ing, including peroxisome proliferator-
activated receptor-γ; the cytoplasmic zinc
finger protein, A20; and the negative reg-
ulator of TLR signaling, IRAK-M, as has
been reviewed recently (199). The rele-
vance of these molecules to signaling
within epithelial cells remains to be defi-
nitely demonstrated.

THERAPEUTIC MANIPULATION OF TLR
SIGNALING IN THE SETTING OF
MUCOSAL INFLAMMATION

Given the importance of TLR signaling
to the development of mucosal inflam-
mation, it is understandable that a great
deal of interest exists in the development
of agents that can interfere with TLR-
signaling pathways. Such an anti-
inflammatory approach may have partic-
ular relevance in the case of epithelial
inflammation, due to ready access of the
gastrointestinal, pulmonary, and urinary
mucosa through ingestion, inhalation, or
instillation via catheter delivery meth-
ods. Considerable attention has been
placed on developing agents that are
capable of modulation of the TLR4-
mediated response, in particular through
manipulation of the lipid A moiety of
LPS. Such lipid A mimetics, termed
aminoalkyl glucosaminide phosphates
(AGPs), have been demonstrated to re-
duce inflammation in experimental mod-
els of systemic sepsis induced by intra-
venous injection of Listeria monocytogenes
(116), pulmonary infection after in-
tranasal administration of influenza
virus (116), murine models of colitis in-
cluding DSS-induced colitis (117), and
spontaneous colitis in multidrug resist-
ance gene 1a-deficient mice (117). In par-
allel studies, soluble TLRs may reduce
TLR signaling by binding to circulating
ligands, rendering them unable to initi-
ate pro-inflammatory signaling. Brandl et
al. demonstrated that the synthetic mole-
cule “LPS-Trap” was capable of blocking
LPS-mediated macrophage activation in
vitro by fusing MD-2 to the C-terminus
of a soluble form of TLR4 (118). Iwami et
al. cloned an alternatively spliced soluble
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murine TLR4 (smTLR4) that, when trans-
fected into murine macrophages, was se-
creted and inhibited LPS-mediated
macrophage NF-κB activation and
TNF-α release in vitro (119). In addition,
TLR-signaling intermediates have been
targeted chemically to minimize the host
inflammatory response. The synthetic
peptide-mimetic compound ST2825 pre-
vents MyD88 homodimer formation
leading to an inhibition in MyD88-
dependent signaling, and prevents TLR9-
dependent inflammation in vivo (120). A
cyclohexene derivative, TAK-242, pre-
vents TLR4 activation and was found to
reduce the cytokine response to endotox-
emic shock in mice (121,122). The Vac-
cinia virus protein A52R also reduces the
TLR-mediated response by interacting
with IRAK2 and TRAF6, and was found
to reduce the cytokine response in an an-
imal model of infectious otitis media
(123,124) and to increase survival in
models of endotoxemia (125).

As the effects of TLR signaling in
hematopoietic cells, as well as epithelial
cells, are more clearly defined, manipula-
tion of TLR signaling may play a larger
role in the treatment of patients with dis-
eases of inflammation, and, as evidence
continues to mount suggesting a protec-
tive role for particular TLR signaling, di-
rected and specific TLR activation may
hold therapeutic promise.

PUTTING IT ALL TOGETHER: A MODEL
FOR THE ROLE OF THE EPITHELIUM IN
THE DEVELOPMENT OF MUCOSAL
INFLAMMATION

Mucosal surfaces and the epithelial
cells that line them are constantly ex-
posed to potential pathogens. The evi-
dence reviewed above suggests that the
innate immune system, comprised of
TLRs and their associated molecules,
plays a pivotal role in the regulation of
mucosal inflammation in response to in-
vading pathogens. However, the very
fact that these mucosal surfaces are
bathed in potential pathogens as part of
their daily existence and yet don’t de-
velop inflammation under normal condi-
tions raises an important scientific ques-

tion: When does epithelial TLR signaling
within mucosal surfaces become patho-
logical? Or stated differently, when is the
balance tipped between “physiological”
signaling and “pathological” signaling in
favor of a pathological response? A de-
finitive answer to this important ques-
tion not only is necessary to fully eluci-
date the steps required for the
development of mucosal inflammatory
diseases, but is central for the design of
effective anti-inflammatory strategies.

Our current thinking in this area
based upon our work and the work of
others is shown in Figure 3, in which the
intensity of TLR signaling within the ep-
ithelium varies depending upon the pre-
vailing degree of systemic stress. Under
basal conditions, epithelial-bacterial in-
teractions that may occur via TLRs are
likely to play roles in the regulation of
processes that regulate barrier integrity,
such as epithelial migration, prolifera-
tion, and apoptosis (Figure 3A). How-
ever, during states of systemic stress,
such as hypoxia or remote infection, we
submit that the extent of TLR signaling

within the epithelium becomes exagger-
ated in response to PAMPS and DAMPS
that are encountered. This “tips the bal-
ance” in favor of mucosal barrier disrup-
tion, and adversely affects mucosal re-
pair while worsening mucosal injury
(Figure 3B). The extent of inflammation
that develops within the local microen-
vironment likely is compounded further
by the contribution of TLR activation on
leukocytes, and the release of pro-
inflammatory molecules. Under condi-
tions in which the balance of TLR signal-
ing within the epithelium can be “tipped
back” to a homeostatic state, mucosal in-
flammation may not develop. By con-
trast, when the extent of TLR signaling
is persistent, we propose that a “feed-
forward” loop develops within the mu-
cosa, resulting in persistent TLR signal-
ing, cytokine release, and mucosal
inflammation. The evaluation of the
factors that maintain the degree of TLR
signaling within the mucosa in the
maintenance of homeostasis and the
pathogenesis of disease is a topic of in-
tensive investigation.

Figure 3. A model of TLR-mediated inflammation in the mucosa. (A) During basal condi-
tions, TLR signaling is required for mucosal homeostasis. (B) Under conditions of physiologi-
cal stress, TLR signaling in epithelial cells becomes exaggerated in part through increased
TLR expression. This leads to an impairment in epithelial function, increased injury, and de-
creased repair, resulting in mucosal inflammation.



R E V I E W  A R T I C L E

M O L  M E D  1 4 ( 9 - 1 0 ) 6 4 5 - 6 5 9 , S E P T E M B E R - O C T O B E R  2 0 0 8  |  G R I B A R  E T  A L . |  6 5 5

CONCLUSIONS AND DIRECTIONS FOR
FURTHER RESEARCH

The importance of mucosal inflamma-
tion as a clinical problem is well ac-
cepted; however, the molecular and cel-
lular signaling pathways that lead to its
development remain incompletely un-
derstood. Although much attention has
been placed on the role of the epithelium
as a target in the mucosal inflammatory
cascade, recent evidence has shed light
upon the critical role that the epithelium
itself, signaling in part through Toll-like
receptors, may play in the initiation of a
pro-inflammatory cascade in response to
external stimuli. The field of mucosal in-
flammation research is likely to be ad-
vanced significantly through success in
the following areas of study: 1) What are
the relative roles of TLR signaling within
the epithelium versus circulating leuko-
cytes in the pathogenesis of mucosal in-
flammation? 2) What is the precise trig-
ger for TLR signaling within the
epithelium that adversely affects the
host, and what are the essential roles
played by mucosal TLRs in the mainte-
nance of mucosal homeostasis? 3) Are
there TLR-signaling molecular interme-
diates that differ between epithelial cells
and leukocytes, and do such molecules
confer epithelial-specific responses in the
development of mucosal inflammation?
4) What regulates the interplay between
the epithelium and the other cellular
constituents of the mucosa, including
neurons, endothelial cells, and endocrine
cells during TLR activation? It is our be-
lief that by addressing these important
questions, one can be optimistic for the
development of novel classes of anti-in-
flammatory strategies aimed specifically
at the treatment of these devastating dis-
eases of mucosal inflammation.
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